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1. Introduction
The importance of character varieties in many branches of mathematics and physics is well known. For example,
for a compact Riemann surface Σ of genus at least 2, Teichmüller space Teich(Σ) of Σ is the space of
deformation classes of complex structures on it. With the help of the Uniformization Theorem, one can also
interpret it as the space of isotopy classes of Riemanian metrics on Σ of constant curvature (−1), namely,
hyperbolic metrics. Moreover, Teich(Σ) can be identified as the space of conjugacy classes of discrete faithful
representations from the fundamental group π1(Σ) of the surface to PSL(2,R). More generally, other geometric
structures on Σ can also be interpreted as certain surface group variety, see e.g. [5, 7, 14, 16, 21, 24] and the
references therein.

Character varieties have several applications in many branches of mathematics and physics such as in
3-manifold topology (in Bass-Culler-Shalen theory [8, 31, 32], in A-polynamial [12, 25], in hyperbolic geometry
[17, 34], in Casson invariant theory [1–3]), in Yang-Mills and Chern-Simons quantum field theories [15, 46, 47],
in skein theory of quantum invariants of 3-manifolds [4, 10, 38], in the moduli spaces of flat connections,
holomorphic bundles, and Higgs bundles [11, 20, 26, 40].

The topological invariant Reidemeister torsion was first introduced by K. Reidemeister in [36]. With
the help of this invariant, he classified 3-dimensional lens spaces. By extending Reidemeister torsion, W.
Franz classified the higher dimensional lens spaces [9]. Reidemeister torsion has several applications in many
branches of mathematics and theoretical phsyics such as topology [9, 28, 29, 36], differential geometry [6, 33, 35],
representation spaces [48] dynamical systems [23], 3-dimensional Seiberg-Witten theory [27], algebraic K-theory
[30], Chern-Simon theory [47], knot theory [30], theoretical physics and quantum field theory [37, 47]. See Refs.
[34] and [45] and the references therein for more information.
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In [48], E. Witten introduced the real symplectic chain complex. Using Reidemeister torsion and the
real symplectic chain complex, he computed the volume of several moduli space of Rep(Σ, G), which is the set
of all conjugacy classes of homomorphisms from the fundamental group π1(Σ) of a Riemann surface Σ to the
compact gauge group G ∈ {SU(2),SO(3)} .

In the present article, we consider the smooth part of the representation variety Rep(Γ, G) consisting of
conjugacy classes of homomorphisms from Γ to G, where G ∈ {GL(n,C),SL(n,C)} and Γ is a free group or
fundamental group of closed orientable surface of genus at least g ≥ 2.

Combining the symplectic chain complex and the topological invariant Reidemeister torsion, we investi-
gate G−valued representation spaces Rep(Γ, G). We prove the well definiteness (Theorem 3.1) of the Reidemeis-
ter torsion for such representations. Moreover, we establish a formula for computing the Reidemeister torsion
of such representations (Theorem 3.2) expressed in terms of the well-known Atiyah-Bott-Goldman symplectic
form for G. In addition, we apply the obtained results to good surface group representations (Theorem 4.1),
to free group representations (Theorem 4.2), and to complete orientable hyperbolic 3-manifolds with boundary
consisting orientable surfaces with genus at least 2 (Theorem 4.3).

2. Reidemeister torsion and symplectic chain complex

This section provides the necessary definition and basic facts about the topological invariant Reidemeister
torsion and the symplectic chain complex. For more information the reader is referred to [34, 41, 45, 48] and
the references therein.

Suppose C∗ =
(
0 → Cn

∂n→ Cn−1 → · · · → C1
∂1→ C0 → 0

)
is a chain complex of finite dimensional vector

spaces over the field C of complex numbers. Let Zp(C∗), Bp(C∗), and Hp(C∗) denote the kernel of ∂p, the
image of ∂p+1, and the pth homology group of the chain complex C∗, respectively, p = 0, . . . , n. Let us note
that the definition of Zp(C∗) , Bp(C∗), and Hp(C∗) yields the short-exact sequences:

0 −→ Zp(C∗) ↪→ Cp ↠ Bp−1(C∗) −→ 0

and
0 −→ Bp(C∗) ↪→ Zp(C∗) ↠ Hp(C∗) −→ 0.

For p = 0, . . . , n, let cp, bp, and hp be bases of Cp, Bp(C∗), and Hp(C∗), respectively. If `p : Hp(C∗) →
Zp(C∗), sp : Bp−1(C∗) → Cp are sections of Zp(C∗) → Hp(C∗), Cp → Bp−1(C∗), respectively, then using the
above short-exact sequences the basis bp ⊔ `p(hp) ⊔ sp(bp−1) of Cp is obtained, where ⊔ is the disjoint union.

If cp, bp, hp, `p, and sp are as above, then Reidemeister torsion of the chain complex C∗ with respect
to bases {cp}np=0, {hp}np=0 is the alternating product

T
(
C∗, {cp}n0 , {hp}n0

)
=

n∏
p=0

[bp ⊔ `p(hp) ⊔ sp(bp−1), cp]
(−1)(p+1)

.

Here, [ep, fp] is determinant of the change-base-matrix from basis fp to ep of Cp.

Reidemeister torsion is independent of the bases bp and sections sp, `p [30].

