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Abstract: We focused on traveling combustion waves that appear in a simplified, one-dimensional combustion model in
porous media. The system we consider is a reaction-convection-diffusion system that can be reduced into two-dimension
in order to prove traveling waves by phase plane analysis. In previous studies combustion wave velocity was assumed
positive and their existence was proven. Also, all possible wave sequences that solve boundary value problems on infinite
intervals with constant boundary data were identified. In this study, we generalize the previous work by including the
case of negative combustion wave speed and taking the assumption that oxygen is carried faster than temperature.
Moreover, we extend the classification of all possible wave sequences by performing numerical simulations using finite
difference scheme.
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1. Introduction
Combustion waves appear in the process of enhanced oil recovery. One of the goals behind enhanced recovery is
to increase the mobility of the heavy oil by using thermal techniques such as hot fluid injection, steam injection,
and air injection. In this paper, we consider the air injection method and identify combustion waves in porous
media. Some studies on combustion waves in porous media are [1–3, 5, 10–16, 19].

This paper is focused on combustion waves that appear in a simplified, one-dimensional combustion model
in porous media containing initially some solid fuel. In one-dimensional combustion model, when combustion
occurs, there are two cases: coflow and counterflow combustion. In the coflow case, combustion front and
injected airflow move in the same direction. In the counterflow case, they move in the opposite direction and
also combustion wave speed is assumed to be negative.

The model considered here is derived in [8]. It was proposed in [1] and expanded in [6–8, 17, 18]. The
system we consider is a reaction-convection-diffusion system that can be reduced into two dimensions in order
to prove traveling waves by phase plane analysis. It is expressed by three equations that give temperature,
oxygen, and fuel balance laws. In [8, 9], velocity of the oxygen and heat were assumed to be the same, then
the existence of coflow and counterflow combustion waves were proven. In [4, 17], it was assumed that oxygen
is transported faster than temperature, then the existence of coflow and counterflow combustion waves were
proven.
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The present work extends [17] to the counterflow case in the sense of classification of all possible wave
sequences that solve boundary value problems. We perform numerical simulations for identified wave sequences.
For all numerical simulations, we use a nonlinear Crank–Nicolson implicit finite difference scheme and Newton’s
method in each time-step with appropriate wave velocities.

In Section 2, we describe our model and summarize what was done in [17]. We then state the main
theorem in [4] about the existence of combustion waves. Contact discontinuities are discussed in Section 4.
In addition, we identify all the possible ways that combustion waves and contact discontinuities can combine
to produce wave sequences that solve boundary value problems on infinite intervals with constant boundary
data. We show that the wave sequences we identify actually occur in numerical simulations. In Section 5, the
traveling wave system is reduced to two dimensions, and equilibria are determined.

2. Mathematical model and previous results
Consider a combustion system that has the three dependent variables temperature θ , oxygen Y , and fuel ρ :

∂tθ + a∂xθ = ∂xxθ + ρY Φ, (2.1)

∂tρ = −ρY Φ, (2.2)

∂tY + b∂xY = −ρY Φ, (2.3)

Φ =

{
e(−1/θ), θ > 0

0, θ ≤ 0
(2.4)

where Φ is unit reaction rate (Arrhenius law), a > 0 is velocity of the heat, and b > 0 is velocity of the oxygen.
We assume a < b as in [4, 17]. We have diffusion term only in equation (2.1) and no diffusion in the others.

Moreover, we normalize ignition temperature to be θ = 0 . Therefore, combustion can occur when the
temperature is above the ignition temperature θ = 0 . Also, this normalization allows us to take the temperature
negative.

Solutions with ρ ≥ 0 and Y ≥ 0 are considered. Constant boundary conditions of (2.1)–(2.3) on
−∞ < x < ∞ , 0 ≤ t are

(θ, ρ, Y )(−∞, t) = (θL, ρL, Y L), (θ, ρ, Y )(∞, t) = (θR, ρR, Y R). (2.5)

We assume the reaction cannot occur at the boundaries. Therefore, at x = ±∞ , we have either low temperature
θ ≤ 0 (temperature control or TC), absence of fuel ρ = 0 (fuel control or FC), or absence of oxygen Y = 0

(oxygen control or OC). Two or all three of these conditions can exist simultaneously at the left or right.

