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Abstract: This paper is concerned with the existence and multiplicity of solutions of a Dirichlet problem for p(.) -
Kirchhoff-type equation {

M
(∫

Ω

|∇u|p(x)

p(x)
dx

) (
−∆p(x)u

)
= f(x, u), in Ω,

u = 0, on ∂Ω.

Using the mountain pass theorem, fountain theorem, dual fountain theorem and the theory of the variable exponent
Sobolev spaces, under appropriate assumptions on f and M , we obtain results on existence and multiplicity of solutions.

Key words: Lebesgue and Sobolev spaces with variable exponent, p(.) -Laplacian, Kirchhoff-type equation, mountain
pass theorem, fountain theorem, dual fountain theorem

1. Introduction
In this paper, we deal with the existence of multiple solutions for the nonhomogeneous, nonlocal elliptic p(.) -
Kirchhoff-type problem given by{

M
(∫

Ω
|∇u|p(x)

p(x) dx
) (

−∆p(x)u
)
= f(x, u), in Ω,

u = 0, on ∂Ω ,
(1.1)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain, ∆p(.)u =div(|∇u|p(.)−2∇u) is the p(.) -Laplacian
operator, p : Ω → R+ is Lipschitz continuous and bounded, the nonlinearity f : Ω×R → R is a Carathéodory
function and M : R+ → R+ is a Kirchhoff function. The main theorems used here are mountain pass theorem,
fountain theorem, and dual fountain theorem.

The operator ∆p(.) is said to be p(.) -Laplacian which is a natural generalization of the p -Laplacian
operator. The p(.) -Laplacian possesses more complicated nonlinearities than the p -Laplacian; for example,
it is inhomogeneous. The study of various mathematical problems with variable exponent growth condition
has been received considerable attention in recent years. These problems are interesting in applications and
raise many difficult mathematical problems. One of the most studied models leading to the problem of this
type is the model of motion of electrorheological fluids, which are characterized by their ability to drastically
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change the mechanical properties under the influence of an exterior electromagnetic field [38, 42]. Problems with
variable exponent growth conditions also appear in the mathematical modeling of stationary thermo-rheological
viscous flows of non-Newtonian fluids and in the mathematical description of the processes filtration of an ideal
barotropic gas through a porous medium [2]. Another field of application of equations with variable exponent
growth conditions is image processing [8]. The variable nonlinearity is used to outline the borders of the true
image and to eliminate possible noise. We refer the reader to [5, 19, 21, 23, 26, 34, 35] for the study of the
p(.) -Laplacian equations and the corresponding variational problems.

Problem (1.1) is a generalization of a model for the stationary case introduced by Kirchhoff (see [27]).
More precisely, Kirchhoff proposed a model given by the equation

ρ
∂2u

∂t2
−

ρ0
h

+
E

2L

L∫
0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

 ∂2u

∂x2
= 0 (1.2)

was firstly presented by Kirchhoff, where ρ is the mass density, ρ0 is the initial tension, L is the length of
the string, h is the area of the crosssection, while E is the Young modulus of the material. A distinguish

feature of the Kirchhoff equation (1.2) is that the equation contains a nonlocal coefficient ρ0

h + E
2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx ,

which depends on the average E
2L

∫ L

0

∣∣∂u
∂x

∣∣2 dx of the kinetic energy 1
2

∣∣∂u
∂x

∣∣2 on [0, L] , and hence the equation is
no longer a pointwise identity and therefore it is often called a nonlocal problem. This equation extends the
classical D’Alembert wave equation, by considering the effects of the changes in the length of the strings during
the vibrations.

On the other hand, the equation given as{
−
(
a+ b

∫
Ω
|∇u|2 dx

)
∆u = f(x, u), in Ω,

u = 0, on ∂Ω,
(1.3)

is related to the stationary analog of Equation (1.2) . The early classical studies dedicated to Kirchhoff equations
were given by Pohozaev [37]. However, Equation (1.3) received much attention only after the paper by Lions
[29], where an abstract framework to the problem was proposed. For some interesting results, we refer to
[1, 9, 17, 24, 25, 32, 41]. Also, nonlocal boundary value problems like (1.3) can be used for modeling several
physical and biological systems where u describes a process that depends on the average of itself, such as the
population density. We refer the reader to [3, 6, 10] for some related works.

Recently, the studies of the Kirchhoff equations and the Kirchhoff systems have been considered by
variational method in the case involving the p -Laplacian operator [13, 30, 31]. Moreover, due to the increasing
amount of attention towards partial differential equations with nonstandard growth conditions, it was further
extended to the p(.) -Laplacian operator ∆p(.) ,defined by ∆p(.)u :=div(|∇u|p(.)−2∇u) [4, 11, 12, 40].

In addition to these, in [15], the authors investigated the nonlocal p(x) -Laplacian Dirichlet problem{
−
(
a+ b

∫
Ω

|∇u|p(x)

p(x) dx
)

div
(
|∇u|p(x)−2 ∇u

)
= f(x, u), in Ω,

u = 0, on ∂Ω,
(1.4)

and showed the existence of a sequence of positive, homoclinic weak solutions of (1.4) under some suitable
conditions on f by using the variational methods.
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In [14], by a direct variational approach, Dai and Hao established conditions ensuring the existence and
multiplicity of solutions for the following problem{

−M
(∫

Ω
|∇u|p(x)dx

p(x)

)
div
(
|∇u|p(x)−2 ∇u

)
= f(x, u), in Ω,

u = 0, on ∂Ω,

In [16], Dai and Ma dealt with the existence and multiplicity of solutions to a class of p(x) -Kirchhoff
type problem with Neumann boundary data of the following form{

−M
(∫

Ω
|∇u|p(x)+|u|p(x)

p(x) dx
)(

div
(
|∇u|p(x)−2 ∇u

)
− |u|p(x)−2

u
)
= f(x, u), in Ω,

∂u
∂v = 0, on ∂Ω.