1409



HEZENCİ and SÖZEN/Turk J Math

Assume c′p, h′
p are also bases of Cp, Hp(C∗), respectively. Then, the following change-base-formula

holds [30]:

T
(
C∗,

{
c′p
}n
0
,
{
h′
p

}n
0

)
=

n∏
p=0

( [
c′p, cp

][
h′
p,hp

])(−1)p

T
(
C∗, {cp}n0 , {hp}n0

)
. (2.1)

Suppose

0 −→ A∗
ı−→ B∗

j−→ D∗ −→ 0 (2.2)

is a short-exact sequence of chain complexes. Let cAp , cBp , cDp , hA
p , hB

p , and hD
p be bases of Ap, Bp, Dp,

Hp(A∗), Hp(B∗), and Hp(D∗), respectively. Consider the Mayer-Vietoris long-exact sequence of vector spaces

C∗ : · · · −→ Hp(A∗)
ıp−→ Hp(B∗)

jp−→ Hp(D∗)
δp−→ Hp−1(A∗) −→ · · ·

associated to short-exact sequence (2.2). Since C3p = Hp(D∗), C3p+1 = Hp(A∗), and C3p+2 = Hp(B∗), the
bases hD

p , hA
p , and hB

p can be considered bases of C3p, C3p+1, and C3p+2, respectively.

Theorem 2.1 ([30]) Let cAp , cBp , cDp , hA
p , hB

p , and hD
p be as above. If, moreover,

[
cBp , c

A
p ⊕ c̃Dp

]
= ±1,

where j
(
c̃Dp

)
= cDp , then

T
(
B∗,

{
cBp
}n
0
,
{
hB
p

}n
0

)
= T

(
A∗,

{
cAp
}n
0
,
{
hA
p

}n
0

)
× T

(
D∗,

{
cDp
}n
p=0

,
{
hD
p

}n
0

)
T
(
C∗, {c3p}3n+2

0 , {0}3n+2
0

)
.

From Theorem 2.1, it follows the following the sum-lemma.

Lemma 2.2 Let A∗, D∗ be chain complexes of vector spaces and cAp , cDp , hA
p , and let hD

p be bases of Ap,

Dp, Hp(A∗), and Hp(D∗), respectively. Then, the following equality holds:

T(A∗ ⊕D∗, {cAp ⊔ cDp }n0 , {hA
p ⊔ hD

p }n0 ) = T(A∗, {cAp }n0 , {hA
p }n0 )T(D∗, {cDp }n0 , {hD

p }n0 ).

The reader can also find a proof of Lemma 2.2 in [42].

A triple (C∗, ∂∗, {ω∗,q−∗}) is called a C−symplectic chain complex of length q, if the following conditions
hold:

1. C∗ : 0 → Cq
∂q→ Cq−1 → · · · → Cq/2 → · · · → C1

∂1→ C0 → 0 is a chain complex of length q, where
q ≡ 2 (mod 4),

2. for p = 0, . . . , q, ωp,q−p : Cp×Cq−p → C is a ∂−compatible nondegenerate antisymmetric bilinear form.
More precisely,

ωp,q−p (∂p+1a, b) = (−1)p+1ωp+1,q−(p+1) (a, ∂q−pb)

and
ωp,q−p(a, b) = (−1)p(q−p)ωq−p,p(b, a).
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Note that the fact q ≡ 2 (mod 4) follows that ωp,q−p(a, b) is (−1)pωq−p,p(b, a). ∂−compatibility of
the nondegenerate antisymmetric bilinear maps ωp,q−p yields the nondegenerate pairing [ωp,q−p] : Hp (C∗) ×
Hq−p (C∗) → C.

For the rest, once the C−symplectic chain complex (C∗, ∂∗, {ω∗,q−∗}) is clear, ∆(hp,hq−p) will denote
the determinant of the matrix of the nondegenerate pairing [ωp,q−p] : Hp (C∗) × Hq−p (C∗) → C in the bases
hp, hq−p.

Let C∗ be a C−symplectic chain complex of length q and let cp , cq−p be bases of Cp , Cq−p, respectively.
These bases are said to be ω−compatible, if the matrix of ωp,q−p in bases cp, cq−p is the k×k identity matrix

Idk×k when p ̸= q/2 and
(

0l×l Idl×l

−Idl×l 0l×l

)
when p = q/2, where k is dimCp = dimCq−p and 2l is dimCq/2.

The following result suggests a formula for computing Reidemeister torsion in terms of intersections
pairings. More precisely,

Theorem 2.3 [44] Assume (C∗, ∂∗, {ω∗,q−∗}) is a C−symplectic chain complex with the ω−compatible bases
cp, p = 0, . . . , q. If hp is a basis of Hp (C∗) , p = 0, . . . , q, then the following formula is valid:

∣∣T (C∗, {cp}q0 , {hp}q0
)∣∣ =

(q/2)−1∏
p=0

|∆(hp,hq−p)|(−1)p
√ ∣∣∆ (hq/2,hq/2

)∣∣(−1)q/2

. (2.3)

Note that in formula (2.3), if hp = hq−p = 0, then the convention 0 = 1.0 is used and thus ∆(hp,hq−p) = 1.

Remark 2.4 Before stating our main results, let us note that formula (2.3) can be improved as follows: For
a C−symplectic chain complex with the ω−compatible bases cp, p = 0, . . . , q, there exist bases h0

p so that

T
(
C∗, {cp}q0 ,

{
h0
p

}q
0

)
= 1. From this and change-base-formula (2.1) we have

T
(
C∗, {cp}n0 , {hp}n0

)
=

q∏
p=0

[
h0
p,hp

](−1)p

and thus

∣∣T (C∗, {cp}n0 , {hp}n0
)∣∣ = q∏

p=0

∣∣[h0
p,hp

]∣∣(−1)p

. (2.4)

Let
[
h0
p,hp

]
=
∣∣[h0

p,hp

]∣∣ eiθp , where −π < θp ≤ π. From this and the fact that ∆(hp,hq−p) = [h0
p,hp][h

