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Abstract: A novel fractional integral in the sense of Riemann-Liouville integral and two new fractional derivatives in
the sense of Riemann-Liouville derivative and Caputo derivative with respect to another function and two parameters
are introduced. Some significant properties of them are presented like semigroup property, inverse property, etc. The
solution of the Cauchy-type problem for the nonhomogenous linear differential equation with the φ -generalized Caputo
k -fractional derivative is given by using the method of successive approximation.
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1. Introduction
It was understood that n was one of the nonnegative integers when one talked about the derivative of order n or
n -fold integrals because the former was in need of knowing instantaneous rates of change, areas under or between
curves, the slopes of curves, and accumulation of quantities. These needs produced the well-known traditional
calculus. Unlike traditional calculus, although fractional calculus at that time was a production of only innocent
curiosity which is in Leibnitz’s letter to L’ Hospital in 1695, it has been widely improved along with the extension
of the needs in the recent decades. Many researchers not only in the past like Euler, Fourier, Abel, Liouville,
Riemann, Grünwald, Hadamard, Weyl, Erdélyi-Kober, Caputo have tried to understand and define fractional
derivatives and integrals[17][16][20][27][21][22][4][19], but ones also in the present make an attempt to define
a new derivative or integral of fractional order depending generalizing available concepts like gamma function
and appearing new ones and needs. For instance, Katugampola [12] introduced a novel fractional operator
generalizing the well-known Hadamard fractional and the Riemann-Liouville derivatives to an individual form.
Romero [23] et al. presented a novel fractional derivative named by k-Riemann-Liouville fractional derivative
by utilizing the k -gamma function and relationships with the k -Riemann-Liouville integral and some features
employing Laplace and Fourier transforms. Sarikaya [26] et al. gave a new version of fractional integral called
(k, s) -Riemann-Liouville fractional integral generalizing the Riemann-Liouville fractional integral and presented
some features for this one as well as new integral inequalities employing the novel version of fractional integral.
Subsequently, Azam [3] et al. developed the generalized k -fractional derivative in the sense of Riemann-Liouville
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and generalized Caputo type k-fractional derivative which are the generalized forms of some existing fractional
derivatives. Almeida [1] studied a Caputo type fractional derivative with respect to another function and
investigated some features, like the inverse law and the semigroup law, Fermat’s and Taylor’s theorems, etc.

Fractional calculus has a prevailing usage in the scientific world. Nowadays, it has been employed in the
areas of mathematical physics, statistical mechanics, electrochemistry, electric conductance of biological sys-
tems, astrophysics, computed tomography, control theory, the mathematical modeling of viscoelastic material,
thermodynamics, the modeling of diffusion, biophysics, electric conductance of biological systems, fractional
order models of neurons, hydrology, geological surveying, signal and image possessing, engineering, finance,
etc. Almeida [1] et al. took a Population Growth Model into consideration and demonstrated that the process
utilizing a Caputo FD with respect to different functions (kernels) can be more accurately modeled. With the
help of the generalized fractional derivatives, mathematically the variant of post-Newtonian mechanics and the
relativistic-covariant generalization of the traditional equations in the gravitational field are studied by Kobelev
[14].

In addition to the fact that each of all counted papers above is a source of inspiration, the pioneer works
[26][3][1] motivated us to define a new fractional integral and two novel fractional derivatives which can cover
most of existing fractional integrals and derivatives. We investigated some of their features and discovered
relations with each other and lastly solved the Cauchy type problem which naturally comes to light. Before
starting the main contributions, we remind a few concepts.

By Diaz and Pariguan [6], the k -gamma and the k -beta functions are defined as follows

Γk (ω) =

∫ ∞

0

e−
yk

k yω−1dy, (1.1)

and

Bk (ω,ϖ) =
1

k

∫ 1

0

y
ω
k −1 (1− y)

ϖ
k −1

dy, (1.2)

where Re (ω) > 0 and Re (ϖ) > 0 , respectively. Their relations with the well-known gamma and beta functions
and themselves are given by

Γ (ω) = lim
k→1

Γk (ω) , Γk (ω) = k
ω
k −1Γ

(ω
k

)
, Γk (k) = 1, Γk (ω + k) = ωΓk (ω) ,

and

Bk (ω,ϖ) =
Γk (ω) Γk (ϖ)

Γk (ω +ϖ)
=

1

k
B
(ω
k
,
ϖ

k

)
.

