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Abstract: An inequality due to T. J. Rivlin from 1960 states that if P (z) is a polynomial of degree n having no zeros
in |z| < 1 , then

max
|z|=r

|P (z)| ≥
(
1 + r

2

)n

max
|z|=1

|P (z)|

for 0 ≤ r ≤ 1 . In this paper, we prove some generalizations of the above Rivlin’s inequality which sharpens Rivlin’s
inequality as a special case. Some important consequences of these results are also discussed and some related inequalities
are obtained.
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1. Introduction
If P (z) is a polynomial of degree n , then the well-known Bernstein inequalities [2] on polynomials are given by

max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)| (1.1)

and
max
|z|=R

|P (z)| ≤ Rn max
|z|=1

|P (z)|, (1.2)

whenever R ≥ 1 .
The inequality (1.1) is a direct consequence of Bernstein’s theorem on the derivative of a trigonometric

polynomial [9], and the inequality (1.2) follows from the maximum modulus theorem (see [7, Problem 269]).
The reverse analogue of the inequality (1.2) whenever R ≤ 1 is given by Varga [10], and he proved that, if P (z)

is a polynomial of degree n , then
max
|z|=r

|P (z)| ≥ rn max
|z|=1

|P (z)|, (1.3)

whenever 0 ≤ r ≤ 1 . The equality in (1.3) holds whenever P (z) = azn . For the class of polynomials having
no zeros inside the unit circle, it was Rivlin [8] who proved that, if P (z) is a polynomial of degree n having no
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zeros in |z| < 1 , then for 0 ≤ r ≤ 1

max
|z|=r

|P (z)| ≥
(
1 + r

2

)n

max
|z|=1

|P (z)|. (1.4)

Equality holds in (1.4) if P (z) = (z + a)n whenever |a| = 1 .
For more information about this kind of inequalities, we refer to the monographs [3, 6].
Aziz [1] generalized the Rivlin’s inequality (1.4) by proving that, if P (z) has no zeros in |z| < K,K ≥ 1 ,

then

max
|z|=r

|P (z)| ≥
(
K + r

K + 1

)n

max
|z|=1

|P (z)|, (1.5)

for 0 ≤ r ≤ 1 . Although, the above inequality (1.5) is best possible with equality holding for polynomials
P (z) = (z + a)n satisfying |a| = K , definitely the bound given in inequality (1.5) does not address the issue of
how far the zeros lie outside the circle |z| = K . Now naturally a question arises; is there any way to refine the
inequality (1.5) for the class of polynomials satisfying the hypotheses of the inequality (1.5), by capturing some
information on the moduli of zeros? Can we obtain a bound via two extreme coefficients of P (z) which are
informative about the distance of zeros from the origin? In view of the example for the equality case in (1.5)
which holds with the property |a0|/|an| = Kn , it should be possible to improve upon the bound for polynomials
P (z) =

∑n
ν=0 aνz

ν having no zeros in |z| < K , K ≥ 1 , satisfying |a0|/|an| ̸= Kn .
In this paper, we approach this side of the inequality and obtain a bound which sharpens the inequalities

(1.5) and (1.4) significantly.

2. Main results
Theorem 2.1 If P (z) =

∑n
ν=0 aνz

ν has no zeros in |z| < K , K ≥ 1 , then

max
|z|=r

|P (z)| ≥
{(

K + r

K + 1

)n

+
1

Kn−1

[
|a0| − |an|Kn

|a0|+ |an|

](
1− r

K + 1

)n}
max
|z|=1

|P (z)|, (2.1)

for 0 ≤ r ≤ 1 . The result is sharp and equality holds in (2.1) if P (z) = (z +K)n and also for P (z) = z + a

for any a with |a| ≥ K .

When K = 1 , Theorem 2.1 reduces to the following sharpened form of Rivlin’s inequality (1.4), which
was independently proved recently by Kumar [5].