0
q−p,hq−p],

it follows

|∆(hp,hq−p)| = e−iθpe−iθq−p∆(hp,hq−p)

and ∣∣∆(hq/2,hq/2)
∣∣ = ∣∣∣[h0

q/2,hq/2]
∣∣∣ ∣∣∣[h0

q/2,hq/2]
∣∣∣ = e−iθq/2e−iθq/2∆(hq/2,hq/2).
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Using these and equation (2.3), we have

∣∣T (C∗, {cp}q0 , {hp}q0
)∣∣ =

(q/2)−1∏
p=0

(
e−iθpe−iθq−p∆(hp,hq−p)

)(−1)p (2.5)

×
√

e−iθq/2e−iθq/2∆(hq/2,hq/2)
(−1)q/2

= e
−i

q∑
p=0

(−1)pθp
(q/2)−1∏

p=0

∆(hp,hq−p)
(−1)p

√
∆(hq/2,hq/2)

(−1)q/2

.

From (2.4), it follows that

∣∣T (C∗, {cp}n0 , {hp}n0
)∣∣ = q∏

p=0

[
h0
p,hp

](−1)p
q∏

p=0

e−iθp(−1)p = e
−i

q∑
p=0

(−1)pθp
q∏

p=0

[
h0
p,hp

](−1)p

. (2.6)

Combining equations (2.5) and (2.6), we get

T
(
C∗, {cp}q0 , {hp}q0

)
=

(q/2)−1∏
p=0

∆(hp,hq−p)
(−1)p

√
∆
(
hq/2,hq/2

)(−1)q/2

.

For further applications of Theorem 2.3, we refer the reader to [18, 19, 42].

3. Main results
Throughout this section, Σ denotes a closed orientable surface of genus at least 2 with the universal covering
Σ̃. G is one of the Lie groups GL(n,C) and SL(n,C). G denotes the Lie algebra of G with the nondegenerate
symmetric bilinear form B. For GL(n,C), we consider B : G ×G → C as B (u, v) =Trace(uvt) , where t is the
transpose. For SL(n,C), we consider B is the Killing form.

Let % : π1(Σ) → G be a homomorphism from the fundamental group of the surface to G and Eϱ =

Σ̃ × G/ ∼ be the corresponding adjoint bundle over Σ. Here, (x1, t1) ∼ (x2, t2), if (x2, t2) = (γ · x1, γ · t1)
for some γ ∈ π1(Σ), γ acts in the first component by deck transformation (γ · x1 = γ (x1)) and in the second
component by the adjoint action (γ · t1 = Adϱ(γ)(t1) = % (γ) t1% (γ)

−1
).

Suppose K is a cell-decomposition of Σ so that the adjoint bundle Eϱ is trivial over each cell and K̃

is the lift of K to the universal covering Σ̃. Let Z [π1(Σ)] be the integral group ring and let C∗
(
K;GAdϱ

)
=

C∗

(
K̃;Z

)
⊗ G/ ∼ . Here, for all γ ∈ π1(Σ), σ ⊗ t ∼ γ · σ ⊗ γ · t, γ acts in the first component by deck

transformation and in the second by adjoint action. Hence, there is the following chain complex:

0 −→ C2

(
K;GAdϱ

) ∂2⊗id−→ C1

(
K;GAdϱ

) ∂1⊗id−→ C0

(
K;GAdϱ

)
−→ 0, (3.1)

where ∂p is the usual boundary operator. Let H∗
(
K;GAdϱ

)
and H∗ (K;GAdϱ

)
be respectively the homolo-

gies and cohomologies of the chain complex (3.1). Here, C∗ (K;GAdϱ

)
denotes the set of Z[π1(Σ)] -module

homomorphisms from C∗

(
K̃;Z

)
to G. For details, we refer to [34].
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Note that if %, %′ : π1(Σ) → G are conjugate; that is, %′ (.) = A% (.)A−1 for some A ∈ G, then

chains C∗
(
K;GAdϱ

)
and C∗

(
K;GAdϱ′

)
are isomorphic. Likewise, the corresponding cochains C∗ (K;GAdϱ

)
and C∗

(
K;GAdϱ′

)
are isomorphic.

Let us consider chain complex (3.1). Suppose
{
epj
}mp

j=1
is a basis of Cp (K;Z) . For j = 1, . . . ,mp, let

us fix a lift ẽpj of epj . Then, cp =
{
ẽpj
}mp

j=1
of Cp

(
K̃;Z

)
becomes a Z[π1(Σ)]−basis. Let A = {ak}dimG

k=1 be

a B−orthonormal basis of the Lie algebra G. To be more precise, the matrix of the form B is equal to the
identity matrix of size dimG. In this way, we get a C−basis cp = cp ⊗ϱ A of Cp

(
K;GAdϱ

)
. Such a basis will

be called a geometric basis for Cp

(
K;GAdϱ

)
.

Let cp = cp⊗ϱA and hp be respectively the geometric basis of Cp

(
K;GAdϱ

)
and a basis of Hp

(
Σ;GAdϱ

)
.

Then, T
(
C∗
(
K;GAdϱ

)
, {cp ⊗ϱ A}2p=0 , {hp}2p=0

)
is called the Reidemeister torsion of the triple K, Adϱ, and

{hp}2p=0 .

Arguments as in [41, Lemma 1.4.2 and Lemma 2.0.5] enable one to conclude that the definition is inde-
pendent of basis A, conjugacy class of %, lifts ẽpj , and of the cell-decomposition. For the sake of completeness,
we will explain the independence of A, lifts ẽpj , and conjugacy class of %. We refer [41, Lemma 2.0.5] for the
independence of the cell-decomposition.

