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Abstract: In this paper, we construct a nonhomogeneous geometric quadratic stochastic operator generated by 2-
partition ξ on countable state space X = Z∗ . The limiting behavior of such operator is studied. We have proved that
such operator possesses the regular property.
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1. Introduction
Let (X,F) be a measurable space and S(X,F) be a set of all probability measures on (X,F) . We consider a
family of functions {P (x, y,A) : x, y ∈ X,A ∈ F} on X ×X × x×F with the following properties:

(1) For every x, y ∈ X , P (x, y, ·) ∈ S(X,F) , that is P (x, y, ·) is a probability measure on (X,F) ;

(2) For fixed A ∈ F , P (·, ·, A) is a jointly measurable function;

(3) P (x, y,A) = P (y, x,A) for every x, y ∈ X , and A ∈ F .

The family of functions above can be used to define a nonlinear operator V : S(X,F) → S(X,F) , such that

(V µ)(A) =

∫
X

∫
X

P (x, y,A)dµ(x)dµ(y) (1.1)

for every µ ∈ S(X,F) and A ∈ F . Note that, this operator is called a quadratic stochastic operator. A
quadratic stochastic operator is also known as an evolutionary operator of free population which being studied
in many publications, see ([1–18]).

Definition 1.1 A quadratic stochastic operator V is called a regular if for any initial point µ ∈ S(X,F) the
limit

lim
n→∞

V n(µ)

exists.
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The case where X is a finite set has been studied in numerous publications, for example see ([2, 3, 9–11, 13–
18]). In this paper, we consider the case where X is a countable set, where X = Z∗ is a set of all nonnegative
integers. On such a state space, one can consider a probability distribution. Below, we will consider a geometric
distribution. Recall that the following distribution,

Gr(k) = (1− r)rk,

for any k ∈ Z∗ , where 0 < r < 1 is called geometric distribution. In the case where X = Z∗ , one can define a
measure {k} as P (i, j, {k}) , and by additivity of this measure we have

P (i, j, A) =
∑
k∈A

P (i, j, {k}).

Below, we assume
P (i, j, {k}) = Pij,k.

Then, a family of functions {Pij,k : i, j, k ∈ Z∗} satisfies the following conditions,

(1) Pij,· ∈ S(X,F) is the probability measure, and

(2) Pij,k = Pji,k for any i, j, k ∈ X .

In this particular case, a qso (1.1) can be written as

V µ(k) =

∞∑
i=0

∞∑
j=0

P (i, j, k)µ(i)µ(j), (1.2)

where k = Z∗ for measure µ ∈ S(X,F) .

Definition 1.2 A quadratic stochastic operator V in (1.2) is called a geometric quadratic stochastic operator
if for any i, j ∈ Z∗ , the probability measure P (i, j, ·) is the geometric distribution Gr(i,j) with a real parameter
r(i, j) = r(j, i) , 0 < r(i, j) < 1 .

Note that if r(i, j) = r for any i, j ∈ Z∗ , their corresponding family of distribution is called homogeneous
family. It is evident that qso (1.2) generated by a homogeneous family of geometric distribution is identity
transformation. Throughout this paper, we will consider a nonhomogeneous geometric qso. Assume ξ =

{A1, A2} is a 2-partition of state space Z∗ . Then, we define a corresponding partition ζ = {B1, B2} of space
Z∗ × Z∗ where B1 = (A1 × A1) ∪ (A2 × A2) and B2 = (A1 × A2) ∪ (A2 × A1) . Now, we define a family of
functions {Pij,k : i, j, k ∈ Z∗} as follows:

Pij,k =

{
(1− r1)r

k
1 if (i, j) ∈ B1

(1− r2)r
k
2 if (i, j) ∈ B2

(1.3)