Corollary 2.2 If P (z) =
∑n

ν=0 aνz
ν is a polynomial of degree n , having no zeros in |z| < 1 , then

max
|z|=r

|P (z)| ≥
{(

1 + r

2

)n

+

[
|a0| − |an|
|a0|+ |an|

](
1− r

2

)n}
max
|z|=1

|P (z)|, (2.2)

whenever 0 ≤ r ≤ 1 . Equality holds in (2.2) if P (z) = (z + a)n whenever |a| = 1 and also for P (z) = z + a

for any a with |a| ≥ 1 .

Since P (z) =
∑n

ν=0 aνz
ν has all its zeros in |z| ≥ K , we always have the situation

|a0| − |an|Kn

|a0|+ |an|
≥ 0.
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Therefore, for all polynomials satisfying the hypotheses of Theorem 2.1 excepting those satisfying |a0| = |an|Kn ,
our above inequality (2.1) sharpens the inequality (1.5).

As a consequence of Theorem 2.1, we obtain a result on the location of zeros of a polynomial in a disc as
discussed below. We have

|P (0)| = |a0| ≥
{(

K

K + 1

)n

+
1

Kn−1

[
|a0| − |an|Kn

|a0|+ |an|

](
1

K + 1

)n}
max
|z|=1

|P (z)|,

or equivalently
|a0|(|a0|+ |an|)Kn−1

K2n−1(|a0|+ |an|) + |a0| − |an|Kn
≥ 1

(K + 1)n
max
|z|=1

|P (z)|, (2.3)

whenever P (z) =
∑n

ν=0 aνz
ν has no zeros in |z| < K , K ≥ 1 .

Now let m with m ≤ 1 be the absolute value of a zero of smallest absolute value of P (z) . Also let
Q(z) = P (m2z) . Then Q(z) has no zeros in |z| < 1/m such that 1/m ≥ 1, and hence from (2.3) it follows that

|a0|(|a0|+ |an|m2n)

|a0|+ |an|m2n + (|a0|mn − |an|)mn−1
≥ 1

(m+ 1)n
max
|z|=1

|Q(z)|,

or equivalently
|a0|(|a0|+ |an|m2n)

|a0|+ |an|m2n + (|a0|mn − |an|)mn−1
≥ 1

(m+ 1)n
max

|z|=m2
|P (z)|.

Therefore, we arrived at the following result.

Corollary 2.3 Let P (z) =
∑n

ν=0 aνz
ν be a polynomial of degree n . If

max
|z|=R2

|P (z)| > |a0|(|a0|+ |an|R2n)(R+ 1)n

|a0|+ |an|R2n + (|a0|Rn − |an|)Rn−1
,

for some 1 ≥ R > 0 , then P (z) has at least one zero in |z| < R .

By applying Theorem 2.1 to the reciprocal polynomial znP (1/z) we get an inequality for the class of
polynomials having all its zeros in |z| ≤ K, K ≤ 1 . To elaborate it, if P (z) =

∑n
ν=0 aνz

ν has all its zeros in
|z| ≤ K , K ≤ 1 , then Q(z) = znP (1/z) has no zeros in |z| < 1/K , 1/K ≥ 1 . Applying Theorem 2.1 to Q(z)

with r = 1/R , R ≥ 1 , we get

max
|z|=1/R

|Q(z)| ≥
(
1/K + 1/R

1/K + 1

)n

+Kn−1

[
|an| − |a0|/Kn

|a0|+ |an|

](
1− 1/R

1/K + 1

)n

,

or equivalently

1

Rn
max
|z|=R

|P (z)| ≥
(
1/K + 1/R

1/K + 1

)n

+Kn−1

[
|an| − |a0|/Kn

|a0|+ |an|

](
1− 1/R

1/K + 1

)n

.

With the simplification of the above, we arrive at the following result.
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Corollary 2.4 If P (z) =
∑n

ν=0 aνz
ν has all its zeros in |z| ≤ K , K ≤ 1 , then

max
|z|=R

|P (z)| ≥
{(

K +R

K + 1

)n

+Kn−1

[
|an|Kn − |a0|
|an|+ |a0|

](
R− 1

K + 1

)n}
max
|z|=1

|P (z)|, (2.4)

whenever R ≥ 1 . The result is best possible and equality holds in (2.4) if P (z) = (z + K)n and also for
P (z) = z + a for any a with |a| ≤ K .