By using a direct variational approach and the theory of the variable exponent Sobolev spaces, under appropriate
assumptions on f and M , they obtained several results on the existence and multiplicity of solutions for the
problem. In particular, they also obtained some results which can be considered as extensions of the classical
result named “combined effects of concave and convex nonlinearities”. Moreover, the positive solutions and the
regularity of weak solutions of the problem were considered by authors.

In [23], the authors studied the nonlocal p(x) -Laplacian problem of the following form

{
M

(∫
RN

|∇u|p(x) + |u|p(x)

p(x)
dx

)(
div
(
|∇u|p(x)−2 ∇u

)
+ |u|p(x)−2

u
)
= f(x, u), in RN , u ∈W 1,p(.)

(
RN
)
.

By using the method of weight function and the theory of the variable exponent Sobolev space, under appropriate
assumptions on f and M , they obtained some results on the existence and multiplicity of solutions of this
problem.

In the present paper, motivated by the above, we show the existence and multiplicity of nontrivial weak
solutions of Problem (1.1) by using mountain pass theorem, fountain theorem and dual fountain theorem.
Problem (1.1) is called nonlocal because of the presence of the term M , which implies that the equation in
(1.1) is no longer pointwise identities. This provokes some mathematical difficulties which make the study of
such a problem particularly interesting.

This paper is organized as follows. In Section 2, we present some necessary preliminary knowledge on
variable exponent Sobolev spaces. In Section 3, using the variational methods, we give the existence and
multiplicity of nontrivial weak solutions of problem (1.1) .

2. Preliminaries
In this section, we recall some results on Lebesgue and Sobolev spaces with variable exponent. The reader is
referred to (see [18, 20, 28, 33]), and references therein for more details.

Set
C+(Ω) =

{
p : p ∈ C(Ω), p (x) > 1 for all x ∈ Ω

}
,

and denote for any p ∈ C+(Ω)

1 < p− := min
x∈Ω

p (x) ≤ p(x) ≤ p+ := max
x∈Ω

p (x) < +∞. (2.1)
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Let us denote by ℜ(Ω) the set of all measurable real functions defined on Ω , elements in ℜ(Ω) which are equal
to each other almost everywhere are considered as one element. For any p ∈ C+(Ω) , we define the Lebesgue
space with variable exponent Lp(.) (Ω) by

Lp(.)(Ω) =

{
u : u ∈ ℜ(Ω),

∫
Ω

|u (x)|p(x) dx < +∞
}
,

with the norm, so-called Luxemburg norm on Lp(.) (Ω)

∥u∥Lp(.)(Ω) := |u|p(.) = inf

{
µ > 0 : σ

(
u

µ

)
≤ 1

}
,

where σ : Lp(.) (Ω) → R with

σ (u) =

∫
Ω

|u|p(x) dx.

Sobolev space with variable exponent W 1,p(.) (Ω) is defined by

W 1,p(.) (Ω) =
{
u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
,

with the norm
∥u∥W 1,p(.)(Ω) := ∥u∥1,p(.) = |u|p(.) + |∇u|p(.) .

We define W
1,p(.)
0 (Ω) := C∞

c (Ω)
W 1,p(.)(Ω)

:= E . We can define an equivalent norm ∥u∥E = |∇u|p(.) . The
modular of E that is the mapping Λ : E → R is defined by

Λ (u) =

∫
Ω

|∇u|p(x) dx,

for all u ∈ E. It is well known that if 1 < p− ≤ p+ < +∞ then Lp(.) (Ω) , W 1,p(.) (Ω) and E are separable
and reflexive Banach spaces. We refer to [18, 28, 38] for the elementary properties of the spaces Lp(.) (Ω) ,
W 1,p(.) (Ω) and E .

Proposition 2.1 (see [18, 28]). For u, uk ∈ Lp(.)(Ω) (k = 1, 2, ...) we have:

i) min
{
|u|p

−

p(.) , |u|
p+

p(.)

}
≤ σ (u) ≤ max

{
|u|p

−

p(.) , |u|
p+

p(.)

}
;

ii) min
{
σ1/p−

(u) , σ1/p+

(u)
}
≤ |u|p(.) ≤ max

{
σ1/p−

(u) , σ1/p+

(u)
}

;

iii σ
(
u/ |u|p(.)

)
= 1 if |u|p(.) ̸= 0 ;

iv) |uk|p(.) → 0 ⇔ σ (uk) → 0 ;

v) |uk|p(.) → ∞ ⇔ σ (uk) → ∞ .