Then, a qso defined by this family (1.3) is called nonhomogeneous qso generated by 2-partition. The case
A1 = 2m and A2 = 2m+ 1 , where m ∈ Z∗ was considered in [1]. The case where A1 = {k} , k is a singleton
that has been studied in [12]. In this paper, we consider the case A1 = {k1, k2} where k1, k2 ∈ Z∗ \ A1 , and
ζ = {B1, B2} with B1 = (A1 ×A1) ∪ (A2 ×A2) and B2 = (A1 ×A2) ∪ (A2 ×A1) .
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2. Regularity of quadratic stochastic operator generated by 2-partition ξ of two points

Using the fact that arbitrary two points in the countable state space X = Z∗ may be consecutive or noncon-
secutive, thus we need to consider the following cases.
Case 1. Consecutive two points
Let A1 = {x1, x1 + 1 : x1 ∈ Z∗} where A1 consists of consecutive two points and A2 = Z∗ \ A1 . Then, we
consider the following subcases:

(1) x1 = 0 , and

(2) x1 ̸= 0

where x1 ∈ A1 . Note that both cases are necessary to be investigated as they yield different numbers of
partitions in Z∗ × Z∗ . For the subcase of x1 = 0 , we consider a geometric qso defined by a family of functions
(1.3). For arbitrary initial measure µ ∈ S (X,F) , we have

V µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j)

=

1∑
i,j=0

Pij,kµ(i)µ(j) +

∞∑
i,j=2

Pij,kµ(i)µ(j) +

1∑
i=0

∞∑
j=2

Pij,kµ(i)µ(j) +

∞∑
i=2

1∑
j=0

Pij,kµ(i)µ(j)

= (1− r1)r
k
1

{
[µ(0) + µ(1)]

2
+ [1− (µ(0) + µ(1))]

2
}

+ (1− r2)r
k
2 {2 [µ(0) + µ(1)] [1− (µ(0) + µ(1))]} , and

V 2µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kV µ(i)V µ(j)

=

1∑
i,j=0

Pij,kV µ(i)V µ(j) +

∞∑
i,j=2

Pij,kV µ(i)V µ(j) +

1∑
i=0

∞∑
j=2

Pij,kV µ(i)V µ(j)

+

∞∑
i=2

1∑
j=0

Pij,kV µ(i)V µ(j)

= (1− r1)r
k
1

{
[V µ(0) + V µ(1)]

2
+ [1− (V µ(0) + V µ(1))]

2
}

+ (1− r2)r
k
2 {2 [V µ(0) + V µ(1)] [1− (V µ(0) + V µ(1))]} .

Thus, by using induction on the sequence V nµ(k) , the following recurrent equation is produced

V n+1µ(k) = (1− r1)r
k
1

{
(V nµ(0) + V nµ(1))

2
+ [1− (V nµ(0) + V nµ(1))]

2
}

+ (1− r2)r
k
2 {2 (V nµ(0) + V nµ(1)) [1− (V nµ(0) + V nµ(1))]}

(2.1)
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where n = 0, 1, 2, . . . . One can show that the limit behavior of the recurrent equation (2.1) is fully determined
by the limit behavior of recurrent equation V nµ(0) and V nµ(1) such that

V n+1µ(0) = (1− r1)
{
(V nµ(0) + V nµ(1))

2
+ [1− (V nµ(0) + V nµ(1))]

2
}

+ (1− r2) {2 (V nµ(0) + V nµ(1)) [1− (V nµ(0) + V nµ(1))]} , and

V n+1µ(1) = (1− r1)r1

{
(V nµ(0) + V nµ(1))

2
+ [1− (V nµ(0) + V nµ(1))]

2
}

+ (1− r2)r2 {2 (V nµ(0) + V nµ(1)) [1− (V nµ(0) + V nµ(1))]} .