Define two norms ∥.∥C : C [a, b] → R and ∥.∥
C

[n]
φ

: Cn [a, b] → R by

∥f∥C := max
x∈[a,b]

|f (x)| , ∥f∥
C

[n]
φ

:=

n∑
m=0

∥∥∥f [m]
φ

∥∥∥
C
,

where |.| is an arbitrary norm of R , n ∈ N .
Gösta Mittag-Leffler [18] defined Mittag-Leffler function Eη (φ) by

Eη (φ) =

∞∑
k=0

φk

Γ (ηk + 1)
, η ∈ C, Re (η) > 0.
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Subsequently, Wiman [28] introduced a generalized Mittag-Leffler function Eη,µ (φ) , given by

Eη,µ (φ) =

∞∑
k=0

φk

Γ (ηk + µ)
, η, µ ∈ C, Re (η) > 0.

2. Main contributions
2.1. The φ-generalized R-L k -fractional integral and derivative

In this section, we introduce both the φ -generalized Riemann Liouville k -fractional integral (φ -GRL k -FI) of
order α > 0 and the φ -generalized Riemann Liouville k -fractional derivative (φ -GRL k -FD) of order α > 0 .
We examine some properties and relations between them. Now, let us start with the definition of (φ -GRL k -FI).

Definition 2.1 Let f be a continuous function on the real interval [a, b] and let φ ∈ C1 [a, b] be an increasing
function with φ

′
(x) ̸= 0, ∀x ∈ [a, b] . Then the φ-generalized Riemann Liouville k -fractional integral of α > 0

is given by (
R
a+I

α,φ
k,s f

)
(x) =

s1−
α
k

kΓk (α)

∫ x

a

(φs (x)− φs (t))
α
k −1

φ
′
(t)φs−1 (t) f (t) dt,

where k > 0 and s ∈ R\{−1} . For the sake of simplicity, we denote φ-GRL k -FI using the differential concept
by (

R
a+I

α,φ
k,s f

)
(x) =

s−
α
k

kΓk (α)

∫ x

a

(φs (x)− φs (t))
α
k −1

f (t) dφs (t) .

Based on the choices of k, s, φ , we obtain different definitions of fractional integrals, e.g., φ -GRL k -FI

reduces to (k, s) -Riemann-Liouville fractional integral[26] provided that φ (x) = x , and for k → 1 , s = 1 , it
coincides with the φ -Riemann-Liouville fractional integrals [13][25][2][1]. φ -GRL k -FI with φ (x) = x , k → 1 ,
s = 1 corresponds to the well-known Riemann-Liouville fractional integrals. Selecting φ (x) = x , k → 1 ,
s → 0+ turns φ -GRL k -FI into the Hadamard fractional integral [10], etc.

The following theorem expresses the semigroup and commutative property of φ -GRL k -FI.

Theorem 2.2 Let f be a continuous function on the real interval [a, b] and let φ ∈ C1 [a, b] be an increasing
function with φ

′
(x) ̸= 0, ∀x ∈ [a, b] . Then, ∀α, β > 0

R
a+I

α,φ
k,s

[
R
a+I

β,φ
k,s f (x)

]
=R

a+ Iα+β,φ
k,s f (x) =R

a+ Iβ,φk,s

[
R
a+I

α,φ
k,s f (x)

]
.

Proof Assume that given conditions are satisfied. By using Fubini’s theorem, consider

R
a+I

α,φ
k,s

[
R
a+I

β,φ
k,s f (x)

]
=

s−
α
k

kΓk (α)

∫ x

a

(φs (x)− φs (y))
α
k −1

[
s−

β
k

kΓk (β)

∫ y

a

(φs (y)− φs (t))
β
k−1

dφs (t) f (t)

]
dφs (y)

=
s−

α+β
k

k2Γk (α) Γk (β)

∫ x

a

f (t)

[∫ x

t

(φs (x)− φs (y))
α
k −1

(φs (y)− φs (t))
β
k−1

dφs (y)

]
dφs (t)
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By substituting z = φs(y)−φs(t)
φs(x)−φs(t) , we obtain z = 0 , z = 1 , [φs (x)− φs (t)] z = dφs (y) , and

R
a+I

α,φ
k,s

[
R
a+I

β,φ
k,s f (x)

]
=

s−
α+β

k

k2Γk (α) Γk (β)

∫ x

a

(φs (x)− φs (t))
α+β

k −1
f (t)

[∫ 1

0

(1− z)
α
k −1

z
β
k−1dz

]
dφs (t)

=
s−

α+β
k

k2Γk (α) Γk (β)

∫ x

a

(φs (x)− φs (t))
α+β

k −1
f (t) dφs (t)Bk

(
α

k
,
β

k

)

=
s−

α+β
k

k2Γk (α) Γk (β)

∫ x

a

(φs (x)− φs (t))
α+β

k −1
f (t) dφs (t) k

Γk (α) Γk (β)

Γk (α+ β)

=R
a+ Iα+β,φ

k,s f (x) .