Aziz [1] also derived an inequality that, if P (z) is a polynomial of degree n having no zeros in |z| < K ,
K≤ 1 , then

max
|z|=r

|P (z)| ≥
(
K + r

K + 1

)n

max
|z|=1

|P (z)|, (2.5)

whenever 0 < r ≤ K2 . We shall sharpen the inequality (2.5) in the following result.

Theorem 2.5 If P (z) =
∑n

ν=0 aνz
ν is a polynomial of degree n having no zeros in |z| < K,K ≤ 1 , then

max
|z|=r

|P (z)| ≥
{(

K + r

K + 1

)n

+

[
|a0| − |an|Kn

|a0|+ |an|

](
λ

K + 1

)n}
max
|z|=1

|P (z)|, (2.6)

whenever 0 < r ≤ K2 , and λ = min{1 − r,K + r} . Equality holds in (2.6) if P (z) = (z +K)n and also for
P (z) = z + a for any a with |a| ≥ K .

We can apply Theorem 2.5 to the reciprocal polynomial znP (1/z) and proceeding in the lines of the
proof of Corollary 2.4 as explained above to get the following immediate consequence of Theorem 2.5.

Corollary 2.6 If P (z) =
∑n

ν=0 aνz
ν is a polynomial of degree n which has all its zeros in the disc |z| ≤ K ,

K ≥ 1 , then

max
|z|=R

|P (z)| ≥
{(

K +R

K + 1

)n

+

[
|an|Kn − |a0|
|a0|+ |an|

](
µ

K + 1

)n}
max
|z|=1

|P (z)|, (2.7)

whenever R ≥ K2 and µ = min{R − 1, (R +K)/K} . The result is best possible and equality holds in (2.7) if
P (z) = (z +K)n and also for P (z) = z + a for any a with |a| ≤ K .

It was Govil [4] who generalized the inequality (1.4) by studying the relative growth of a polynomial P (z)

having no zeros in the open unit disc, with respect to two circles |z| = r and |z| = R whenever 0 ≤ r < R ≤ 1 .
He proved that, if P (z) has no zeros in |z| < 1 then for 0 ≤ r < R ≤ 1

max
|z|=r

|P (z)| ≥
(

1 + r

1 +R

)n

max
|z|=R

|P (z)|. (2.8)

Our next result sharpens (2.8) and is stated below.

Theorem 2.7 If P (z) =
∑n

ν=0 aνz
ν has no zeros in |z| < 1 then for 0 ≤ r < R ≤ 1 , we have

max
|z|=r

|P (z)| ≥
{(

1 + r

1 +R

)n

+Rn−1

[
|a0| − |an|

|a0|+ |an|Rn

](
R− r

1 +R

)n}
max
|z|=R

|P (z)|, (2.9)

The result is best possible and equality holds in (2.9) for P (z) = (z + a)n , where |a| = 1 , and P (z) = z + a ,
where |a| ≥ 1 .
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It may be remarked that when R = 1 , Theorem 2.7 gives the sharpened version of Rivlin’s inequality
stated in Corollary 2.2.

If the polynomial P (z) has all its zeros on |z| ≤ 1 , then the reciprocal polynomial Q(z) = znP (1/z) also
has all its zeros in |z| ≥ 1 . Now if 1 ≤ R < r , then 1/r < 1/R ≤ 1 . Therefore applying Theorem 2.7 to the
polynomial Q(z) we get

max
|z|=1/r

|Q(z)| ≥
{(

1 + 1/r

1 + 1/R

)n

+ 1/Rn−1

[
|an| − |a0|

|an|+ |a0|(1/Rn)

](
1/R− 1/r

1 + 1/R

)n}
max

|z|=1/R
|Q(z)|,

which with simplification yields

1

rn
max
|z|=r

|P (z)| ≥
{
Rn

rn

(
r + 1

R+ 1

)n

+
R

rn

[
|an| − |a0|

Rn|an|+ |a0|

](
r −R

R+ 1

)n}
1

Rn
max
|z|=R

|P (z)|,

Thus we arrived at the following result.