Proposition 2.2 (see [18, 28]). For u, uk ∈ E (k = 1, 2, ...) we have:

i) min
{
∥u∥p

−

E , ∥u∥p
+

E

}
≤ Λ (u) ≤ max

{
∥u∥p

−

E , ∥u∥p
+

E

}
;
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ii) min
{
Λ1/p−

(u) ,Λ1/p+

(u)
}
≤ ∥u∥E ≤ max

{
Λ1/p−

(u) ,Λ1/p+

(u)
}

;

iii) ∥uk∥E → 0 ⇔ Λ (uk) → 0 ;
iv) ∥uk∥E → ∞ ⇔ Λ (uk) → ∞ ;
v) Λ (u/ ∥u∥E) = 1 if ∥u∥E ̸= 0 .
Denote

L∞
+ (Ω) :=

{
h ∈ L∞(Ω) : h− > 1

}
.

Proposition 2.3 (Hölder-type inequality, see [18, 28]). (i) Let p ∈ L∞
+ (Ω) . The conjugate space to

Lp(.) (Ω) is Lp′(.) (Ω) , where 1/p(x) + 1/p′(x) = 1 for almost every (a.e.) x ∈ Ω . Moreover, the following
inequality hold ∣∣∣∣∫

Ω

u(x)υ(x)dx

∣∣∣∣ ≤ 2 |u|p(.) |υ|p′(.) ,

for all u ∈ Lp(.) (Ω) and υ ∈ Lp′(.) (Ω) .

(ii) If p1, p2 ∈ C+(Ω) , p1(x) ≤ p2(x) for any x ∈ Ω , then Lp2(x) (Ω) ↪→ Lp1(x) (Ω) , and the embedding
is continuous.

Proposition 2.4 (see [7]). Assume that r ∈ L∞
+ (Ω) and p ∈ C+(Ω). If |u|r(.) ∈ Lp(.)(Ω) , then we have

min
{
|u|r

−

r(.)p(.) , |u|
r+

r(.)p(.)

}
≤
∣∣∣|u|r(.)∣∣∣

p(.)
≤ max

{
|u|r

−

r(.)p(.) , |u|
r+

r(.)p(.)

}
.

In particular, if r(.) ≡ r is a constant, then

||u|r|p(.) = |u|rrp(.) .

Proposition 2.5 (see [20, 21, 28]). Let Ω be a bounded domain in RN , p ∈ C(Ω) , p+ < N . Then

for any q ∈ L∞
+ (Ω) with q ≪ p∗ =

{
Np(x)
N−p(x) , if p (x) < N,

∞, if p (x) ≥ N
, there is a compact embedding E ↪→↪→ Lq(.)(Ω) ,

where the symbol q ≪ p∗ to denote ess inf
x∈Ω

{p∗ (x)− q(x)} > 0 .

Lemma 2.6(see [22]). Let E be a separable and reflexive Banach space. Let define the functional

ψ (u) =

∫
Ω

|∇u|p(x)

p(x)
dx.

i) ψ : E → R is convex. The mapping ψ′ : E → E∗ is a strictly monotone, bounded homeomorphism,
and of (S+) type, namely un ⇀ u (weakly) and lim

n→∞
⟨ψ′ (un) , un − u⟩ ≤ 0 implies un → u (strongly) on E ;

ii) The functional ψ is well defined on E ;
iii) The functional ψ is of C1(E,R) and

⟨ψ′(u), v⟩ =
∫
Ω

|∇u|p(x)−2 ∇u∇vdx, for all u, v ∈ E;

iv) The functional ψ is weakly lower semi-continuous on E .
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Since the M function is continuous and bounded, Lemma 2.6 is implemented for M
(∫

Ω
|∇u|p(x)

p(x) dx
)
ψ (u) .

Since the proof of Lemma 2.6 is very similar to the proof of Theorem 3.1 given in [22], we omit it.

Let p ∈ C+

(
Ω
)

with condition (2.1) . We assume that M and f satisfy the following conditions:

(M1) : M : R+ → R+ is a continous function and satisfies the (polynomial growth) condition

m1t
β−1 ≤M (t) ≤ m2t

β−1,

for all t > 0 and m1 , m2 real numbers such that m2 ≥ m1 ≥ 0 and β > 1 ;
(f1) : q ∈ C+

(
Ω
)
, f : Ω×R → R is a Carathéodory function and there exists a constant C1 > 0 such

that
|f(x, t)| ≤ C1

(
1 + |t|q(x)−1

)
, for all (x, t) ∈ Ω× R;

(f2) : f(x, t) = o
(
|t|βp+−1

)
as t→ 0 , uniformly in x ∈ Ω ;

(f3) : inf{x∈Ω,|t|=1} F (x, t) > 0 ;
(f4) : f(x,−t) = −f(x, t) for all (x, t) ∈ Ω× R ;

(AR) : θ > m2β(p+)
β

m1(p−)β−1 such that

0 < θF (x, t) := θ

∫ t

0

f (x, s) ds ≤ tf(x, t), ∀t ∈ R, x ∈ Ω.

We are now in a position to state our main results.

3. Main results and proofs
Since our approach is variational, we define the Euler–Lagrange energy functional associated with the problem
(P ) , I : (E, ∥u∥E) → R by

I (u) = M̂

(∫
Ω

|∇u|p(x)

p(x)
dx

)
−
∫
Ω

F (x, u)dx,

where M̂ (t) =
∫ t

0
M (s) ds . In a standard way, we find that I ∈ C1 (E,R) and its Gateaux derivative is given

by

⟨I ′ (u) , v⟩ =M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω

|∇u|p(x)−2 ∇u∇vdx−
∫
Ω

f(x, u)vdx,

for all u, v ∈ E .
Now we give the definition of weak solutions of Problem (1.1) .
Definition 3.1. We call that u ∈ E is a weak solution of (1.1) , if

M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω

|∇u|p(x)−2 ∇u∇vdx =

∫
Ω

f(x, u)vdx,

for all v ∈ E .
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It is clear that critical points of I are weak solutions of (1.1) .
Theorem 3.2. Assume that (M1) and (f1) conditions hold. If q(x) < p∗(x) for all x ∈ Ω and

q+ < βp− < (p−)
∗ , then there exists a weak solution of Problem (1.1) .