A wave with velocity c is denoted by (θ−, ρ−, Y −)
c−→ (θ+, ρ+, Y +) where (θ−, ρ−, Y −) is the left state

and (θ+, ρ+, Y +) is the right state. In addition, a wave of velocity c that goes, for example, from a left state
of type TC ∩ FC to a right state of type OC will be indicated by TC ∩ FC

c−→ OC . Also, TC ∩ FC state
indicates that θ ≤ 0 , ρ = 0 and Y > 0 and for OC state θ > 0 , ρ > 0 , and Y = 0 .

In a wave sequence, we only consider boundary conditions TC , FC , or OC as a first or last state.
However, states such as TC ∩ FC might appear elsewhere in the sequence as end states of waves.

In [17], two fast, two slow, and two intermediate combustion waves that approach both end states
exponentially were found and their existence was proven. Fast combustion waves move faster than oxygen
and heat; slow combustion waves have been called reaction-trailing smolder waves [2] and move more slowly
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than oxygen and heat; intermediate waves have been called reaction-leading smolder waves [2, 16] and move
more slowly than oxygen but faster than heat.

Theorem 2.1 There exist two fast combustion waves with positive velocity cf > b > a :

• FC
cf−→ TC .

• OC
cf−→ TC .

Transitional case is of type FC ∩OC
cf−→ TC .

In a fast combustion wave, the right state has a low temperature. When the combustion starts, it runs to the
right and leaves a high-temperature zone behind since it is transported faster than heat. Behind the combustion
front, the reaction ceases due to the absence of fuel or oxygen. See Figure 1. In [17], the existence of these
fronts was proven.

                                                  

                                         

Figure 1. Fast combustion waves; θ = temperature, ρ = solid fuel concentration, Y = oxygen concentration.

Theorem 2.2 There exist two slow combustion waves with positive velocity 0 < cs < a :

• FC
cs−→ OC .

• TC
cs−→ OC .

Transitional case is of type FC ∩ TC
cs−→ OC .

There is no oxygen at the right state of a slow combustion wave. Therefore, the reaction cannot occur ahead of
the incoming gas. In fact, the combustion occurs behind the moving oxygen. The combustion front generates a
high-temperature zone that is transported ahead of it. The reaction ceases behind the front due to lack of fuel
or low temperature. See Figure 2. In [17], the existence of these fronts was proven.

Theorem 2.3 There exist two intermediate combustion wave with positive velocity cm , a < cm < b :

• FC
cm−−→ OC .
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Figure 2. Slow combustion waves; θ = temperature, ρ = solid fuel concentration, Y = oxygen concentration.

• FC
cm−−→ TC .

Transitional case is of type FC
cm−−→ OC ∩ TC .

In an intermediate combustion wave, as in a fast combustion wave, the heat produced by combustion stays
behind the combustion front. Behind the front, the reaction stops because the fuel is entirely consumed. As in
a slow combustion wave, the reaction occurs behind the moving oxygen. See Figure 3. In [17], the existence of
these fronts was proven.

                                                                                         

 

Figure 3. Intermediate combustion waves; θ = temperature, ρ = solid fuel concentration, Y = oxygen concentration.

3. Counterflow combustion waves
We assume that velocity of the counterflow combustion wave cc is negative. We give the following two theorems
in [4] to use them in the numerical calculations.

Theorem 3.1 There exist two types of counterflow combustion waves with velocity cc < 0 :

• TC
cc−→ OC

• TC
cc−→ FC
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Transitional case is of type TC
cc−→ OC ∩ FC .

The following theorem gives more detail about these waves. It was proven in detail in [4].

Theorem 3.2 Let 0 < a < b . Assume aθ− + bY − > 0 .