Corollary 2.8 If P (z) =
∑n

ν=0 aνz
ν has all its zeros on |z| ≤ 1 then for 1 ≤ R < r , we have

max
|z|=r

|P (z)| ≥
{(

1 + r

1 +R

)n

+
1

Rn−1

[
|an| − |a0|

|a0|+ |an|Rn

](
r −R

1 +R

)n}
max
|z|=R

|P (z)|. (2.10)

The result is best possible and equality holds in (2.10) for P (z) = (z + a)n , where |a| = 1 , and P (z) = z + a ,
where |a| ≥ 1 .

Remark 2.9 The above Corollary 2.8 sharpens the Corollary to Theorem 1 given in the paper due to Govil [4].

3. Auxiliary results

In order to establish our results stated in the previous section, we need to prove some fundamental inequalities
involving nonnegative real numbers.

Lemma 3.1 If a ≥ Km , b ≥ K , K ≥ 1 , and m is any positive integer, then

1

Km−1

a−Km

a+ 1
· b−K

b+ 1
+

1

Km−1

a−Km

a+ 1
+

b−K

b+ 1
≥ 1

Km

ab−Km+1

(ab+ 1)
. (3.1)

Proof We need to show

1

Km−1

a−Km

a+ 1
· b−K

b+ 1
+

1

Km−1

a−Km

a+ 1
+

b−K

b+ 1
− 1

Km

ab−Km+1

(ab+ 1)
≥ 0.

Equivalently, it suffices to show that

K(ab+ 1)(a−Km)(b−K) + K(ab+ 1)(a−Km)(b+ 1)

+ Km(b−K)(ab+ 1)(a+ 1)

− (ab−Km+1)(a+ 1)(b+ 1) ≥ 0.
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In view of the fact that K ≥ 1 , and (a+1)(b+1) = ab+1+ a+ b , to establish the above claim, we need
to prove

(ab+ 1)(a−Km)(b−K) +K(ab+ 1)(a−Km)(b+ 1)

+Km(b−K)(ab+ 1)(a+ 1)− (ab−Km+1)(ab+ 1)

− (ab−Km+1)(a+ b) ≥ 0. (3.2)

Substituting the following

(ab+ 1)(a−Km)(b−K)− (ab−Km+1)(ab+ 1)

= −(ab+ 1)(K(a−Km) +Km(b−K)),

K(ab+ 1)(a−Km)(b+ 1) = Kb(ab+ 1)(a−Km) +K(ab+ 1)(a−Km),

and
Km(b−K)(ab+ 1)(a+ 1) = Kma(b−K)(ab+ 1) +Km(b−K)(ab+ 1)

in (3.2) and simplifying, we will be finally left to show that

Kb(ab+ 1)(a−Km) +Kma(b−K)(ab+ 1)− (ab−Km+1)(a+ b) ≥ 0.

Since for a ≥ 1 , b ≥ 1 , the inequality (ab+ 1) ≥ (a+ b) holds, so it is sufficient to prove that

Kb(a−Km) +Kma(b−K)− (ab−Km+1) ≥ 0.

But

Kb(a−Km) +Kma(b−K)− (ab−Km+1)

= (K − 1)(a−Km)(b− 1) +Km(a− 1)(b− 1) + (K − 1)a ≥ 0,

and hence the proof is complete. 2

When K > 0 we have the following result analogous to Lemma 3.1.

Lemma 3.2 If a ≥ Km , b ≥ K , K > 0 , and m is any positive integer, then

a−Km

a+Km
· b−K

b+K
+

a−Km

a+Km
+

b−K

b+K
≥ ab−Km+1

ab+Km+1
. (3.3)

Proof The proof is almost in line with that of Lemma 3.1, but needs some modifications and records slightly
different observations. For the sake of completeness let us present the proof.