Theorem 3.3. If M satisfies (M1) , f satisfies (f1) , (f2) , (f3) and (AR) . If q(x) < p∗(x) for all
x ∈ Ω and βp+ < q− . Then Problem (1.1) has a nontrivial weak solution.

Theorem 3.4. Assume that (M1) , (f1) , (f2) , (f3) , (f4) and (AR) hold. If q(x) < p∗(x) for all x ∈ Ω

and βp+ < q− , then I has a sequence of critical points (uk) such that I (uk) → ∞ as k → ∞ , and Problem
(1.1) has infinite many pairs of solutions.

Theorem 3.5. Assume that the conditions (M1) , (f1) , (f2) , (f4) hold, and f satisfies

(f5) : f(x, t) ≥ a |t|ϱ(x)−1 , t→ 0, where % ∈ C+(Ω) , %+ < m2

m1
βp− for all x ∈ Ω .

Then problem (1.1) has a sequence of solutions (±vk)∞k=1 such that I(±vk) < 0 , and I(±vk) → 0 as
k → ∞ .

Lemma 3.6. Let p ∈ C+

(
Ω
)
.

i) The functional I is well defined on E ;
ii) The functional I is weakly lower semicontinuous on E .
Since the proof of Lemma 3.6 is very similar to the proof of Lemma 2.7 given in [36], we omit it.

Proof of Theorem 3.2. By Proposition 2.5 E ↪→ Lβp+

(Ω) , E ↪→ Lq(.) (Ω) are continuous embeddings,
there exist positive constants C2, C3, such that

|u|βp+ ≤ C2 ∥u∥E , ∀u ∈ E, (3.1)

and
|u|q(.) ≤ C3 ∥u∥E , ∀u ∈ E. (3.2)

From (M1) , we have
m1

β
tβ ≤ M̂ (t) , (3.3)

and from (f1) , we have

|F (x, t)| ≤ C4 + C5 |t|q(x) , ∀ (x, t) ∈ Ω× R. (3.4)

Then, by using (3.2) , (3.3) , (3.4) , Proposition 2.1, 2.2, with ∥u∥E > 1 , we get

I (u) = M̂

(∫
Ω

1

p(x)
|∇u|p(x) dx

)
−
∫
Ω

F (x, u)dx

≥ m1

β

(∫
Ω

|∇u|p(x)

p(x)
dx

)β

−
∫
Ω

(
C4 + C5 |u|q(x)

)
dx

≥ m1

β (p+)
β
∥u∥βp

−

E − C5 max
{
|u|q

−

q(.) , |u|
q+

q(.)

}
− C4 |Ω|

≥ m1

β (p+)
β
∥u∥βp

−

E − C5C3 max
{
∥u∥q

−

E , ∥u∥q
+

E

}
− C4 |Ω|

≥ m1

β (p+)
β
∥u∥βp

−

E − C6 ∥u∥q
+

E − C7.
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Since βp− > q+ , then I (u) → ∞ as ∥u∥E → ∞ . Therefore the functional I is bounded from below and
coercive. Since I is weakly semicontinuous on E , I has minimum point u in E, and u is a weak solution of
problem (1.1) . The proof of Theorem 3.2 is completed. ■

Definition 3.7. We say that the functional I satisfies the Palais–Smale condition ((PS)c , c ∈ R for

short) if every sequence (un) ⊂ E such that

I (un) → c and I ′ (un) → 0 as n→ ∞ in E∗,

where E∗ is the dual space of E , contains a convergent subsequence in the norm of E .
We have the following lemma.
Lemma 3.8. Under the hypotheses of Theorem 3.3, I satisfies the (PS)c condition.
Proof. Let assume that there is a Palais–Smale sequence (un) in E . Then, by (3.3) , (AR) , (M1) and

Proposition 2.2, we get

c+ 1 + ∥un∥E

≥ I (un)−
1

θ

〈
I

′
(un) , un

〉
= M̂

(∫
Ω

|∇un|p(x)

p(x)
dx

)
−
∫
Ω

F (x, un)dx

−1

θ
M

(∫
Ω

|∇un|p(x)

p(x)
dx

)∫
Ω

|∇un|p(x) dx+
1

θ

∫
Ω

f(x, un)undx

≥ m1

β

(∫
Ω

|∇un|p(x)

p(x)
dx

)β

−1

θ
M

(∫
Ω

|∇un|p(x)

p(x)
dx

)∫
Ω

|∇un|p(x) dx

−
∫
Ω

(
F (x, un)−

1

θ
f(x, un)un

)
dx

≥ m1

β (p+)
β

(∫
Ω

|∇un|p(x) dx
)β

− m2

θ (p−)
β−1

(∫
Ω

|∇un|p(x) dx
)β−1(∫

Ω

|∇un|p(x) dx
)

−
∫
Ω

(
F (x, un)−

1

θ
f(x, un)un

)
dx

≥

(
m1

β (p+)
β
− m2

θ (p−)
β−1

)
∥un∥βp

−

E − C8.