1. Fix θ− ≤ 0 , ρ− > 0 and Y − > 0 . Then there are numbers θ+ > 0 and cc < 0 such that there exists a
combustion wave of velocity cc from (θ−, ρ−, Y −) to (θ+, 0, 0) . Moreover,

θ+ = θ− +
bY −ρ−

(b− a)Y − + aρ−
, cc =

bY −

Y − − ρ−
. (3.1)

These combustion waves correspond to TC
cc−→ FC ∩OC waves.

2. Fix θ− ≤ 0 , ρ− > 0 and Y − > 0 . There are numbers θ+ > 0 , ρ+ with 0 < ρ+ < ρ− , and cc < 0 such
that there exists a combustion wave of velocity cc from (θ−, ρ−, Y −) to (θ+, ρ+, 0) . Moreover,

θ+ = θ− +
b− cc
a− cc

Y −, ρ+ = ρ− +
b− cc
cc

Y −. (3.2)

These combustion waves correspond to TC
cc−→ OC waves.

3. Fix θ− ≤ 0 , ρ− > 0 and Y − > 0 . There are numbers θ+ > 0 , Y + with 0 < Y + < Y − , and cc < 0 such
that there exists a combustion wave of velocity cc from (θ−, ρ−, Y −) to (θ+, 0, Y +) . Moreover,

θ+ = θ− − cc
a− cc

ρ−, Y + = Y − +
cc

b− cc
ρ−. (3.3)

These combustion waves correspond to TC
cc−→ FC waves.

Moreover, there are no combustion waves with cc < 0 of types other than TC
cc−→ FC ∩OC , TC

cc−→ OC , and
TC

cc−→ FC .

In the next section, using Theorems 3.1 and 3.2, we show that the wave sequences including counterflow
combustion waves actually occur in numerical simulations.

4. Wave sequences with contact waves
We expect the solution to resolve into combustion waves and intervals on which combustion does not occur.
On these intervals, the equations decouple, so we expect to observe standing solid fuel concentration patterns,
convected oxygen concentration patterns, and temperature waves; the velocities are 0, b , and a , respectively.
Across each of these waves, only one variable changes. For simplicity, we follow [8, 17] and call these waves
contact discontinuities or contact waves. At the left and right state of a contact discontinuity, at least one of
the conditions TC , FC , or OC must hold. For further discussion, see [8, 17].

In constructing wave sequences, the transitional cases will not be used, since one state is not approached
exponentially [8]. However, for completeness, they are discussed in the theorems. The left state of the first wave
in the sequence and the right state of the last wave in the sequence must be of type TC , FC , or OC . Also,
the velocity of the waves must be in increasing order.
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In [17], 22 possible wave sequences were listed and supported by numerical simulations. In this study,
our goal is to generalize the previous work by including the counterflow combustion waves and complete the
diagram of wave sequences presented in [17] by adding the waves that were found in [4]. See Figure 4.
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Figure 4. All possible wave sequences can be found from this figure. Dashed and black arrows indicate dimension
number 0 and 1, respectively.

In the remainder of this section, we show that the wave sequences including counterflow combustion
waves actually occur in numerical simulations. The wave sequences that include a counterflow, an intermediate,
and a fast combustion wave, or a counterflow, a slow and a fast combustion wave, are the most complicated.

For all numerical simulations shown below, we use a nonlinear Crank–Nicolson implicit finite difference
scheme and Newton’s method in each time-step with a = 0.01 , b = 0.05 and space step ∆x = 1.3 . In some
numerical examples, we encounter small perturbation in fuel and oxygen concentration because of the initial
step adjustment. However, this does not have an effect on the final result.

4.1. Wave sequences with TC
cc−→ OC

Using Theorem 3.2(2), we identify three possible wave sequences that contain TC
cc−→ OC counterflow combus-

tion waves and extend the wave sequences as far as possible.

1. TC
cc−→ OC

0−→ OC
a−→ TC ∩OC

b−→ TC wave sequence demonstrates a temperature-controlled to oxygen-
controlled stable counterflow combustion wave followed by contact waves of velocities 0, a , and b . See
Figure 5.