Our claim is
a−Km

a+Km
· b−K

b+K
+

a−Km

a+Km
+

b−K

b+K
− ab−Km+1

ab+Km+1
≥ 0.

Equivalently it suffices to show that

(ab+Km+1)(a−Km)(b−K) + (ab+Km+1)(a−Km)(b+K)

+ (b−K)(ab+Km+1)(a+Km)− (ab−Km+1)(a+Km)(b+K) ≥ 0.
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Since (a+Km)(b+K) = ab+Km+1 + aKm + bK , to establish our claim, we need to prove that

(ab+Km+1)(a−Km)(b−K) + (ab+Km+1)(a−Km)(b+K)

+ (b−K)(ab+Km+1)(a+Km)− (ab−Km+1)(ab+Km+1)

− (ab−Km+1)(aKm + bK) ≥ 0. (3.4)

Substituting the following:

(ab+Km+1)(a−Km)(b−K)− (ab−Km+1)(ab+Km+1)

= −(ab+Km+1)(K(a−Km) +Km(b−K)),

(ab+Km+1)(a−Km)(b+K) = b(ab+Km+1)(a−Km) +K(ab+Km+1)(a−Km),

and

(b−K)(ab+Km+1)(a+Km) = a(b−K)(ab+Km+1) +Km(b−K)(ab+Km+1)

in (3.4), and simplifying, our claim reduces to

b(ab+Km+1)(a−Km) + a(b−K)(ab+Km+1)− (ab−Km+1)(aKm + bK) ≥ 0.

Since ab + Km+1 − aKm − bK = (a − Km)(b − K) ≥ 0 , we must have ab + Km+1 ≥ aKm + bK and
therefore it is sufficient to prove that

b(a−Km) + a(b−K)− (ab−Km+1) ≥ 0.

But

b(a−Km) + a(b−K)− (ab−Km+1) = (a−Km)(b−K) ≥ 0,

and hence the proof is complete. 2

Lemma 3.3 For any 0 ≤ r ≤ 1 and Rk ≥ K ≥ 1 , 1 ≤ k ≤ n , we have

n∏
k=1

r +Rk

1 +Rk
≥
(
K + r

K + 1

)n

+
1

Kn−1

[
R1R2 · · ·Rn −Kn

R1R2 · · ·Rn + 1

](
1− r

K + 1

)n

. (3.5)

Proof We prove the result by induction on n . The identity

r +R1

1 +R1
=

(
K + r

K + 1

)
+

[
R1 −K

R1 + 1

](
1− r

K + 1

)
, (3.6)

justifies the validity of (3.5) for n = 1 . Let us assume that (3.5) is true for n = m . Then using the result for

1442



KUMAR and MILOVANOVIĆ/Turk J Math

m and with the help of (3.6), we will have

m+1∏
k=1

r +Rk

1 +Rk
=

(
m∏

k=1

r +Rk

1 +Rk

)(
r +Rm+1

1 +Rm+1

)

≥
[(

K + r

K + 1

)m

+
1

Km−1

[
R1R2 · · ·Rm −Km

R1R2 · · ·Rm + 1

](
1− r

K + 1

)m]
×
[(

K + r

K + 1

)
+

[
Rm+1 −K

Rm+1 + 1

](
1− r

K + 1

)]

=

(
K + r

K + 1

)m+1

+
1

Km−1

[
R1R2 · · ·Rm −Km

R1R2 · · ·Rm + 1

] [
Rm+1 −K

Rm+1 + 1

](
1− r

K + 1

)m+1

+

(
K + r

K + 1

)m(
1− r

K + 1

)[
Rm+1 −K

Rm+1 + 1

]

+
1

Km−1

(
1− r

K + 1

)m(
K + r

K + 1

)[
R1R2 · · ·Rm −Km

R1R2 · · ·Rm + 1

]
.