By changing places of α and β , commutativity of φ -GRL k -FI can be easily followed. 2

The following corollary says that φ -GRL k -FI is linear.

Corollary 2.3 Let g and h be a continuous function on the real interval [a, b] and let φ ∈ C1 [a, b] be an
increasing function with φ

′
(x) ̸= 0, ∀x ∈ [a, b] , α ∈ R+ , µ ∈ R . Then

R
a+I

α,φ
k,s [g (x) + µh (x)] =R

a+ Iα,φk,s g (x) + µR
a+I

α,φ
k,s h (x) .

Lemma 2.4 Let an increasing function φ ∈ C1 [a, b] have the property of φ
′
(x) ̸= 0, ∀x ∈ [a, b] and let

α, β, k > 0 and s ∈ R\{−1} . Then we have

R
a+I

α,φ
k,s (φs (x)− φs (a))

β
k−1

=
Γk (β)

s
α
k Γk (α+ β)

(φs (x)− φs (a))
α+β

k −1
.

Proof In the light of the definition of R
a+I

α,φ
k,s

R
a+I

α,φ
k,s (φs (x)− φs (a))

β
k−1

=
s−

α
k

kΓk (α)

∫ x

a

(φs (x)− φs (t))
α
k −1

(φs (t)− φs (a))
β
k−1

dφs (t)

By substituting z = φs(t)−φs(a)
φs(x)−φs(a) , we obtain z = 0 , z = 1 , [φs (x)− φs (a)] z = dφs (t) , and

R
a+I

α,φ
k,s (φs (x)− φs (a))

β
k−1

=
s−

α
k

kΓk (α)

∫ 1

0

(φs (x)− φs (a))
α+β

k −1
(1− z)

α
k −1

z
β
k−1dz

=
s−

α
k

kΓk (α)
(φs (x)− φs (a))

α+β
k −1

Bk

(
α

k
,
β

k

)
which provides the desired result. 2

Definition 2.5 Let f be a continuous function on [0,∞) and let φ ∈ C1 [0,∞) be an increasing function with
φ

′
(x) ̸= 0, ∀x ∈ [0,∞) . s, α ∈ R+ , and n, k ∈ N with n = [α]+1 . Then the φ-generalized Riemann Liouville

k -fractional derivative of α > 0 is given by

(
R
a+D

α,φ
k,s f

)
(x) =

s
α−nk+k

k

kΓk (nk − α)

(
φ1−s (x)

1

φ′ (x)

d

dx

)n ∫ x

a

(φs (x)− φs (t))
nk−α

k −1
φ

′
(t)φs−1 (t) f (t) dt,
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where ∀0 < a < x . For the sake of simplicity and making calculations easy, we denote φ-GRL k -FD using the
differential concept by

(
R
a+D

α,φ
k,s f

)
(x) =

s
α−nk

k

kΓk (nk − α)

(
φ1−s (x)

d

dφ (x)

)n ∫ x

a

(φs (x)− φs (t))
nk−α

k −1
f (t) dφs (t) .

It can be expressed as follows(
R
a+D

α,φ
k,s f

)
(x) =

(
φ1−s (x)

d

dφ (x)

)n (
R
a+I

nk−α,φ
k,s f

)
(x) .

Based on the choices of k, s, φ , we can reach to many of fractional derivatives, e.g., φ -GRL k -FD reduces
to the generalized k-fractional derivative [3] provided that φ (x) = x , and for k → 1 , s = 1 , it coincides with the
φ -Riemann-Liouville fractional derivative [13][25][2][1]. φ -GRL k -FD with φ (x) = x , k → 1 , s = 1 corresponds
to the well-known Riemann-Liouville fractional derivative. Depending on selecting suitable choices of φ, s, k

from φ -GRL k -FD, one can easily obtain the generalized fractional derivative [12], the k-Riemann-Liouville
fractional derivative [23], the k-Weyl fractional derivative [24], the k-Hadamard fractional derivative [7] as well
as classical Riemann-Liouville fractional derivative, Weyl fractional derivative, Hadamard fractional derivative,
etc. One can find more details in the references [13][25][2][1].

Now, we discuss the inverse property of the φ -GRL k -FD.