Hence, (un) is bounded in E . Without loss of generality, we assume that un ⇀ u , then ⟨I ′ (un) , (un − u)⟩ → 0.
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Thus we have

⟨I ′ (un) , (un − u)⟩

= M

(∫
Ω

|∇un|p(x)

p(x)
dx

)(∫
Ω

|∇un|p(x)−2 ∇un (∇un −∇u) dx
)
−
∫
Ω

f(x, un) (un − u) dx→ 0, (3.5)

since (un) is bounded |un|q(.) ≤ C̃1 . Therefore, from (f1) , Propositions 2.3, 2.4, we get

∣∣∣∣∫
Ω

f(x, un) (un − u) dx

∣∣∣∣
≤ C1

∣∣∣∣∫
Ω

(
1 + |un|q(x)−1

)
(un − u) dx

∣∣∣∣
= C1

(∫
Ω

|un − u| dx+

∫
Ω

∣∣∣(|un|q(x)−1
)
(un − u)

∣∣∣ dx)
≤ 2C1 |un − u|q(.) |1|q′(.) + 2C1

∣∣∣uq(x)−1
n

∣∣∣
q′(.)

|un − u|q(.)

≤ C̃2 |un − u|q(.) + 2C1

{
|un|q

+−1
q(.) + |un|q

−−1
q(.)

}
|un − u|q(.) → 0. (3.6)

From Proposition 2.5, (un) converges strongly to u in Lq(.) (Ω) , that is |un − u|q(.) −→ 0 as n → ∞ . From,

(3.5) and (3.6) we get

M

(∫
Ω

|∇un|p(x)

p(x)
dx

)∫
Ω

(
|∇un|p(x)−2 ∇un (∇un −∇u)

)
dx→ 0.

From condition (M1) , it follows ∫
Ω

|∇un|p(x)−2 ∇un (∇un −∇u) dx→ 0.

Eventually, by Lemma 2.6 (i) , we get un → u in E . In conclusion, I satisfies the (PS)c condition. The proof
of Lemma 3.8 is completed. ■

We will use the following ”mountain pass theorem” to prove Theorem 3.3.
Lemma 3.9 (Mountain pass theorem see [39]). Let E be a Banach space, I ∈ C1 (E,R) with

I (0) = 0 . Suppose that:
(H1) There exist α, r > 0 such that I (u) ≥ α > 0 , u ∈ E with ∥u∥E = r ;
(H2) There exists e ∈ E such that ∥e∥E > r, I (e) < 0 .
Then there is a sequence (un) ⊂ E such that

I (un) → c and I ′ (un) → 0 as n→ ∞ in E∗,

where
0 < c = inf max I (γ (t))

γ∈Γ 0≤t≤1

,
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and
Γ = {γ ∈ C ([0, 1] , E) : γ (0) = 0, γ (1) = e} .

Lemma 3.10. Suppose M satisfies (M1) , f satisfies (f1) , (f2) . Then the following statements hold:
i) There exist two positive real numbers ρ and α such that I (u) ≥ α > 0 , u ∈ E with ∥u∥E = ρ ∈ (0, 1) ;
ii) There exists u ∈ E such that ∥u∥E > ρ , I (u) < 0 .
Proof. i) Let ∥u∥E < 1 . Then by (M1) , we have

I (u) = M̂

(∫
Ω

|∇u|p(x)

p(x)
dx

)
−
∫
Ω

F (x, u)dx

≥ m1

β

(∫
Ω

|∇u|p(x)

p(x)
dx

)β

−
∫
Ω

F (x, u)dx

≥ m1

β (p+)
β
∥u∥βp+E −

∫
Ω

F (x, u)dx.

Let ε, ε1 > 0 be small enough such that 0 < ε1 <
m1

2β(p+)βCβp+

2

. It follows from (f1) and (f2) for any ε,

ε1 > 0 , choose Cε, Cε1 > 0 such that

|f(x, t)| ≤ ε |t|βp
+−1

+ Cε |t|q(x)−1 , for all (x, t) ∈ Ω× R,

and
|F (x, t)| ≤ ε1 |t|βp

+

+ Cε1 |t|
q(x) , for all (x, t) ∈ Ω× R. (3.7)

Therefore, from (3.1) , (3.2) , (3.7) and Proposition 2.2, we get

I (u) ≥ m1

β (p+)
β
∥u∥βp

+

E −
∫
Ω

F (x, u)dx

≥ m1

β (p+)
β
∥u∥βp

+

E − ε1

∫
Ω

|u|βp
+

dx− Cε1

∫
Ω

|u|q(x) dx

≥ m1

β (p+)
β
∥u∥βp

+

E − ε1C
βp+

2 ∥u∥βp
+

E − Cε1C
q−

3 ∥u∥q
−

E

≥

(
m1

β (p+)
β
− ε1C

βp+

2

)
∥u∥βp

+

E − C9 ∥u∥q
−

E

≥ m1

2β (p+)
β
ρβp

+

− C9ρ
q− = ρβp

+

(
m1

2β (p+)
β
− C9ρ

q−−βp+

)
,

Since ∥u∥E < 1 and βp+ < q− , the function t → m1

2β(p+)β
− C9ρ

q−−βp+ is strictly positive in a neighborhood

of zero. It follows that there exist two positive real numbers ρ and α such that I (u) ≥ α > 0 , u ∈ E with
∥u∥E = ρ ∈ (0, 1) .
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ii) On the other hand, when s ≥ 1 , from condition (M1) we can easily obtain