Theorem 3.1 Let us consider that Σ, K, %, cp = cp ⊗ϱ A, and hp, p = 0, 1, 2, are as above. Then,

T
(
C∗
(
K;GAdϱ

)
, {cp ⊗ϱ A}2p=0 , {hp}2p=0

)
does not depend on the basis A, lifts ẽpj , conjugacy class of %, and

the cell-decomposition K.

Proof Let us start with the independence of the torsion from the basis A. If A′ is also a B−orthonormal
basis of G, then by the change-base-formula (2.1) of Reidemeister torsion, we have

T
(
C∗
(
K;GAdϱ

)
,
{
c′p
}2
p=0

, {hp}2p=0

)
T
(
C∗
(
K;GAdϱ

)
, {cp}2p=0 , {hp}2p=0

) = [A,A′]−χ(Σ),

where c′p = cp ⊗ϱ A′ and χ is the Euler characteristic. The fact that A and A′ are B−orthonormal bases of
G yields the independence of Reidemeister torsion from the basis A.

Let us note that for conjugate representations, the corresponding twisted chains and cochains are iso-
morfic. Thus, Reidemeister torsion is independent of conjugacy class of %.

Let us now show that the torsion is independent of the lifts ẽpj . To do that, let us fix γ ∈ π1(Σ) and

consider the lift c′p =
{
ẽp1 · γ, ẽ

p
2, . . . , ẽ

p
mp

}
of
{
ep1, . . . , e

p
mp

}
. Clearly, we have ẽp1 · γ ⊗ t = ẽp1 ⊗ γ · t. Note that

γ acts on the left hand side by deck transformation and right hand side by adjoint action.
Change-base-formula (2.1) yields

T
(
C∗
(
K;GAdϱ

)
,
{
c′p
}2
p=0

, {hp}2p=0

)
T
(
C∗
(
K;GAdϱ

)
, {cp}2p=0 , {hp}2p=0

) = det (T ) ,
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where cp = cp ⊗ϱ A, c′p = c′p ⊗ϱ A, and T is the matrix of the linear map Adϱ(γ) : G → G with respect to basis
A .

Let us consider G = GL (n,C) case. Recall that for some Q ∈ GL (n,C) , we have % (γ) = Q−1UQ,

where U = [ui,j ] ∈ GL (n,C) is an upper triangular matrix. Then, we have

Adϱ(γ) = (AdQ)
−1 ◦AdU ◦AdQ.

Let us consider the ordered basis Bgl(n,C)

{Ei,n−j+1, 1 ≤ j ≤ n, 1 ≤ i ≤ n− j + 1} ∪ {Ei,n−j , 1 ≤ j ≤ n− 1, n− j + 1 ≤ i ≤ n}

for Lie algebra gl (n,C) .

Recall that the jth column of the n×n−matrix MEij is the ith column of the n×n−matrix M. Recall
also that the ith row of EijM is the jth row of M. From this it follows that the matrix of AdU in the ordered
basis Bgl(n,C) is an upper triangular matrix with diagonal elements are(

Uj,j

Ui,i
, 1 ≤ i ≤ j ≤ n;

Uj,j

Ui,i
, 1 ≤ j < i ≤ n

)
.

Clearly, determinant of the AdU in the basis Bgl(n,C) is 1.

See Appendix 4.1 for the case n = 3.

Note that for the case SL (n,C) the matrix Q ∈ GL (n,C) can be chosen in SL (n,C) . As in arguments
above, consider the ordered basis Bsl(n,C)

{Ei,n−j+1, 1 ≤ j ≤ n− 1, 1 ≤ i ≤ n− j} ∪ {Ei,n−j , 1 ≤ j ≤ n− 1, n− j + 1 ≤ i ≤ n}

∪ {Ei,i − Ei+1,i+1, 1 ≤ 1 ≤ n− 1}

for Lie algebra sl (n,C) .
The matrix of AdU in the this ordered basis Bsl(n,C) is an upper triangular matrix with determinant 1.

Thus, detT = 1 for G = GL (n,C) , SL (n,C) . Hence, we conclude the independence of Reidemeister
torsion from the lifts ẽpj . This ends the proof of Theorem 3.1. 2

Since Theorem 3.1 proves the well definiteness of Reidemeister torsion of such representations, rather than

T
(
C∗
(
K;GAdϱ

)
, {cp ⊗ϱ A}2p=0 , {hp}2p=0

)
we will write T(Σ, {hp}2p=0). Let us also note that if % : π1(Σ) → G,

where G = G1×· · ·×Gd and Gi, i = 1, . . . , d, are one of the Lie groups from the above list, then by Theorem 3.1,
Reidemeister torsion of such representation is well defined, too.

With the help of C−symplectic chain complex, we will establish a formula for computing Reidemeister
torsion of representations in terms of the well-known symplectic structure on Rep (Σ, G) , more explicitly, Atiyah-
Bott-Goldman symplectic form for the Lie group G.

Let Σ, K, G, G, %, cp = cp ⊗ϱ A be as above. Consider the dual cell-decomposition K ′ of Σ

corresponding to the cell-decomposition K. Let us consider the lifts K̃ and K̃ ′ of K and K ′, respectively. For
i = 0, 1, 2, let us consider the intersection form

(·, ·)i,2−i : Ci

(
K;GAdϱ

)
× C2−i

(
K ′;GAdϱ

)
−→ C (3.2)

1414
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defined by (σ1 ⊗ t1, σ2 ⊗ t2)i,2−i =
∑

γ∈π1(Σ) σ1. (γ • σ2) B (t1, γ • t2) . Here, “.” is the intersection number
pairing, γ acts on σ2 by deck transformation and on t2 by the adjoint action.