Theorem 2.6 Let f be a continuous function on [0,∞) and let φ ∈ C1 [0,∞) be an increasing function with
φ

′
(x) ̸= 0, ∀x ∈ [0,∞) . s, α ∈ R+ , and n, k ∈ N with n = [α] + 1 . Then ∀0 < a < x ,

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) =

1

kn
f (x) .

Proof With the help of both their definitions, we get

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

=
s

α−nk
k

kΓk (nk − α)

(
φ1−s (x)

d

dφ (x)

)n ∫ x

a

(φs (x)− φs (y))
nk−α

k −1
(
R
a+I

α,φ
k,s f

)
(y) dφs (y)

=
s

α
k −n−α

k

k2Γk (nk − α) Γk (α)

(
φ1−s (x)

d

dφ (x)

)n ∫ x

a

(φs (x)− φs (y))
nk−α

k −1

[∫ y

a

(φs (y)− φs (t))
α
k −1

f (t) dφs (t)

]
dφs (y)

By utilizing Fubini’s theorem, we have

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

=
s

α
k −n−α

k

k2Γk (nk − α) Γk (α)

(
φ1−s (x)

d

dφ (x)

)n ∫ x

a

f (t)

[∫ x

t

(φs (x)− φs (y))
nk−α

k −1
(φs (y)− φs (t))

α
k −1

dφs (t)

]
dφs (y)

By substituting z = φs(y)−φs(t)
φs(x)−φs(t) , we obtain z = 0 , z = 1 , [φs (x)− φs (t)] z = dφs (y) , and

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

=
s−n

k2Γk (nk − α) Γk (α)

(
φ1−s (x)

d

dφ (x)

)n ∫ x

a

(φs (x)− φs (t))
n−1

f (t)

∫ 1

0

(1− z)
nk−α

k −1
z

α
k −1dzdφs (t)
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In the light of the definition and properties of beta function,

R
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x)

=
s−n

knΓk (n)

(
φ1−s (x)

d

dφ (x)

)n ∫ x

a

(φs (x)− φs (t))
n−1

f (t) dφs (t)

=

(
φ1−s (x)

1

φ′ (x)

)n
s1−n

knΓk (n)

dn

dxn

∫ x

a

(φs (x)− φs (t))
n−1

φ
′
(t)φs−1 (t) f (t) d (t) .

By applying the derivative of an integral of a two-variable function by n-times to the above equality, we get the
required result. 2

Lemma 2.7 Let f be a continuous function on [0,∞) and let φ ∈ C1 [0,∞) be an increasing function with
φ

′
(x) ̸= 0, ∀x ∈ [0,∞) . s, α, β ∈ R+ , and n, k ∈ N with n = [α] + 1 . Then ∀0 < a < x ,

R
a+D

α,φ
k,s

(
R
a+I

β,φ
k,s f

)
(x) =

1

kn

(
R
a+D

α−β,φ
k,s f

)
(x) .

In the following theorem, semigroup property of φ -GRL k -FD is demonstrated.

Theorem 2.8 Let φ ∈ C1 [0,∞) be an increasing function with φ
′
(x) ̸= 0, ∀x ∈ [0,∞) . For continuous f on

[0,∞) , s, α, β ∈ R+ , and n, k,m ∈ N with n = [α] + 1 , m = [β] + 1 such that α+ β < nk . Then ∀0 < a < x ,

R
a+D

α,φ
k,s

(
R
a+D

β,φ
k,s f

)
(x) =

1

kn

(
R
a+D

α+β,φ
k,s f

)
(x) .

Proof From the inverse and semigroup properties of φ -GRL k -FD and φ -GRL k -FI, respectively, we obtain

R
a+D

α,φ
k,s

(
R
a+D

β,φ
k,s f

)
(x) =

(
φ1−s (x)

d

dφ (x)

)n
R
a+I

nk−α,φ
k,s

(
R
a+D

β,φ
k,s f

)
(x)

=

(
φ1−s (x)

d

dφ (x)

)n
R
a+I

nk−α,φ
k,s

(
R
a+D

β,φ
k,s

)(
R
a+I

β,φ
k,s

)(
R
a+I

−β,φ
k,s f

)
(x)

=
1

kn

(
φ1−s (x)

d

dφ (x)

)n (
R
a+I

nk−α,φ
k,s

)(
R
a+I

−β,φ
k,s f

)
(x)

=
1

kn

(
φ1−s (x)

d

dφ (x)

)n (
R
a+I

nk−(α+β),φ
k,s f

)
(x)

which is the desired result. 2

Here is the commutativity and linearity of φ -GRL k -FD.