M̂ (s) ≤ m2
sβ

β
≤ m2

β
s

m2
m1

β . (3.8)

For each x ∈ Ω and t ∈ R , let us define the function

η1(s) = s−θF (x, st)− F (x, t),

for all s ≥ 1 . Then we deduce from (AR) that

η′1(s) = s−θ

[
f(x, st)t− θ

s
F (x, t)

]
≥ 0,

for all s ≥ 1 . So η1 is increasing function on [1,+∞) and η1(τ) ≥ η1(1) = 0 for all τ ∈ [1,+∞) . Hence,

F (x, st) ≥ sθF (x, t), ∀x ∈ Ω, t ∈ R, s ≥ 1. (3.9)

Thus, for any fixed ω ∈ E , ω ≥ 0 , ω ̸= 0 , s ≥ 1 and from (3.8) and (3.9) conditions, we get

I (sω) = M̂

(∫
Ω

|∇ (sω)|p(x)

p(x)
dx

)
−
∫
Ω

F (x, sω)dx

≤ m2

β

(∫
Ω

1

p(x)
|∇ (sω)|p(x) dx

)m2
m1

β

−
∫
Ω

F (x, sω)dx

≤ m2

β (p−)
m2
m1

β
s

m2
m1

βp+
(∫

Ω

|∇ω|p(x) dx
)m2

m1
β

− sθ
∫
Ω

F (x, ω)dx.

By (AR) , we have θ > m2β(p+)
β

m1(p−)β−1 >
m2

m1
βp+ then we get I (sω) → −∞ as s→ +∞ . The proof of Lemma 3.10

is completed. ■

Proof of Theorem 3.3. From Lemma 3.8, Lemma 3.10, Lemma 2.6 (vi) , and the fact that I(0) = 0 , I
satisfies the mountain pass theorem. Therefore, I has at least one nontrivial critical point, i.e. Problem (1.1)

has a nontrivial weak solution. The proof of Theorem 3.3 is completed. ■
We will use the following ”fountain theorem” to prove Theorem 3.4.
Because E is reflexive and separable Banach space, then there are ej ∈ E and e∗j ∈ E∗ such that

E = span{ej : j = 1, 2, ...}, E∗ = span{e∗j : j = 1, 2, ...},

and 〈
ei, e

∗
j

〉
=

{
1, i = j
0, i ̸= j

.

For convenience, we write Ej = span{ej} , Yk = ⊕k
j=1Ej , Zk = ⊕∞

j=kEj .

Lemma 3.11 (see [22]). If α ∈ C+

(
Ω
)
, α (x) < p∗ (x) for any x ∈ Ω, denote

γk = sup{|u|α(.) : ∥u∥W 1,p(.)
0 (Ω)

= 1, u ∈ Zk},
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then limk→∞ γk = 0 .
Lemma 3.12 (Fountain theorem see [39]). Assume that

(A1) E is a Banach space, I ∈ C1 (E,R) is an even functional;
If for each k = 1, 2, ... there exist ρk > rk > 0 such that
(A2) ak = maxu∈Yk,∥u∥E=ρk

I (u) ≤ 0 ;

(A3) bk = infu∈Zk,∥u∥E=rk I (u) → ∞ as k → ∞ ;

(A4) I satisfies (PS)c condition for every c > 0 ,
then I has a sequence of critical values tending to +∞ .
Proof of Theorem 3.4. According to (f4) and Lemma 3.8, I is an even functional and satisfies (PS)c

condition. We only need to prove that if k is large enough, then there exist ρk > rk > 0 such that (A2) and
(A3) hold. Thus, the conclusion of Theorem 3.4 can be obtained from fountain theorem.

Verification of (A2) . For any (x, t) ∈ Ω× R , set η2(ξ) = F (x, ξ−1t)ξθ, ∀ξ ≥ 1 . By (AR) , we have

η′2(ξ) = −f(x, ξ−1t)tξθ−2 + θF (x, ξ−1t)ξθ−1

= ξθ−1
[
θF (x, ξ−1t)− ξ−1f(x, ξ−1t)t

]
≤ 0,

so, η2 is a nonincreasing function on [1,+∞) . Thus, for any |t| ≥ 1 , we have η2(1) ≥ η2(|t|) , that is

F (x, t) ≥ F (x, t−1t) |t|θ ≥ Ĉ |t|θ for all x ∈ Ω, (3.10)

where Ĉ = inf{x∈Ω,|t|=1} F (x, t) > 0 given in (f3) condition. Also, by (f2) , there exist constants C10 > 0 ,
t∗ > 0 such that

|F (x, t)| ≤ C10 |t|βp
+

, ∀x ∈ Ω, 0 < |t| ≤ t∗, (3.11)

and by (f1), there exists C11 > 0 such that

|F (x, t)| ≤ C11

(
C4 + C5 |t|q(x)

)
≤ C11

(
C4 + C5 |t|q

−)
≤ C11 |t|βp

+

, ∀x ∈ Ω, t∗ ≤ |t| ≤ 1. (3.12)