2. TC
cc−→ OC

0−→ OC
a−→ OC

cf−→ TC wave sequence demonstrates a temperature-controlled to oxygen-
controlled stable counterflow combustion wave and oxygen-controlled to temperature-controlled stable
fast combustion wave. Between these combustion waves, there are contact waves of velocities 0 and a .
See Figure 6.

3. TC
cc−→ OC

0−→ FC ∩ OC
a−→ FC ∩ OC

b−→ FC
cf−→ TC wave sequence demonstrates a temperature-

controlled to oxygen-controlled stable counterflow combustion wave and fuel-controlled to temperature-
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controlled stable fast combustion wave. Between these combustion waves, there are contact waves of
velocities 0, a , and b . See Figure 7.
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Figure 5. Result of numerical simulation yielding the wave sequence TC
cc−→ OC

0−→ OC
a−→ TC ∩ OC

b−→ TC . Initial
conditions (left) and simulation time 10, 000 (right).
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Figure 6. Result of numerical simulation yielding the wave sequence TC
cc−→ OC

0−→ OC
a−→ OC

cf−→ TC . Initial
conditions (left) and simulation time 9000 (right).

 

0 500 1000 1500 2000 2500

0

0.5

1

1.5

2

2.5

Y

0 500 1000 1500 2000 2500

0

0.5

1

1.5

2

2.5

Y

Figure 7. Result of numerical simulation yielding the wave sequence TC
cc−→ OC

0−→ FC ∩OC
a−→ FC ∩OC

b−→ FC
cf−→

TC . Initial conditions (left) and simulation time 9000 (right).
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4.2. Wave sequences with TC
cc−→ FC

Using Theorem 3.2(3), we identify five possible wave sequences that contain TC
cc−→ FC counterflow combustion

waves and extend the wave sequences as far as possible.

1. TC
cc−→ FC

cs−→ OC
a−→ TC ∩ OC

b−→ TC wave sequence demonstrates a temperature-controlled to
fuel-controlled stable counterflow combustion wave and fuel-controlled to oxygen-controlled stable slow
combustion wave followed by contact waves of velocities a and b . See Figure 8.

2. TC
cc−→ FC

cs−→ OC
a−→ OC

cf−→ TC wave sequence demonstrates a temperature-controlled to fuel-
controlled stable counterflow combustion wave followed by a fuel-controlled to oxygen-controlled stable
slow combustion wave, a contact wave of velocity a and an oxygen-controlled to temperature-controlled
stable fast combustion wave. See Figure 9.
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Figure 8. Result of numerical simulation yielding the wave sequence TC
cc−→ FC

cs−→ OC
a−→ TC ∩ OC

b−→ TC . Initial
conditions (left) and simulation time 12, 000 (right).
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Figure 9. Result of numerical simulation yielding the wave sequence TC
cc−→ FC

cs−→ OC
a−→ OC

cf−→ TC . Initial
conditions (left) and simulation time 12, 000 (right).

3. TC
cc−→ FC

a−→ FC
cm−−→ TC

b−→ TC wave sequence demonstrates a temperature-controlled to fuel-
controlled stable counterflow combustion wave followed by a contact wave of velocity a , a fuel-controlled
to temperature-controlled stable intermediate combustion wave and a contact wave of velocity b . See
Figure 10.
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4. TC
cc−→ FC

a−→ FC
cm−−→ OC

cf−→ TC wave sequence demonstrates a temperature-controlled to fuel-
controlled stable counterflow combustion wave followed by a contact wave of velocity a , a fuel-controlled
to oxygen-controlled stable intermediate combustion wave and an oxygen-controlled to temperature-
controlled stable fast combustion wave. See Figure 11.
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Figure 10. Result of numerical simulation yielding the wave sequence TC
cc−→ FC

a−→ FC
cm−−→ TC

b−→ TC . Initial
conditions (left) and simulation time 15, 000 (right).
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Figure 11. Result of numerical simulation yielding the wave sequence TC
cc−→ FC

a−→ FC
cm−−→ OC

cf−→ TC . Initial
conditions (left) and simulation time 9000 (right).