Therefore we will have

m+1∏
k=1

r +Rk

1 +Rk
≥

(
K + r

K + 1

)m+1

+

(
1− r

K + 1

)m+1

×
[

1

Km−1

[
R1R2 · · ·Rm −Km

R1R2 · · ·Rm + 1

] [
Rm+1 −K

Rm+1 + 1

]
+

Rm+1 −K

Rm+1 + 1
+

1

Km−1

R1R2 · · ·Rm −Km

R1R2 · · ·Rm + 1

]
.

Applying Lemma 3.1 to the second term in the right hand side of the above inequality, we obtain

m+1∏
k=1

r +Rk

1 +Rk
≥
(
K + r

K + 1

)m+1

+
1

Km

[
R1R2 · · ·Rm+1 −Km+1

R1R2 · · ·Rm+1 + 1

](
1− r

K + 1

)m+1

,

by which the method of induction is complete. 2

Applying again the principle of induction on n and proceeding similarly as in the proof of above Lemma
3.3, but using Lemma 3.2, instead of Lemma 3.1, we can obtain the following result.

Lemma 3.4 For any 0 ≤ r ≤ 1 and Rk ≥ K , 1 ≤ k ≤ n , K > 0 , we have

n∏
k=1

r +Rk

1 +Rk
≥
(
K + r

K + 1

)n

+

[
R1R2 · · ·Rn −Kn

R1R2 · · ·Rn +Kn

](
λ

K + 1

)n

, (3.7)

where λ = min{1− r,K + r} .
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4. Proofs of main results

Proof of Theorem 2.1 Let zk = Rke
iφk , 1 ≤ k ≤ n , be the zeros of P (z) . Observe that Rk ≥ K , K ≥ 1 ,

1 ≤ k ≤ n , since P (z) ̸= 0 in |z| < K , K ≥ 1 . Then for any 0 ≤ r ≤ 1 , and 0 ≤ φ ≤ 2π , we have

|P (reiφ)|
|P (eiφ)|

=

n∏
k=1

|reiφ −Rke
iφk |

|eiφ −Rkeiφk |

=

n∏
k=1

|rei(φ−φk) −Rk|
|ei(φ−φk) −Rk|

=

n∏
k=1

(
r2 +R2

k − 2rRk cos(φ− φk)

1 +R2
k − 2rRk cos(φ− φk)

)1/2

≥
n∏

k=1

r +Rk

1 +Rk
.

Therefore we have

|P (reiφ)| ≥
n∏

k=1

r +Rk

1 +Rk
|P (eiφ)|. (4.1)

Now applying Lemma 3.3 to the right hand side of the inequality (4.1) and using the fact that

R1R2 · · ·Rn =
|a0|
|an|

,

we get the required inequality. 2

Proof of Theorem 2.5 Since the polynomial P (z) has all its zeros in |z| ≥ K, K ≤ 1 , we can express
P (z) = an

∏n
k=1(z −Rke

iαk) where Rk ≥ K, 1 ≤ k ≤ n . Then it is a simple exercise to check the validity of

|P (reiα)|
|P (eiα)|

=

n∏
k=1

|reiα −Rke
iαk |

|eiα −Rkeiαk |
≥

n∏
k=1

r +Rk

1 +Rk
, (4.2)

whenever r ≤ K2 and o ≤ α ≤ 2π .
Now applying Lemma 3.4 to the right hand side of the above inequality (4.2), we get the required

inequality. 2

Proof of Theorem 2.7 By assumption, the polynomial P (z) has no zeros in |z| < 1 . But then the polynomial
P (Rz) has no zeros in |z| < 1/R , where 1/R ≥ 1 . Observe that the polynomial P (Rz) satisfies the hypotheses
of Theorem 2.1, and therefore using Theorem 2.1 for P (Rz) we have

max
|z|=r/R

|P (Rz)| ≥
{(

1/R+ r/R

1/R+ 1

)n

+Rn−1

[
|a0| − |anRn|(1/Rn)

|a0|+ |anRn|

](
1− r/R

1/R+ 1

)n}
max
|z|=1

|P (Rz)|,

which is equivalent to (2.9). 2
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