From (3.11) and (3.12) , we deduce that

F (x, t) ≥ − (C10 + C11) |t|βp
+

,∀x ∈ Ω, |t| ∈ [0, 1] , (3.13)

then we get from (3.10) and (3.13) that

F (x, t) ≥ Ĉ |t|θ − C12 |t|βp
+

,∀x ∈ Ω, t ∈ R, (3.14)
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Since p+ < βp+ < (p−)
∗ , by using (3.8) , (3.14) when ρk ≥ 1 , we get

I (u) = M̂

(∫
Ω

|∇u|p(x)

p(x)
dx

)
−
∫
Ω

F (x, u)dx

≤ m2

β

(∫
Ω

|∇u|p(x)

p(x)
dx

)m2
m1

β

−
∫
Ω

(
Ĉ |u|θ − C12 |u|βp

+
)
dx

≤ m2

β (p−)
m2
m1

β

(∫
Ω

|∇u|p(x) dx
)m2

m1
β

− Ĉ

∫
Ω

|u|θ dx+ C12

∫
Ω

|u|βp
+

dx

≤ m2

β (p−)
m2
m1

β
∥u∥

m2
m1

βp+

E − Ĉ ∥u∥θE + C12 ∥u∥βp
+

E

≤ C0m2

β (p−)
m2
m1

β
∥u∥

m2
m1

βp+

E − Ĉ ∥u∥θE .

Because all norms are equivalent on the finite dimensional space Yk = k , and θ > m2

m1
βp+ > 1 , there exists

ρk ≥ 1 large enough such that
ak = max

u∈Yk,∥u∥E=ρk

I (u) ≤ 0.

Hence, (A2) holds.

Verification of (A3) . For any u ∈ Zk, ∥u∥E = rk =
(
C13C

q+

3 q+γk
q+m−1

1 (p+)
β
) 1

βp−−q+ ≥ 1 , by using

(3.2) , (3.4) and Proposition 2.1, we have

I (u) = M̂

(∫
Ω

|∇u|p(x)

p(x)
dx

)
−
∫
Ω

F (x, u)dx

≥ m1

β

(∫
Ω

|∇u|p(x)

p(x)
dx

)β

− C13

∫
Ω

(
C + |u|q(x)

)
dx

≥ m1

β (p+)
β
∥u∥βp

−

E − C13 max
{
|u|q

−

q(.) , |u|
q+

q(.)

}
− C13C |Ω|

≥ m1

β (p+)
β
∥u∥βp

−

E − C13 max
{
Cq−

3 ∥u∥q
−

E , Cq+

3 ∥u∥q
+

E

}
− C14

≥ m1

β (p+)
β
∥u∥βp

−

E − C13C
q+

3 γk
q+ ∥u∥q

+

E − C14

=
m1

β (p+)
β

(
C13C

q+

3 q+γk
q+m−1

1

(
p+
)β) βp−

βp−−q+

−C13C
q+

3 γk
q+
(
C13C

q+

3 q+γk
q+m−1

1

(
p+
)β) q+

βp−−q+ − C14

=
m1

(p+)
β

(
1

β
− 1

q+

)
r

βp−

βp−−q+

k − C14.
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Because of γk → 0 as k → ∞ and β < βp− < q+ , we have rk → ∞ as k → ∞ . Then for u ∈ Zk

with∥u∥E = rk such that ρk > rk > 0 , we get

bk = inf
u∈Zk,∥u∥E=rk

I (u) ≥ m1

(p+)
β

(
1

β
− 1

q+

)
r

βp−

βp−−q+

k − C14 → ∞

as k → ∞ .
So, (A3) holds. The proof of Theorem 3.4 is completed. ■
Lemma 3.13 (Dual fountain theorem, see [39]). Suppose that I ∈ C1 (X,R) satisfies I(−u) = I(u) ,

and for every k ≥ k0 , there exist ρk > rk > 0 such that
(B1) ck = infu∈Zk,∥u∥X=ρk

I (u) ≥ 0 ;

(B2) dk = maxu∈Yk,∥u∥X=rk I (u) < 0 ;

(B3) ek = infu∈Zk,∥u∥X≤ρk
I (u) → 0 as k → ∞ ;

(B4) I satisfies (PS)∗c condition for every c ∈ [ek0
, 0) .

Then I has a sequence of negative critical values converging to 0 .
Definition 3.14. We say that I satisfies the (PS)∗c condition (with respect to (Yn)), if any sequence(

unj

)
⊂ X such that nj → ∞ , unj

∈ Ynj
, I
(
unj

)
→ c and

(
I |Ynj

)
′ (unj

)
→ 0 , contains a subsequence

converging to a critical point of I .
Lemma 3.15. Assume that the conditions (M1) , (f1) and (AR) hold, then I satisfies the (PS)∗c

condition.

Proof. Suppose
(
unj

)
⊂ E such that nj → +∞ , unj

∈ Ynj
, I
(
unj

)
→ c̃ and

(
I |Ynj

)
′ (unj

)
→ 0 .

Similar to the process of verifying the (PS)c condition in the proof of Lemma 3.8, we can get the boundedness
of
∥∥unj

∥∥
E

. Going, if necessary, to a subsequence, we can assume that unj ⇀ u in E . As E = ∪njYnj , we can
choose vnj

∈ Ynj
such that vnj

→ u . Hence

lim
nj→∞

〈
I ′
(
unj

)
,
(
unj

− u
)〉

= lim
nj→∞

〈
I ′
(
unj

)
,
(
unj

− vnj

)〉
+ lim

nj→∞

〈
I ′
(
unj

)
,
(
vnj

− u
)〉

= lim
nj→∞

〈(
I |Ynj

)
′ (unj

)
,
(
unj

− vnj

)〉
= 0.