Clearly, the intersection form (·, ·)i,2−i is antisymmetric, ∂−compatible. It can naturally be extended to
twisted homologies and yield the nondegenerate antisymmetric form

[·, ·]i,2−i : Hi

(
Σ;GAdϱ

)
×H2−i

(
Σ;GAdϱ

)
−→ C. (3.3)

Let us consider Di = Ci

(
K;GAdϱ

)
⊕Ci

(
K ′;GAdϱ

)
and the bilinear form ωi,2−i : Di×D2−i → C defined by ex-

tending the intersection form (3.2) zero on Ci

(
K;GAdϱ

)
×C2−i

(
K;GAdϱ

)
and Ci

(
K ′;GAdϱ

)
×C2−i

(
K ′;GAdϱ

)
.

Following arguments as in [43, Theorem 4.1], D∗ is a C−symplectic chain complex. Clearly, the bases ci of

Ci

(
K̃;Z

)
and c′i of Ci

(
K̃ ′;Z

)
corresponding to ci yield an ω−compatible basis for D∗.

Recall that Kronecker pairing is the nondegenerate form ⟨·, ·⟩ : Ci
(
K;GAdϱ

)
×Ci

(
K;GAdϱ

)
→ C defined

by ⟨θ, σ⊗ϱt⟩ = B (t, θ (σ)) . It can be extended to ⟨·, ·⟩ : Hi
(
Σ;GAdϱ

)
×Hi

(
Σ;GAdϱ

)
→ C.

The cup product ∪ : Ci
(
K;GAdϱ

)
× Cj

(
K;GAdϱ

)
→ Ci+j

(
Σ̃;C

)
is defined by (θi ∪ θj) (σi+j) =

B
(
θi
(
(σi+j)front

)
, θj
(
(σi+j)back

))
. Here, σi+j is in Ci+j(K̃;Z) and K̃ is the lift of K to the universal covering

Σ̃ of Σ, θi : Ci

(
K̃;Z

)
→ G, θj : Cj

(
K̃;Z

)
→ G are Z[π1(Σ)] -module homomorphisms. We have the cup

product
^B : C

i
(
K;GAdϱ

)
× Cj

(
K;GAdϱ

)
−→ Ci+j (K;C) .

Clearly, ^B can be extended to twisted cohomologies

^B : H
i
(
Σ;GAdϱ

)
×Hj

(
Σ;GAdϱ

)
−→ Hi+j (Σ;C) .

Here, [θi] ^B [θj ] equals [θi ^B θj ] .

Combining the isomorphisms induced by intersection form (3.3) and the Kronecker pairing, we have the
Poincare duality isomorphisms

PD : Hi

(
Σ;GAdϱ

) ∼= H2−i

(
Σ;GAdϱ

)∗ ∼= H2−i
(
Σ;GAdϱ

)
.

The following commutative diagram exists for i = 0, 1, 2

H2−i
(
Σ;GAdϱ

)
× Hi

(
Σ;GAdϱ

) ⌣B−→ H2 (Σ;C)xPD
xPD ⟲

x
Hi

(
Σ;GAdϱ

)
× H2−i

(
Σ;GAdϱ

) [·,·]i,2−i−→ C,
(3.4)

where the isomorphism C → H2 (Σ;C) sends 1 ∈ C to the fundamental class of H2(Σ;C) and the inverse of
this isomorphism is integration over Σ.

Note that commutative diagram (3.4) yields the pairing

Ωi,2−i : H
i
(
Σ;GAdϱ

)
×H2−i

(
Σ;GAdϱ

) ⌣B−→ H2 (Σ;C)
∫
Σ−→ C. (3.5)

Note also that Ω1,1 is Atiyah-Bott-Goldman symplectic form for the Lie group G on Rep(Σ, G).
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Let us state one of our main results where we establish a formula for computing Reidemeister torsion of
representations in terms of Ω1,1 Atiyah-Bott-Goldman symplectic form for the Lie group G. We have:

Theorem 3.2 Suppose Σ, K, K ′, % are as above. Suppose also cp and c′p are the corresponding geometric

bases of Cp

(
K;GAdϱ

)
and Cp

(
K ′;GAdϱ

)
, respectively, p = 0, 1, 2. Let hp be a basis of Hp

(
Σ;GAdϱ

)
, p = 0, 1, 2.

Then, the following formulas hold:

1. T
(
Σ, {hp}2p=0

)
= ie

iθ
2

∆(h0,h2)√
∆(h1,h1)

,

2. T
(
Σ, {hp}2p=0

)
= ie

iθ
2

√
δ (h1,h1)

δ (h2,h0)
.

Here, ∆(hp,h2−p) denotes the determinant of the matrix of the intersection pairing (3.3) in the bases hp and
h2−p, ∆(h0,h2) = |∆(h0,h2)| eiθ, where i =

√
−1 and −π < θ ≤ π. δ

(
h2−p,hp

)
denotes the determinant of

the matrix of the pairing (3.5) in the bases hp and h2−p, and hp denotes the Poincare dual basis of Hp(Σ;GAdϱ
)

associated to the basis hp of Hp(Σ;GAdϱ
), p = 0, 1, 2.

Proof D∗ = C∗
(
K;GAdϱ

)
⊕ C∗

(
K ′;GAdϱ

)
is a C−symplectic chain complex with ω−compatible basis

obtained by the geometric bases cp, c′p. We have T
(
D∗,

{
cp ⊕ c′p

}2
p=0

,
{
h0
p,p

}2
p=0

)
= 1 for p = 0, 1, 2,

h0
p,p = [cp]⊕ [c′p]. By using Theorem 2.3 and Remark 2.4, the following holds:

T
(
D∗,

{
ci ⊕ c′p

}2
p=0

, {hp ⊕ hp}2p=0

)
=

∆(h0 ⊕ h0,h2 ⊕ h2)√
∆(h1 ⊕ h1,h1 ⊕ h1)

. (3.6)

Note that in the middle dimension we have an nondegenerate antisymmetric bilinear form. Then, ∆(h1 ⊕ h1)

is positive (See e.g. [22, Theorem 6]) and thus
√
∆(h1 ⊕ h1,h1 ⊕ h1) = ∆ (h1 ⊕ h1) .