Corollary 2.9 Let φ ∈ C1 [0,∞) be an increasing function with φ
′
(x) ̸= 0, ∀x ∈ [0,∞) . For continuous f on

[0,∞) , s, α, β ∈ R+ , and n, k,m ∈ N with n = [α] + 1 , m = [β] + 1 such that α+ β < nk , then ∀0 < a < x ,

R
a+D

α,φ
k,s

(
R
a+D

β,φ
k,s f

)
(x) =R

a+ Dβ,φ
k,s

(
R
a+D

α,φ
k,s f

)
(x) .
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Corollary 2.10 Let φ ∈ C1 [0,∞) be an increasing function with φ
′
(x) ̸= 0, ∀x ∈ [0,∞) . For continuous

g,h on [0,∞) , s, α ∈ R+ , µ ∈ R+ and n, k ∈ N with n = [α] + 1 , then ∀0 < a < x ,

R
a+D

α,φ
k,s [g (x) + µh (x)] =R

a+ Dα,φ
k,s g (x) + µR

a+D
α,φ
k,s h (x) .

Lemma 2.11 Let φ ∈ C1 [0,∞) be an increasing function with φ
′
(x) ̸= 0, ∀x ∈ [0,∞) , and let s, α, γ ∈ R+ ,

n, k ∈ N with n = [α] + 1 . Then ∀0 < a < x ,

R
a+D

α,φ
k,s (φs (x)− φs (a))

γ
k =

s
α−nk

k Γk (k + γ)

kΓk (nk + k + γ − α)

(
φ1−s (x)

d

dφ (x)

)n

(φs (x)− φs (a))
n+ γ

k−α
k .

Proof Because of its definition, we have

R
a+D

α,φ
k,s (φs (x)− φs (a))

γ
k =

s
α−nk

k

kΓk (nk − α)

(
φ1−s (x)

d

dφ (x)

)n ∫ x

a

(φs (x)− φs (t))
nk−α

k −1
(φs (t)− φs (a))

γ
k dφs (t)

By substituting z = φs(t)−φs(a)
φs(x)−φs(a) , we obtain z = 0 , z = 1 , [φs (x)− φs (a)] z = dφs (t) , and

R
a+D

α,φ
k,s (φs (x)− φs (a))

γ
k =

s
α−nk

k

kΓk (nk − α)

(
φ1−s (x)

d

dφ (x)

)n ∫ 1

0

(φs (x)− φs (a))
n+ γ

k−α
k (1− z)

nk−α
k −1

z
γ
k dz

=
s

α−nk
k

kΓk (nk − α)

(
φ1−s (x)

d

dφ (x)

)n

(φs (x)− φs (a))
n+ γ

k−α
k Bk

(
nk − α

k
,
γ

k
+ 1

)
which grants the desired result. 2

2.2. The φ-generalized Caputo k -fractional derivative

In this section, we introduce the φ -generalized Caputo k -fractional derivative(φ -GC k -FD) of order α > 0 . We
will discuss relations of φ -GC k -FD with φ -GRL k -FD and φ -GRL k -FI as well as some simple properties.

Here is the definition of φ -GC k -FD.

Definition 2.12 Let f, φ ∈ Cn [0,∞) be two functions such that φ is increasing and φ
′
(x) , x ∈ [0,∞) and

let s, α ∈ R+ , n, k ∈ N such that n := [α] + 1 and k (n− 1) < α < nk . Then ∀0 < a < x , the φ-generalized
Caputo k -fractional derivative(φ-GC k -FD) of order α > 0 is

(
C
a+D

α,φ
k,s f

)
(x) =

s
α−nk

k

kΓk (nk − α)

∫ x

a

(φs (x)− φs (t))
nk−α

k −1

[(
φ1−s (t)

d

dφ (t)

)n

f (t)

]
dφs (t) .

It can be expressed as follows

(
C
a+D

α,φ
k,s f

)
(x) =R

a+ Ink−α,φ
k,s

(
φ1−s (x)

d

dφ (x)

)n

f (x) .