(2.2)

where n = 0, 1, 2, . . . . Next, for the subcase where x1 ̸= 0 , we have

V µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j)

=

x1−1∑
i=0

x1−1∑
j=0

Pij,kµ(i)µ(j) +

x1+1∑
i=x1

x1+1∑
j=x1

Pij,kµ(i)µ(j) +

∞∑
i=x1+2

∞∑
j=x1+2

Pij,kµ(i)µ(j)

+

x1−1∑
i=0

∞∑
j=x1+2

Pij,kµ(i)µ(j) +

∞∑
i=x1+2

x1−1∑
j=0

Pij,kµ(i)µ(j) +

x1−1∑
i=0

x1+1∑
j=x1

Pij,kµ(i)µ(j)

+

x1+1∑
i=x1

x1−1∑
j=0

Pij,kµ(i)µ(j) +

x1+1∑
i=x1

∞∑
j=x1+2

Pij,kµ(i)µ(j) +

∞∑
i=x1+2

x1+1∑
j=x1

Pij,kµ(i)µ(j)

= (1− r1)r
k
1

{
(µ(x1) + µ(x1 + 1))

2
+ [1− (µ(x1) + µ(x1 + 1))]

2
}

+ (1− r2)r
k
2 {2 (µ(x1) + µ(x1 + 1)) [1− (µ(x1) + µ(x1 + 1))]} , and

V 2µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kV µ(i)V µ(j)

=

x1−1∑
i=0

x1−1∑
j=0

Pij,kV µ(i)V µ(j) +

x1+1∑
i=x1

x1+1∑
j=x1

Pij,kV µ(i)V µ(j) +

∞∑
i=x1+2

∞∑
j=x1+2

Pij,kV µ(i)V µ(j)

+

x1−1∑
i=0

∞∑
j=x1+2

Pij,kV µ(i)V µ(j) +

∞∑
i=x1+2

x1−1∑
j=0

Pij,kV µ(i)V µ(j) +

x1−1∑
i=0

x1+1∑
j=x1

Pij,kV µ(i)V µ(j)

+

x1+1∑
i=x1

x1−1∑
j=0

Pij,kV µ(i)V µ(j) +

x1+1∑
i=x1

∞∑
j=x1+2

Pij,kV µ(i)V µ(j) +

∞∑
i=x1+2

x1+1∑
j=x1

Pij,kV µ(i)V µ(j)

= (1− r1)r
k
1

{
(V µ(x1) + V µ(x1 + 1))

2
+ [1− (V µ(x1) + V µ(x1 + 1))]

2
}

+ (1− r2)r
k
2 {2 (µ(x1) + µ(x1 + 1)) [1− (µ(x1) + µ(x1 + 1))]} .
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for any initial measure µ ∈ S(X,F) . By using induction on the sequence V nµ(k) , we obtain the following
recurrent equation:

V n+1µ(k)

= (1− r1)r
k
1

{
(V nµ(x1) + V nµ(x1 + 1))

2
+ [1− (V nµ(x1) + V nµ(x1 + 1))]

2
}

+ (1− r2)r
k
2 {2 (V nµ(x1) + V nµ(x1 + 1)) [1− (V nµ(x1) + V nµ(x1 + 1))]}

(2.3)

where n = 0, 1, 2, . . . . From this, it is easy to identify that the limit behavior of the recurrent equation (2.3) is
fully determined by the limit behavior of recurrent equation V nµ(x1) and V nµ(x1 + 1) such that

V n+1µ(x1)

= (1− r1)r
x1
1

{
(V nµ(x1) + V nµ(x1 + 1))

2
+ [1− (V nµ(x1) + V nµ(x1 + 1))]

2
}

+ (1− r2)r
x1
2 {2 (V nµ(x1) + V nµ(x1 + 1)) [1− (V nµ(x1) + V nµ(x1 + 1))]} , and

V n+1µ(x1 + 1)

= (1− r1)r
x1+1
1

{
(V nµ(x1) + V nµ(x1 + 1))

2
+ [1− (V nµ(x1) + V nµ(x1 + 1))]

2
}

+ (1− r2)r
x1+1
2 {2 (V nµ(x1) + V nµ(x1 + 1)) [1− (V nµ(x1) + V nµ(x1 + 1))]} .