Clearly, we have

∆(h0 ⊕ h0,h2 ⊕ h2) = −∆(h0,h2)
2. (3.7)

Moreover, we get

∆(h1 ⊕ h1,h1 ⊕ h1) = ∆(h1,h1)
2. (3.8)

Eqs. (3.6)−(3.8) and the fact that [·, ·]1,1 is antisymmetric yield

T
(
D∗,

{
cp ⊕ c′p

}2
p=0

, {hp ⊕ hp}2p=0

)
= −∆(h0,h2)

2

∆(h1,h1)
. (3.9)

Let ∆(h0,h2) = |∆(h0,h2)| eiθ, where i =
√
−1 and −π < θ ≤ π.

By Lemma 2.2 and equation (3.9), we obtain

T
(
Σ, {hp}2p=0

)
= ie

iθ
2

∆(h0,h2)√
∆(h1,h1)

. (3.10)
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From commutative diagram (3.4), it follows δ
(
h2−p,hp

)
·∆(hp,h2−p) = 1.

This and Eq. (3.10) end the proof of Theorem 3.2. 2

Let us also note that in case H0

(
Σ;GAdϱ

)
and hence H2

(
Σ;GAdϱ

)
are zero, then by Theorem 3.2, we

have

T (Σ, {0,h1, 0}) = i
√
∆(h1,h1)

(−1)
= i

√
δ
(
h1,h1

)
.

Here, we use the convention 0 = 1.0 and thus ∆(0, 0) = 1.

4. Applications
4.1. Good free or surface group representations

In this section, we will apply our result (Theorem 3.2) to good free or surface group representations. For more
information and unexplained subjects, we refer the reader to [39] and the references therein.

Let Γ be a finitely generated group and G be the complex reductive algebraic groups GL (n,C) , SL(n,C)
or their quotients. Recall that a representation % : Γ → G is said to be irreducible, if %(Γ) is not contained in
any proper parabolic subgroup of G.

Let Hom (Γ, G) be the set of all homomorphisms from Γ to G and Homirr(Γ, G) denote the set of
irreducible G−representations of Γ. The space Homirr(Γ, G) is a Zariski open subset of Hom(Γ, G) [39,
Proposition 27]. The set Homirr(Γ, G) is invariant under the G action by conjugation. Each orbit in
Homirr(Γ, G) is closed [39, Theorem 30] and each equivalence class in a categorical quotient contains a unique
closed orbit. Thus, the categorical quotient, Homirr(Γ, G)//G coincides with the set-theoretic quotient. Let us
denote this by χirr(Γ, G).

Recall that if Γ = Fn denotes a free group with generator n and G = GL(n,C) or SL(n,C), then
χirr(Γ, G) is a manifold dimension (n − 1) dimG . If Γ = π1(Σg) denotes a surface group with genius g ≥ 2

and G = GL(n,C) or SL(n,C), then χirr(Γ, G) is a manifold dimension (2g − 2) dimG [13], [39, Propositions
5 and 49]. Recall also that an irreducible % : Γ → G is said to be good, if the stabilizer of its image coincides
with the center of G. The set of such homomorphisms is a Zariski open subset of Hom(Γ, G) [39, Proposition
33]. Let χgood(Γ, G) = Homgood(Γ, G)/G. This is an open subset of χirr(Γ, G) and is a smooth manifold for
free groups and surface groups Γ [39, Corollary 50].

Let Σg be a closed orientable surface of genus g ≥ 2. Let Γ denote the fundamental group π1(Σg) of the
surface Σg . Let % : Γ → G be a good representation. For the reductive group G = GL (n,C) , SL(n,C), the
corresponding Lie algebra G has the nondegenerate symmetric bilinear form B. More precisely, for GL(n,C),
B : G × G → C as B (u, v) =Trace(uvt) , where t is the transpose. For SL(n,C), we consider B is the Killing
form. From these, we have for i = 0, 2, Hi

(
Σg;GAdϱ

)
, and Hi

(
Σg;GAdϱ

)
vanish [13].

Combining these and applying Theorem 3.2, we have:

Theorem 4.1 Let Σg be a closed orientable surface of genus g ≥ 2, Γ be the fundamental group π1 (Σg) of
Σg, and G be GL (n,C) or SL(n,C). For % ∈ χgood(Γ, G), we have

1. T (Σg, {h1}) =
i√

∆(h1,h1)
,
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2. T (Σg, {h1}) = i
√
δ (h1,h1).

Here, i =
√
−1, ∆(h1,h1) is the determinant of the matrix of the intersection pairing (3.3) in the basis h1,

and δ
(
h1,h1

)
is the determinant of the matrix of the pairing (3.5) in the basis h1, and h1 is the Poincare

dual basis of H1(Σ;GAdϱ
) associated to the basis h1 of H1(Σ;GAdϱ

).

Let Hg be handlebody with g ≥ 2, Σg be the boundary surface of Hg, and M be the double of Hg.

Let G be GL (n,C) or SL(n,C) with Lie algebra G . Let % : π1(Hg) → G be a homomorphism so that
% ◦ r : π1(Σg) → G is a good homomorphism, where r : π1(Σg) → π1 (Hg) is the homomorphism obtained by
the embedding ∂Hg ↪→ Hg. Note that % : π1(Hg) → G is also a good representation [39, Remark 65].