Again, we want to emphasize that we can obtain different kinds of fractional derivatives apart from the
above-mentioned ones depending on selecting the choices of k, s, φ . For instance, φ -GC k -FD reduces to the a
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generalized Caputo type k -fractional derivative [3] when φ (x) = x . On choosing k → 1 , s = 1 , it coincides
with the φ -Caputo fractional derivative [13][25][2][1]. φ -GC k -FD with φ (x) = x , k → 1 , s = 1 corresponds
to the well-known Caputo fractional derivative. With the appropriate selections of φ, s, k , one can derive a
k-Caputo fractional derivative [5], the k -Caputo Hadamard fractional derivative, the Caputo modification of
the Hadamard fractional derivative [8], the Caputo type Weyl fractional derivative in addition to the Caputo–
Hadamard fractional derivative [8][11], the Caputo–Erdélyi–Kober fractional derivative [15]. One can find more
details in the references [13][25][2][1].

Lemma 2.13 Let φ ∈ Cn [0,∞) be a function with φ
′ ̸= 0 , x ∈ [0,∞) and let α, β, s ∈ R+ , n, k ∈ N . Then

0 < a < x ,

C
a+D

α,φ
k,s (φs (x)− φs (a))

β
k−1

= s
α−nk

k

Γk (β − nk) Γ
(

β
k

)
Γk (β − α) Γ

(
β
k − n

) (φs (x)− φs (a))
β−α

k −1
.

Proof It is easy to calculate the following equality

(
φ1−s (x)

d

dφ (x)

)n

(φs (x)− φs (a))
β
k−1

=
Γ
(

β
k

)
Γ
(

β
k − n

) (φs (x)− φs (a))
β
k−n−1

.

By using the given definition of φ -GC k -FD

C
a+D

α,φ
k,s (φs (x)− φs (a))

β
k−1

=
s

α−nk
k Γ

(
β
k

)
Γk (nk − α) Γ

(
β
k − n

) ∫ x

a

(φs (x)− φs (a))
β−α

k −1
(φs (t)− φs (a))

β−α
k −1

dφs (t) .

The desired thing is obtained from substituting y = φs(t)−φs(a)
φs(x)−φs(a) , and using k -Beta function and its properties.

2

Theorem 2.14 Let f, φ ∈ Cn [0,∞) be two functions such that φ is increasing and φ
′
(x) , x ∈ [0,∞) and let

s, α ∈ R+ , n, k ∈ N such that n := [α] + 1 and k (n− 1) < α < nk . Then ∀0 < a < x ,

R
a+I

α,φ
k,s

(
C
a+D

α,φ
k,s f

)
(x) =

1

kn

(
f (x)−

n−1∑
m=0

1

m!
(φs (x)− φs (a))

m
f (m)
φ (a)

)

where f
(m)
φ (x) =

(
φ1−s (x) d

dφ(x)

)m
f (x) .

Proof

R
a+I

α,φ
k,s

(
C
a+D

α,φ
k,s f

)
(x) = R

a+I
α,φ
k,s

R

a+
Ink−α,φ
k,s

(
φ1−s (x)

d

dφ (x)

)n

f (x)

=R
a+ Ink,φk,s

(
φ1−s (x)

d

dφ (x)

)n

f (x)

=
s−n

kΓk (nk)

∫ x

a

(φs (x)− φs (t))
n−1

[(
φ1−s (t)

d

dφ (t)

)n

f (t)

]
dφs (t) =:

(
C
a+D

0,φ
k,s f

)
(x)
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By keeping relations between k -gamma and well-known gamma functions and applying n-times integration by
parts, we reach the craved result. 2

Corollary 2.15 Let f, φ ∈ Cn [0,∞) be two functions such that φ is increasing and φ
′
(x) , x ∈ [0,∞) and

let s, α ∈ R+ , n, k ∈ N such that n := [α] + 1 and k (n− 1) < α < nk . Then ∀0 < a < x ,

R
a+I

β,φ
k,s

(
C
a+D

α,φ
k,s f

)
(x) =

(
C
a+D

α−β,φ
k,s f

)
(x) .

Corollary 2.16 Let g, h, φ ∈ Cn [0,∞) be two functions such that φ is increasing and φ
′
(x) , x ∈ [0,∞) and

let c1, c2 ∈ R , s, α ∈ R+ , n, k ∈ N such that n := [α] + 1 and k (n− 1) < α < nk . Then ∀0 < a < x ,

C
a+D

α,φ
k,s [c1g (x) + c2h (x)] = c1

C
a+D

α,φ
k,s g (x) + c2

C
a+D

α,φ
k,s h (x) .

Corollary 2.17 Let f, φ ∈ Cn [0,∞) be two functions such that φ is increasing and φ
′
(x) , x ∈ [0,∞) and

let s, α ∈ R+ , n, k ∈ N such that n := [α] + 1 and k (n− 1) < α < nk . Then ∀0 < a < x ,

(
C
a+D

α,φ
k,s f

)
(x) = R

a+D
α,φ
k,s

(
f (x)−

n−1∑
m=0

1

m!
(φs (x)− φs (a))

m
f (m)
φ (a)

)
.