As I ′ is of (S+) type, we can conclude that unj
→ u , furthermore we have I ′

(
unj

)
→ I ′ (u) .

Now, let us prove I ′ (u) = 0 below. Taking arbitrarily wk ∈ Yk , notice that when nj ≥ k we have

⟨I ′ (u) , wk⟩ =
〈
I ′ (u)− I ′

(
unj

)
, wk

〉
+
〈
I ′
(
unj

)
, wk

〉
=

〈
I ′ (u)− I ′

(
unj

)
, wk

〉
+
〈(
I |Ynj

)
′ (unj

)
, wk

〉
.

Going to limit in the right side of above equation, we reach that

⟨I ′ (u) , wk⟩ = 0, ∀wk ∈ Yk.

So, I ′ (u) = 0 . This shows that I satisfies the (PS)∗c condition for every c ∈ R . ■
Proof of Theorem 3.5. We will prove the Theorem 3.5 with the help of Lemma 3.13.
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From (f4) and Lemma 3.15, we know that I ∈ C1(E,R) is an even functional and I satisfies (B4) ,
respectively.

Verification of (B1) . For any v ∈ Zk , ∥v∥E = 1 and 0 < t < 1 , by using (3.7) , (M1) and Proposition
2.1, we have

I (tv) = M̂

(∫
Ω

|∇ (tv)|p(x)

p(x)
dx

)
−
∫
Ω

F (x, tv)dx

≥ m1

β

(∫
Ω

|∇ (tv)|p(x)

p(x)
dx

)β

− εtβp
+

∫
Ω

|v|βp
+

dx− Cεt
q−
∫
Ω

|v|q(x) dx

≥ m1

β (p+)
β
tβp

+

(∫
Ω

|∇v|p(x) dx
)β

− εtβp
+

∫
Ω

|v|βp
+

dx− Cεt
q−
∫
Ω

|v|q(x) dx

≥ m1

β (p+)
β
tβp

+

∥v∥βp
+

E − εCβp+

2 tβp
+

∥v∥βp
+

E −

{
Cεt

q−γq
−

k ∥v∥q
−

E if |u|q(.) ≤ 1,

Cεt
q−γq

+

k ∥v∥q
−

E if |u|q(.) > 1,

≥

(
m1

β (p+)
β
− εCβp+

2

)
tβp

+

−

{
Cεt

q−γq
−

k if |u|q(.) ≤ 1,

Cεt
q−γq

+

k if |u|q(.) > 1,

≥

(
m1

β (p+)
β
− εCβp+

2

)
tβp

+

− Cεt
q−γq

−

k . (3.15)

Let ε > 0 be small enough such that 0 < ε < m1

2β(p+)βCβp+

2

similarly proof of Lemma 3.10 (i) . Thus, from

(3.15) , we get

I (tv) ≥ m1

2β (p+)
β
tβp

+

− Cεt
q−γq

−

k . (3.16)

Since q− > βp+ , taking t = ρk small enough and sufficiently large k , for v ∈ Zk with ∥v∥E = 1 we have
I (tv) ≥ 0 . So for sufficiently large k ,

ck = inf
u∈Zk,∥u∥E=ρk

I (u) ≥ 0,

thus, (B1) is satisfied.
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Verification of (B2) . For v ∈ Yk with ∥v∥E = 1 and 0 < t < ρk < 1 , by using (f5) and (M1) , we get

I (tv) = M̂

(∫
Ω

|∇ (tv)|p(x)

p(x)
dx

)
−
∫
Ω

F (x, tv)dx

≤ m2

β

(∫
Ω

|∇ (tv)|p(x)

p(x)
dx

)m2
m1

β

− a

∫
Ω

|tv|ϱ(x)
ϱ(x)

dx

≤ m2

β (p−)
m2
m1

β
t
m2
m1

βp−
(∫

Ω

|∇v|p(x) dx
)m2

m1
β

− atϱ
+

ϱ+

∫
Ω

|v|ϱ(x)dx

≤ m2

β (p−)
m2
m1

β
t
m2
m1

βp−
− atϱ

+

ϱ+ .

Since %+ < m2

m1
βp− implies that there exists a rk ∈ (0, ρk) such that I(tv) < 0 when t = rk . Hence we get

dk = max
u∈Yk,∥u∥E=rk

I (u) < 0,

so (B2) is satisfied.
Verification of (B3) . Because Yk ∩ Zk ̸= ∅ and rk < ρk , we have

ek := max
u∈Zk,∥u∥E≤ρk

inf I(u) ≤ bk := max
u∈Yk,∥u∥E=rk

I (u) < 0.

From (3.16) , for v ∈ Zk , ∥v∥E = 1 , 0 ≤ t ≤ ρk and u = tv , we have

I(u) = I(tv) ≥ m1

2β (p+)
β
tβp

+

− Cεt
q−γq

−

k ≥ −Cεt
q−γq

−

k .

Hence ek → 0 , i.e., (B3) is satisfied.
The conclusion of Theorem 3.5 is reached by the Dual fountain theorem. ■
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