5. TC
cc−→ FC

a−→ FC
b−→ FC

cf−→ TC wave sequence demonstrates a temperature-controlled to fuel-
controlled stable counterflow combustion wave and fuel-controlled to temperature-controlled stable fast
combustion wave. Between these combustion waves, there are contact waves of velocities a and b . See
Figure 12.

5. Traveling wave equation and its equilibria

In this section, we reduce the system (2.1)–(2.3) to two dimensions as in [17]. We use the moving coordinate
ξ = x− ct with c < 0 . After setting v1 = θ̇ = ∂ξθ , we obtain the system
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Figure 12. Result of numerical simulation yielding the wave sequence TC
cc−→ FC

a−→ FC
b−→ FC

cf−→ TC . Initial
conditions (left) and simulation time 12, 000 (right).

θ̇ = v1, (5.1)

v̇1 = (a− c)v1 − ρY Φ(θ), (5.2)

w1 = (c− a)θ + v1 + cρ, (5.3)

w2 = (c− b)Y − cρ, (5.4)

where w1 and w2 are constants. In (5.1)–(5.2), we substitute for v1 using (5.3) and for Y using (5.4). We
obtain the reduced traveling wave system

θ̇ = (a− c)θ − cρ+ w1, (5.5)

ρ̇ =
cρ+ w2

c(c− b)
ρΦ(θ), (5.6)

where (w1, w2) is a vector of parameters.
The linearization of (5.5)–(5.6) at a point (θ, ρ) has the matrix a− c −c

cρ+ w2

c(c− b)
ρΦ′(θ)

2cρ+ w2

c(c− b)
Φ(θ)

 . (5.7)

If (θ, ρ) is in TC , (5.7) becomes (
a− c −c
0 0

)
. (5.8)

Proposition 5.1 If an equilibrium of (5.5)–(5.6) is in TC , then one eigenvalue is a − c , with eigenvector
(1, 0) ; the other eigenvalue is 0 with eigenvector (c, a− c) .

If (θ, ρ) is in FC or FC ∩OC , (5.7) becomes(
a− c −c

0
w2

c(c− b)
Φ(θ)

)
. (5.9)
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In FC , Y > 0 and ρ = 0 , so w2 = (c− b)Y − cρ = (c− b)Y is negative . In FC ∩OC , Y = 0 and ρ = 0 , so
w2 = 0 . Therefore:

Proposition 5.2 If an equilibrium of (5.5)–(5.6) is in FC or FC ∩ OC , then one eigenvalue is a − c , with
eigenvector (1, 0) . This eigenvector points along the invariant line ρ = 0. The other eigenvalue is negative if
Y > 0 and is 0 if Y = 0 .

If (θ, ρ) ∈ OC , (5.7) becomes (
a− c −c

0
w2

c(b− c)
Φ(θ)

)
. (5.10)

In OC, Y = 0 and ρ > 0 , so cρ+ w2 = 0 and w2 > 0 . Therefore:

Proposition 5.3 If an equilibrium of (5.5)–(5.6) is in OC , then one eigenvalue is a − c , with eigenvector
(1, 0) . This eigenvector points along the invariant line ρ = −w2/c , which corresponds to Y = 0 . The other
eigenvalue is negative.

In [4], the phase plane analysis was applied to the system (5.5)-(5.6) to prove the existence of counterflow
traveling waves.

6. Conclusion
In this paper, we studied traveling waves that occur in a counterflow combustion model. We identified all
possible wave sequences by including the counterflow case. Also, contact discontinuities were discussed. Then
numerical simulations were presented to show that the wave sequences, including counterflow combustion waves,
actually occur. Nonlinear Crank-Nicolson implicit finite difference scheme and Newton’s method were applied
to the counterflow combustion system for investigating the simulations. Therefore, we generalized the previous
work by including the negative combustion wave speed and completed the diagram of wave sequences.
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