Theorem 2.18 φ ∈ C1 [a, b] , a > 0 is increasing with φ
′
(x) ̸= 0 , x ∈ [a, b] and let s, α ∈ R+ , n, k ∈ N such

that n := [α] + 1 and k (n− 1) < α < nk . If f ∈ C1 [a, b] , then ∀0 < a < x ,

C
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) =

1

kn
f (x) .

Proof By using corollary 2.17, we have

C
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) = R

a+D
α,φ
k,s

((
R
a+I

α,φ
k,s f

)
(x)−

n−1∑
m=0

1

m!
(φs (x)− φs (a))

m
(
R
a+I

α,φ
k,s f

)(m)

φ
(a)

)

Considering that(
R
a+I

α,φ
k,s f

)(m)

φ
(x) =

(
φ1−s (x)

d

dφ (x)

)m (
R
a+I

α,φ
k,s f

)
(x)

=

(
φ1−s (x)

d

dφ (x)

)m
s−

α
k

kΓk (α)

∫ x

a

(φs (x)− φs (t))
α
k −1

f (t) dφs (t) .

One can easily infer the following inequality from the above equation∣∣∣∣(Ra+I
α,φ
k,s f

)(m)

φ
(x)

∣∣∣∣ ≤ sm−α
k

k
α
k Γk

(
α
k −m+ 1

) (φs (x)− φs (a))
α
k −m ∥f∥C ,

and so
(
R
a+I

α,φ
k,s f

)(m)

φ
(a) = 0 for all k = 0, 1, ..., n− 1 . Therefore,

C
a+D

α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) = R

a+D
α,φ
k,s

(
R
a+I

α,φ
k,s f

)
(x) =

1

kn
f (x) .

This completes the proof. 2
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Theorem 2.19 The φ generalized Caputo k -fractional derivatives of order α > 0 are bounded operators, i.e
let f, φ ∈ Cn [a, b] , a > 0 be two functions such that φ is increasing and φ

′
(x) , x ∈ [a, b] and let s, α ∈ R+ ,

n, k ∈ N such that n := [α] + 1 and k (n− 1) < α < nk .

∥∥∥(Ca+D
α,φ
k,s f

)
(x)
∥∥∥
C
≤ M ∥f∥

C
[n]
φ

where

M =
s

α−nk
k

Γk (nk + k − α)

[
φ1−s (b)

minx∈[a,b] |φ′ (x)|

]n
(φs (x)− φs (a))

nk−α
k .

Proof For all 0 < a < x ,

∣∣∣(Ca+D
α,φ
k,s f

)
(x)
∣∣∣ ≤ s

α−nk
k

kΓk (nk − α)

∫ x

a

(φs (x)− φs (t))
nk−α

k −1
dφs (t)

[
φ1−s (b)

minx∈[a,b] |φ′ (x)|

]n
∥f∥

C
[n]
φ

=
s

α−nk
k

kΓk (nk − α)

[
φ1−s (b)

minx∈[a,b] |φ′ (x)|

]n
(φs (x)− φs (a))

nk−α
k

nk−α
k

∥f∥
C

[n]
φ

=
s

α−nk
k

nk−α
k Γk (nk − α)

[
φ1−s (b)

minx∈[a,b] |φ′ (x)|

]n
(φs (x)− φs (a))

nk−α
k ∥f∥

C
[n]
φ

=
s

α−nk
k

Γk (nk + k − α)

[
φ1−s (b)

minx∈[a,b] |φ′ (x)|

]n
(φs (x)− φs (a))

nk−α
k ∥f∥

C
[n]
φ

which is the desired result. 2

The solution of nonhomogenous linear differential equation with the φ -generalized Caputo k -fractional
derivative

2.3. Applications

In this section, we look for a solution to the Cauchy-type problem for nonhomogeneous linear φ - generalized
Caputo k - fractional differential equation. A solution of the Cauchy-type problem for φ -GRL k -FDEs in the
same form can be examined in the similar manner.