Let us consider the following short-exact sequence

0 → C∗
(
Σg;GAdϱ◦r

)
→ C∗

(
Hg;GAdϱ

)
⊕ C∗

(
Hg;GAdϱ

)
→ C∗

(
M;GAdϱ

)
→ 0 (4.1)

of chain complexes and the associated Mayer-Vietoris long exact sequence H∗ :

0 → H3

(
Σg;GAdϱ◦r

)
→ H3

(
Hg;GAdϱ

)
⊕H3

(
Hg;GAdϱ

)
→ H3

(
M;GAdϱ

)

H2

(
Σg;GAdϱ◦r

)
→ H2

(
Hg;GAdϱ

)
⊕H2

(
Hg;GAdϱ

)
→ H2

(
M;GAdϱ

)

H1

(
Σg;GAdϱ◦r

)
→ H1

(
Hg;GAdϱ

)
⊕H1

(
Hg;GAdϱ

)
→ H1

(
M;GAdϱ

)

H0

(
Σg;GAdϱ◦r

)
→ H0

(
Hg;GAdϱ

)
⊕H0

(
Hg;GAdϱ

)
→ H0

(
M;GAdϱ

)
→ 0.

(4.2)

Theorem 4.2 Let Σg, Hg, M, G, G, %, and r be as above. Consider the short-exact sequence (4.1) and the

corresponding Mayer-Vietoris long exact sequence (4.2). Let h
Hg

i be a basis for Hi

(
Hg;GAdϱ

)
, i = 0, 1, 2, 3.

Then, there exist bases hM
j and h

Σg

k of Hj

(
M;GAdϱ

)
and Hk

(
Σg;GAdϱ◦r

)
, j = 0, 1, 2, 3, k = 0, 1, 2, respectively

so that Reidemeister torsion of sequence (4.2) in these bases becomes 1. Moreover, the following formulas hold:

1. T
(
Hg,

{
h
Hg

i

}3

0

)
= i(1+dimH0(M;GAdϱ))/2

4

√
∆
(
h

Σg
1 ,h

Σg
1

) ,

2. T
(
Hg,

{
h
Hg

i

}3

0

)
= i(1+dimH0(M;GAdϱ))/2 4

√
δ (h1,h1).

Here, h1 is the Poincare dual basis of H1
(
Σg;GAdϱ

)
corresponding to h

Σg

1 .

Proof First, since % ◦ r is good, H0

(
Σg;GAdϱ◦r

)
and thus H2

(
Σg;GAdϱ◦r

)
vanish. From this and (4.2), we

have
0 −→ H3

(
Hg;GAdϱ

)
⊕H3

(
Hg;GAdϱ

)
−→ H3

(
M;GAdϱ

)
−→ 0, (4.3)
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0 −→ H2

(
Hg;GAdϱ

)
⊕H2

(
Hg;GAdϱ

)
−→ H2

(
M;GAdϱ

)

H1

(
Σg;GAdϱ◦r

)
→ H1

(
Hg;GAdϱ

)
⊕H1

(
Hg;GAdϱ

)
→ H1

(
M;GAdϱ

)
→ 0,

(4.4)

and
0 −→ H0

(
Hg;GAdϱ

)
⊕H0

(
Hg;GAdϱ

)
−→ H0

(
M;GAdϱ

)
−→ 0. (4.5)

For j = 0, 3, let us consider the basis for Hj

(
M;GAdϱ

)
, which is obtained by using the isomorphisms from the

short-exact sequences (4.3), (4.5), and the basis for hHg

i of Hi

(
Hg;GAdϱ

)
.

By the exactness of (4.4), and Poincare duality, we have

2 dimH2

(
Hg;GAdϱ

)
= 2dimH1

(
Hg;GAdϱ

)
− dim H1

(
Σg;GAdϱ◦r

)
.

From this and [39, Theorem 61], we get H2

(
Hg;GAdϱ

)
= 0. For the sake of simplicity, let U, V, W, and T

denote respectively H2

(
M;GAdϱ

)
, H1

(
Σg;GAdϱ◦r

)
, H1

(
Hg;GAdϱ

)
⊕H1

(
Hg;GAdϱ

)
, and H1

(
M;GAdϱ

)
. The

short-exact sequence (4.4) becomes

0 −→ U
α−→ V

β−→ W
γ−→ T −→ 0. (4.6)

Let us denote by {w1, . . . , wd} the basis of the vector space W which is obtained by considering the

basis hHg

1 of H1

(
Hg;GAdϱ

)
. We will consider the basis on T as hM

1 = {γ (wi1) , . . . , γ (wik)} . Let us take any

basis hM
2 of U.
The sequence (4.6) and The First Isomorphism Theorem yield

0 −→ B0 ↪→ T ↠ B−1 −→ 0,

where B0 = Imγ = T and B−1 = 0. Considering the basis hM
1 of T as the basis on B0, the determinant of the

change-base-matrix for the bases of T becomes 1.

By the sequence (4.6), we also have 0 −→ B1 ↪→ W
γ
↠ B0 −→ 0, where B1 = Imβ and B0 = Imγ = T.

Let us consider the inverse of the isomorphism obtained from W/Kerγ ∼= Imγ as section of W
γ→ B0. Let us

also consider the basis
{
wij ; ij ∈ {1, . . . , d} \ {i1, i2, . . . , ik}

}
of B1. Hence, the determinant of the change-base-

matrix for the bases of W equals 1.

Finally, from (4.6), it follows 0 → B2 ↪→ V
β
↠ B1 → 0, where B2 = Imα, B1 = Imβ. We consider α

(
hM
2

)
as the basis of B2. Using the basis of B1 obtained in the previous step and the inverse of the isomorphism

obtained from V/Kerβ ∼= Imβ as section of V
β→ B1, we get a basis for V. Therefore, by letting this basis as

the basis hΣg

1 of V, the determinant of the change-base-matrix for the bases of V is 1.