(2.4)

where n = 0, 1, 2, . . . . Generally, for both considered subcases, x1 = 0 and x1 ̸= 0 of the consecutive two points
case, we can say that for any x1 ∈ A1 where A1 ⊂ Z∗ , the recurrent equation (2.3) is fully determined by the
recurrent equation (2.4). Now, we shall consider A1 that consists of nonconsecutive two points.
Case 2. Nonconsecutive two points
Let A1 = {x1, x1 + 2 : x1 ∈ Z∗} and A2 = Z∗ \ A1 . It is always necessary to present the two subcases like
in the case of consecutive two points, i.e. x1 = 0 and x1 ̸= 0 , as they vary in the number of partitions
in Z∗ × Z∗ , where x1 ∈ A1 . Similar to the Case 1, for x1 = 0 , we consider a nonhomogeneous geometric
quadratic stochastic operator defined by a family of functions (1.3). Accordingly, we have the following for any
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µ ∈ S (X,F) ,

V µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j)

= P00,kµ(0)µ(0) + P11,kµ(1)µ(1) + P22,kµ(2)µ(2) + P02,kµ(0)µ(2) + P20,kµ(2)µ(0)

+

∞∑
j=3

P1j,kµ(1)µ(j) +

∞∑
i=3

Pi1,kµ(i)µ(1) +

∞∑
i=3

∞∑
j=3

Pij,kµ(i)µ(j)

+ P01,kµ(0)µ(1) + P10,kµ(1)µ(0) + P21,kµ(2)µ(1) + P12,kµ(1)µ(2)

+

∞∑
j=3

P0j,kµ(0)µ(j) +

∞∑
i=3

Pi0,kµ(i)µ(0) +

∞∑
j=3

P2j,kµ(2)µ(j) +

∞∑
i=3

Pi2,kµ(i)µ(2)

= (1− r1)r
k
1

{
(µ(0) + µ(2))

2
+ [1− (µ(0) + µ(2))]

2
}

+ (1− r2)r
k
2 {2 (µ(0) + µ(2)) [1− (µ(0) + µ(2))]} , and

V 2µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kV µ(i)V µ(j)

= P00,kV µ(0)V µ(0) + P11,kV µ(1)V µ(1) + P22,kV µ(2)V µ(2) + P02,kV µ(0)V µ(2)

+ P20,kV µ(2)V µ(0) +

∞∑
j=3

P1j,kV µ(1)V µ(j) +

∞∑
i=3

Pi1,kV µ(i)V µ(1)

+

∞∑
i=3

∞∑
j=3

Pij,kV µ(i)V µ(j) + P01,kV µ(0)V µ(1) + P10,kV µ(1)V µ(0)

+ P21,kV µ(2)V µ(1) + P12,kV µ(1)V µ(2) +

∞∑
j=3

P0j,kV µ(0)V µ(j)

+

∞∑
i=3

Pi0,kV µ(i)V µ(0) +

∞∑
j=3

P2j,kV µ(2)V µ(j) +

∞∑
i=3

Pi2,kV µ(i)V µ(2)

= (1− r1)r
k
1

{
(V µ(0) + V µ(2))

2
+ [1− (V µ(0) + V µ(2))]

2
}

+ (1− r2)r
k
2 {2 (V µ(0) + V µ(2)) [1− (V µ(0) + V µ(2))]} .

Hence, by mathematical induction, we attain the following recurrent equation

V n+1µ(k) = (1− r1)r
k
1

{
(V nµ(0) + V nµ(2))

2
+ [1− (V nµ(0) + V nµ(2))]

2
}

+(1− r2)r
k
2 {2 (V nµ(0) + V nµ(2)) [1− (V nµ(0) + V nµ(2))]} (2.5)
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where n = 0, 1, 2, . . . . It is not hard to unveil that the limit behavior of the recurrent equation (2.5) is fully
determined by the limit behavior of recurrent equation V nµ(0) and V nµ(2) such that

V n+1µ(0) = (1− r1)
{
(V nµ(0) + V nµ(2))

2
+ [1− (V nµ(0) + V nµ(2))]

2
}

+ (1− r2) {2 (V nµ(0) + V nµ(2)) [1− (V nµ(0) + V nµ(2))]} , and

V n+1µ(2) = (1− r1)r
2
1

{
(V nµ(0) + V nµ(2))