Theorem 2.20 For two functions y, φ ∈ C [0,∞) such that φ is increasing and φ
′
(x) , x ∈ [0,∞) and s ∈ R+ ,

0 < α < 1 , k ∈ N such that 0 < α < k and λ, c ∈ R . The following fractional initial value problem

C
a+D

α,φ
k,s y (x)− λy (x) = f (x) , (2.1)

y (a) = c, (2.2)

is of the solution

y (x) = cEα
k

(
φα,φ
k,s (x, a)

)
+

s−
α
k

k
α
k −1

∫ x

a

(φs (x)− φs (t))
α
k −1

Eα
k ,αk

(
φα,φ
k,s (x, t)

)
f (t) dφs (t) , (2.3)

where φα,φ
k,s (x, y) := k1−

α
k λ
(

φs(x)−φs(y)
s

)α
k .
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Proof By applying R
a+I

α,φ
k,s to both sides of 2.1 and using Theorem 2.6 and Corollary 2.17, we get

y (x) = y (a) + kλR
a+I

α,φ
k,s y (x) + kRa+I

α,φ
k,s f (x) .

To solve this integral equation, we use the method of successive approximation. According to this method, we
set:

y0 (x) = y (a) ,

ym (x) = y0 (x) + kλR
a+I

α,φ
k,s ym−1 (x) + kRa+I

α,φ
k,s f (x)

where m ≥ 1 . For m = 1 , we have

y1 (x) = y0 (x) + kλR
a+I

α,φ
k,s y0 (x) + kRa+I

α,φ
k,s f (x) .

By rewriting and regulating

y1 (x) = y (a) + kλy (a)
s−

α
k

Γk (α+ k)
(φs (x)− φs (t))

α
k + kRa+I

α,φ
k,s f (x) .

Similarly we find for y2 (x) that

y2 (x) = y0 (x) + kλ

[
y (a) + kλy (a)

s−
α
k

Γk (α+ k)
(φs (x)− φs (t))

α
k + kRa+I

α,φ
k,s f (x)

]
+ kRa+I

α,φ
k,s f (x) .

With the help of Lemma 2.4, one can easily reach to

y2 (x) = y (a)

3∑
j=1

kj−1λj−1s−(j−1)α
k

Γk ((j − 1)α+ k)
(φs (x)− φs (t))

(j−1)α
k +

2∑
j=1

kjλj−1R
a+I

jα,φ
k,s f (x) .

By keeping on this process, we derive the following equation for ym (x) , m ≥ 1

ym (x) = y (a)

m+1∑
j=1

kj−1λj−1s−(j−1)α
k

Γk ((j − 1)α+ k)
(φs (x)− φs (t))

(j−1)α
k +

m∑
j=1

kjλj−1R
a+I

jα,φ
k,s f (x) .

Taking the limit while m tends to ∞ , we get the following explicit pattern of y (x) to the solution of 2.1 and
2.2:

y (x) = y (a)

∞∑
j=1

kj−1λj−1s−(j−1)α
k

Γk ((j − 1)α+ k)
(φs (x)− φs (t))

(j−1)α
k +

∞∑
j=1

kjλj−1R
a+I

jα,φ
k,s f (x) .

By replacing the index of summation j by j − 1 , we have

y (x) = y (a)

∞∑
j=0

kjλjs−j α
k

Γk (jα+ k)
(φs (x)− φs (t))

jα
k +

∞∑
j=0

kj+1λjR
a+I

(j+1)α,φ
k,s f (x) .

which provides us the required result by keeping in mind the given definition of φ -GRL k -FI and k -Gamma
and k -Beta functions and their features. 2
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Corollary 2.21 For 0 < α < 1 , the following special case of the fractional initial value problem (2.1)-(2.2):

C
0+D

α,x2

2,1 y (x)− 2
α
2 −1y (x) = 1,

y (0) = 1,

is of the solution obtained from the equation 2.4

y (x) = Eα
2

((
x2
)α

2

)
+ 2

α
2 −1

∫ x

0

(
x2 − t2

)α
2 −1

Eα
2 ,α2

((
x2 − t2

)α
2

)
dt2, (2.4)

which is equal to
y (x) = Eα

2
(xα) + 21−

α
2 xαEα

2
α
2 +1 (x

α) .

3. Conclusion
In recent times, lots of new types of fractional integral and derivatives were introduced and served to many real-
world problems. Therefore, our aims are to combine these conceptions into a united one and improve a theory for
FDEs with a unified novel derivative. In this study, we presented quite comprehensive φ -generalized Riemann-
Liouville k -fractional integral and φ -generalized Riemann-Liouville and Caputo k -fractional derivatives which
can be reduced to most of the well-known fractional integrals and derivatives depending on the choices of k, s, φ .
Some fundamental features are discussed to build the theory’s basement.
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