Combining all the above, Reidemeister torsion of the sequence H∗ in these bases is equal to 1.

Theorem 2.1 and Lemma 2.2 yield

T
(
Hg,

{
hHg

i

}3

0

)2

= T
(
Σg,

{
hΣg

k

}2

0

)
T
(
M,
{

hM
j

}3

0

)
. (4.7)
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We also have

T
(
M,
{

hM
j

}3

0

)
= i dimH0(M;GAdϱ). (4.8)

Equations (4.7), (4.8), and Theorem 4.1 finish the proof of Theorem 4.2. 2

Let H be a compact hyperbolic 3-manifold with boundary ∂H consisting of surfaces Σg1 , . . . ,Σgℓ of
genus at least 2. Let M be the double of H. Let G be the Lie groups GL (n,C) , SL(n,C) or their quotients.
Let % : π1(H) → G be a homomorphism so that % ◦ ri : π1 (Σgi) → G is a good homomorphism for i = 1, . . . , ` .
Here, ri : π1 (Σgi) → π1(H) is the homomorphism obtained by the embedding Σgi ↪→ H. Clearly, for % ◦ ri

being good, Hj

(
Σgi ;GAdϱ◦ri

)
vanishes i = 1, . . . , `, j = 0, 2.

We consider the following short-exact sequence

0 →
ℓ
⊕
i=1

C∗
(
Σgi ;GAdϱ◦ri

)
→ C∗

(
H;GAdϱ

)
⊕ C∗

(
H;GAdϱ

)
→ C∗

(
M;GAdϱ

)
→ 0 (4.9)

of chain complexes and the associated Mayer-Vietoris long exact sequence of vector spaces H∗.

Combining these and following the arguments as in Theorem 4.2, we have

Theorem 4.3 Let Σgi , H, M, G, G, %, and ri be as above. Considering the short-exact sequence (4.9)
and the corresponding Mayer-Vietoris H∗ , let hH

k denote a basis for Hk

(
H;GAdϱ

)
, k = 0, 1, 2, 3. Then, there

exist bases hM
k and h

Σgi
1 of Hk

(
M;GAdϱ

)
and H1

(
Σgi ;GAdϱ◦ri

)
, i = 1, . . . , `, k = 0, 1, 2, 3, respectively so

that Reidemeister torsion of the long exact sequence H∗ in these bases becomes 1. Furthermore, the following
formulas

1. T
(
H,
{
hH
k

}3
0

)
= i(l+dimH0(M;GAdϱ))/2

ℓ∏
i=1

∆
(
h
Σgi
1 ,h

Σgi
1

)−1/4

,

2. T
(
H,
{
hH
k

}3
0

)
= i(l+dimH0(M;GAdϱ))/2

ℓ∏
i=1

4
√
δ (h1,i,h1,i)

are valid, where β0 = H0

(
M;GAdϱ

)
.

A. Programming in Matlab for the Lie group GL(3,C)

syms a b c d e f

A1 = [a b c; 0 d e; 0 0 f];

X1 = zeros(3); X1(1,3) = 1; X2 = zeros(3); X2(2,3) = 1;
X3 = zeros(3); X3(3,3) = 1; X4 = zeros(3); X4(1,2) = 1;
X5 = zeros(3); X5(2,2) = 1; X6 = zeros(3); X6(1,1) = 1;
X7 = zeros(3); X7(3,2) = 1; X8 = zeros(3); X8(2,1) = 1;
X9 = zeros(3); X9(3,1) = 1;
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B1 = inv(A1);

T1=B1*X1*A1; T2=B1*X2*A1; T3=B1*X3*A1; T4=B1*X4*A1;
T5=B1*X5*A1; T6=B1*X6*A1; T7=B1*X7*A1; T8=B1*X8*A1;
T9=B1*X9*A1;

K1=[T1(1,3);T1(2,3);T1(3,3);T1(1,2);T1(2,2);T1(1,1);T1(3,2);T1(2,1);T1(3,1)];
K2=[T2(1,3);T2(2,3);T2(3,3);T2(1,2);T2(2,2);T2(1,1);T2(3,2);T2(2,1);T2(3,1)];
K3=[T3(1,3);T3(2,3);T3(3,3);T3(1,2);T3(2,2);T3(1,1);T3(3,2);T3(2,1);T3(3,1)];
K4=[T4(1,3);T4(2,3);T4(3,3);T4(1,2);T4(2,2);T4(1,1);T4(3,2);T4(2,1);T4(3,1)];
K5=[T5(1,3);T5(2,3);T5(3,3);T5(1,2);T5(2,2);T5(1,1);T5(3,2);T5(2,1);T5(3,1)];
K6=[T6(1,3);T6(2,3);T6(3,3);T6(1,2);T6(2,2);T6(1,1);T6(3,2);T6(2,1);T6(3,1)];
K7=[T7(1,3);T7(2,3);T7(3,3);T7(1,2);T7(2,2);T7(1,1);T7(3,2);T7(2,1);T7(3,1)];
K8=[T8(1,3);T8(2,3);T8(3,3);T8(1,2);T8(2,2);T8(1,1);T8(3,2);T8(2,1);T8(3,1)];
K9=[T9(1,3);T9(2,3);T9(3,3);T9(1,2);T9(2,2);T9(1,1);T9(3,2);T9(2,1);T9(3,1)];

K=[K1 K2 K3 K4 K5 K6 K7 K8 K9]

det(K)

Figure 1. Command window for the Lie group GL(3,C) .
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