2
+ [1− (V nµ(0) + V nµ(2))]

2
}

+ (1− r2)r
2
2 {2 (V nµ(0) + V nµ(2)) [1− (V nµ(0) + V nµ(2))]} (2.6)

where n = 0, 1, 2, . . . Next, for the subcase of x1 ̸= 0 , we have such that for any initial measure µ ∈ S (X,F) ,

V µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j)

=
∑
i∈A1

∑
j∈A1

Pij,kµ(i)µ(j) +
∑
i∈A2

∑
j∈A2

Pij,kµ(i)µ(j)

+
∑
i∈A1

∑
j∈A2

Pij,kµ(i)µ(j) +
∑
i∈A2

∑
j∈A1

Pij,kµ(i)µ(j)

= (1− r1)r
k
1

{
(µ(x1) + µ(x1 + 2))

2
+ [1− (µ(x1) + µ(x1 + 2))]

2
}

+ (1− r2)r
k
2 {2 (µ(x1) + µ(x1 + 2)) [1− (µ(x1) + µ(x1 + 2))]} , and

V 2µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kV µ(i)V µ(j)

=
∑
i∈A1

∑
j∈A1

Pij,kV µ(i)V µ(j) +
∑
i∈A2

∑
j∈A2

Pij,kV µ(i)V µ(j)

+
∑
i∈A1

∑
j∈A2

Pij,kV µ(i)V µ(j) +
∑
i∈A2

∑
j∈A1

Pij,kV µ(i)V µ(j)

= (1− r1)r
k
1

{
(V µ(x1) + V µ(x1 + 2))

2
+ [1− (V µ(x1) + V µ(x1 + 2))]

2
}

+ (1− r2)r
k
2 {(V µ(x1) + V µ(x1 + 2)) [1− (V µ(x1) + V µ(x1 + 2))]} .

By using induction on the sequence V nµ (k) , the following recurrent equation is obtained

V n+1µ(k) = (1− r1)r
k
1

{
(V nµ(x1) + V nµ(x1 + 2))

2
+ [1− (V nµ(x1) + V nµ(x1 + 2))]

2
}

+ (1− r2)r
k
2 {2 (V nµ(x1) + V nµ(x1 + 2)) [1− (V nµ(x1) + V nµ(x1 + 2))]}

(2.7)
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where n = 0, 1, 2, . . . . One can see that the limit behaviour of the recurrent equation (2.7) is fully determined
by the limit behaviour of recurrent equation V nµ(x1) and V nµ(x1 + 2) such that

V n+1µ(x1) = (1− r1)r
x1
1

{
(V nµ(x1) + V nµ(x1 + 2))

2
+ [1− (V nµ(x1) + V nµ(x1 + 2))]

2
}

+ (1− r2)r
x1
2 {2 (V nµ(x1) + V nµ(x1 + 2)) [1− (V nµ(x1) + V nµ(x1 + 2))]} , and

V n+1µ(x1 + 2) = (1− r1)r
x1+2
1

{
(V nµ(x1) + V nµ(x1 + 2))

2
+ [1− (V nµ(x1) + V nµ(x1 + 2))]

2
}

+ (1− r2)r
x1+2
2 {2 (V nµ(x1) + V nµ(x1 + 2)) [1− (V nµ(x1) + V nµ(x1 + 2))]}

(2.8)

where n = 0, 1, 2, . . . . Therefore, for both subcases, x1 = 0 and x1 ̸= 0 of the nonconsecutive two points case,
we can see that for any x1 ∈ A1 where A1 ⊂ Z∗ , the recurrent equation in (2.7) is fully determined by the
recurrent equation (2.8). Now, as we have considered and investigated both cases, Case 1 and Case 2, we can
generalize the case of two points as follows. Let ξ = {A1, A2} be a measurable 2-partition of the state space
Z∗ where A1 = {x1, x2 : x1, x2 ∈ Z∗} , and A2 = Z∗ \ A1 . Next, we consider a nonhomogeneous geometric
quadratic stochastic operator with a family of functions (1.3). Hence, it is given that

V µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kµ(i)µ(j)

=
∑
i∈A1

∑
j∈A1

Pij,kµ(i)µ(j) +
∑
i∈A2

∑
j∈A2

Pij,kµ(i)µ(j)

+
∑
i∈A1

∑
j∈A2

Pij,kµ(i)µ(j) +
∑
i∈A2

∑
j∈A1

Pij,kµ(i)µ(j)

= (1− r1)r
k
1

{
(µ(x1) + µ(x2))

2
+ [1− (µ(x1) + µ(x2))]

2
}

+ (1− r2)r
k
2 {2 (µ(x1) + µ(x2)) [1− (µ(x1) + µ(x2))]} , and

V 2µ (k) =

∞∑
i=0

∞∑
j=0

Pij,kV µ(i)V µ(j)

=
∑
i∈A1

∑
j∈A1

Pij,kV µ(i)V µ(j) +
∑
i∈A2

∑
j∈A2

Pij,kV µ(i)V µ(j)

+
∑
i∈A1

∑
j∈A2

Pij,kV µ(i)V µ(j) +
∑
i∈A2

∑
j∈A1

Pij,kV µ(i)V µ(j)

= (1− r1)r
k
1

{
(V µ(x1) + V µ(x2))

2
+ [1− (V µ(x1) + V µ(x2))]

2
}

+ (1− r2)r
k
2 {2 (V µ(x1) + V µ(x2)) [1− (V µ(x1) + V µ(x2))]}
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We are bound to use mathematical induction on the sequence V nµ (k) . Therefore, we have the following
recurrent equation

V n+1µ(k) = (1− r1)r
k
1

{
(V nµ(x1) + V nµ(x2))

2
+ [1− (V nµ(x1) + V nµ(x2))]

2
}

+ (1− r2)r
k
2 {2 (V nµ(x1) + V nµ(x2)) [1− (V nµ(x1) + V nµ(x2))]}

(2.9)

where n = 0, 1, 2, . . . . Based on the recurrent equation 2.9, it follows that such recurrent equation is determined
by the limit behavior of recurrent equation V nµ(x1) and V nµ(x1 + 2) such that

V n+1µ(x1) = (1− r1)r
x1
1

{
(V nµ(x1) + V nµ(x2))

2
+ [1− (V nµ(x1) + V nµ(x2))]

2
}

+ (1− r2)r
x1
2 {2 (V nµ(x1) + V nµ(x2)) [1− (V nµ(x1) + V nµ(x2))]} , and

V n+1µ(x2) = (1− r1)r
x2
1

{
(V nµ(x1) + V nµ(x2))

2
+ [1− (V nµ(x1) + V nµ(x2))]

2
}

+ (1− r2)r
x2
2 {2 (V nµ(x1) + V nµ(x2)) [1− (V nµ(x1) + V nµ(x2))]}

(2.10)

where n = 0, 1, 2, . . . . As n → ∞ , then, the recurrent equation (2.10) can be written as follows:

x̄ = (1− r1)r
x1
1

{
(x̄+ ȳ)

2
+ [1− (x̄+ ȳ)]

2
}

+ (1− r2)r
x1
2 {2(x̄+ ȳ) [1− (x̄+ ȳ)]} , and

ȳ = (1− r1)r
x2
1

{
(x̄+ ȳ)

2
+ [1− (x̄+ ȳ)]

2
}

+ (1− r2)r
x2
2 {2(x̄+ ȳ) [1− (x̄+ ȳ)]} . (2.11)

Based on the equation (2.11), one can clearly see that both equations are fully determined by x̄+ ȳ . Here, by
using simple calculus, let x = x̄+ ȳ , then we obtain

x = [(1− r1)r
x1
1 + (1− r1)r

x2
1 ]

[
x2 + (1− x)2

]
+ [(1− r2)r

x1
2 + (1− r2)r

x2
2 ] [2x(1− x)] . (2.12)

where x1, x2 ∈ A1 . Notice that the above equation is a quadratic equation. Hence, we can rewrite the right-hand
side equation as follows:

y = 2 {[(1− r1)r
x1
1 + (1− r1)r

x2
1 ]− [(1− r2)r

x1
2 + (1− r2)r

x2
2 ]}x2

− 2 {[(1− r1)r
x1
1 + (1− r1)r

x2
1 ]− [(1− r2)r

x1
2 + (1− r2)r

x2
2 ]}x

+ [(1− r1)r
x1
1 + (1− r1)r

x2
1 ] , (2.13)

where x1, x2 ∈ A1 , and 0 < r1, r2 < 1 . One can see that a function (2.13) maps the segment [0, 1] into itself
with

y|x=0 = y|x=1 = (1− r2)r
x1
2 + (1− r2)r

x2
2 .

Without loss of generality, we assume that 0 < r1 < 1 . Therefore, the validity of following statements is
established.

1405



KARIM et al./Turk J Math

Theorem 2.1 A fixed point of the transformation (2.13) is unique and belongs to open interval (0, 1) .

Proof Here, we have the equation

x = 2 [(a1 + a2)− (b1 + b2)]x
2 − 2 [(a1 + a2)− (b1 + b2)]x+ (a1 + a2) , (2.14)

where we denote a1 = (1−r1)r
x1
1 , a2 = (1−r1)r

x2
1 , b1 = (1−r2)r

x1
2 , and b2 = (1−r2)r

x2
2 . We may consider three

cases, where the equation has a root in the interval (1,∞) when 2 [(a1 + a2)− (b1 + b2)] > 0 , has a root in the
interval (−∞, 0) when 2 [(a1 + a2)− (b1 + b2)] < 0 , and it became a linear when 2 [(a1 + a2)− (b1 + b2)] = 0

with a1 + a2 = (1− r1)r
x1
1 > 0 . Thus, for all cases, a root in [0, 1] is unique. It is evident that this root differs

from 0 to 1 . This completes the proof. 2

Now, we are going to consider the discriminant of the quadratic equation (2.14) to investigate the local character
of the fixed point, where

∆ = 4 [1− (a1 + a2)] (a1 + a2) + [1− 2 (b1 + b2)]
2
. (2.15)

Simply, we have 0 < ∆ < 2 , and ∆ takes all value in this interval. Given the discriminant of the quadratic
equation (2.14), then we have the following theorem.

Theorem 2.2 The fixed point of the transformation (2.13) is attractive.

Proof Let ζ be a fixed point in the open interval (0, 1) , where

ζ =
2 [(a1 + a2)− (b1 + b2)] + 1−

√
∆

4 [(a1 + a2)− (b1 + b2)]
. (2.16)

Recall that the character of such fixed point is defined by f ′ (ζ) , where f (x) is the right hand side of the
equation (2.14), and f ′ (x) is its derivative. Let λ = f ′ (ζ) , where

λ = 4 [(a1 + a2)− (b1 + b2)] ζ − 2 [(a1 + a2)− (b1 + b2)] . (2.17)

By substituting 2.16 into 2.17, we have

λ = 1−
√
∆ (2.18)

for a fixed point in the open interval (0, 1) . Since 0 < ∆ < 2 , then we obtain 1 −
√
2 < λ < 1 . Note that, if

|λ| < 1 , then ξ is an attractive point, and if |λ| > 1 , then ζ is a repelling point. Therefore, it implies that any
unique fixed point in the open interval (0, 1) is attractive and the statement of the Theorem 2.2 follows from
the equality in (2.18). Thus, the proof is completed. 2

It is shown that the trajectory behavior of the quadratic stochastic operator in (2.10) converges to a fixed point
in the open interval (0, 1) . By Definition 1.2, the convergence of the trajectory indicates that the limit exists.
Hence, it is regular.

3. Conclusion
A nonhomogeneous geometric quadratic stochastic operator generated by 2-partition ξ = {A1, A2} with
A1 = |2| is a regular transformation.
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