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Abstract: In this study, almost paracontact metric manifolds and almost para-Hermitian manifolds are considered.
The relations between almost paracontact metric manifolds and almost para-Hermitian manifolds are investigated and
certain results are acquired. Examples of almost para-Hermitian manifolds are presented using the determined relations.
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1. Introduction
Differential manifolds with special structures have specific forms on such manifolds. In the Riemannian
case, for example, Riemannian manifolds with G2 structure have fundamental 3-form, almost contact metric
manifolds and almost hermitian manifolds have fundamental 2-forms [2–5]. In the semi-Riemannian case, almost
paracontact metric manifolds, almost para-Hermitian manifolds and almost complex manifolds with B-metric
are examples of manifolds with special structures [1, 6, 8, 10]. The classification of these manifolds is achieved
by using the covariant derivative of their special forms.

In [9], almost contact metric manifolds are classified by using the classification of almost hermitian
manifolds and correspondence between classes of almost contact and almost hermitian manifolds is given. In
this study, we investigate the associations between almost paracontact and almost para-Hermitian manifolds
similar to [9]. We employ the classification of almost paracontact manifolds of [10] and the classification of
almost para-Hermitian manifolds of [6]. We present the relations between some classes of almost paracontact
and para-Hermitian manifolds.

In this manuscript, after giving necessary preliminary information on almost paracontact and almost para-
Hermitian manifolds, we obtain an almost para-Hermitian structure on the product of an almost paracontact
manifold with R . We write the covariant derivative of the metric and the fundamental 2-form of the almost
para-Hermitian manifold in terms of the covariant derivative of the metric of the almost paracontact manifold.
Then we state the relations between certain classes of almost paracontact and almost para-Hermitian manifolds.

2. Almost parcontact metric manifolds and almost para-Hermitian manifolds

A (2n + 1) -dimensional smooth manifold M is called an almost paracontact metric manifod if the structure
group of its tangent bundle reduces to Uπ(n)× {1} , where Uπ(n) is paraunitary group [10]. Equivalently, if a
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smooth manifold M has a tensor field φ of type (1, 1) , a vector field ξ , a 1-form η and a pseudo-Riemannian
metric g satisfy the following conditions

1. φ2(X) = X − η(X)ξ , η(ξ) = 1 ,

2. There exists a distribution D : M → TpM , Dp ⊂ TpM such that Dp = Kerη = {X ∈ TpM : η(X) = 0} .
This distribution is called paracontact distribution generated by η ,

3. g(φ(X), φ(Y )) = −g(X,Y ) + η(X)η(Y ) ,

then the manifold M is called an almost paracontact metric manifold. Note that signature of g is (n+ 1, n) .
The fundamental 2-form on an almost paracontact metric manifold M is defined as

Φ(X,Y ) := g(φ(X), Y ).

This 2-form is nondegenerate on the horizontal distribution D and η ∧ Φn ̸= 0 . The covariant derivative of Φ

with respect to the Levi-Civita connection ∇ of g is

β(X,Y, Z) = (∇X) (Y, Z) = g ((∇Xφ) (Y ), Z) .

The tensor β has the following properties:

β(X,Y, Z) = −β(X,Z, Y ),

β (X,φ(Y ), φ(Z)) = β(X,Y, Z) + η(Y )β(X,Z, ξ)− η(Z)β(X,Y, ξ).

The following 1-forms associated with β are defined as [10]:

θ(X) := gijβ(ei, ej , X) + β(ξ, ξ,X), θ∗(X) := gijβ(ei, φ(ej), X),

where {e1, e2, · · · , e2n, ξ} is an orthonormal basis of TM and (gij) is the inverse matrix of (gij) .
Utilizing the properties above, the space G of ⊗0

3TM is defined as follows:

G :=
{
β ∈ ⊗0

3M : β(X,Y, Z) = −β(X,Z, Y )
= β(X,φ(Y ), φ(Z))− η(Y )β(X,Z, ξ)

+η(Z)β(X,Y, ξ)}

The space G , therefore, decomposes into eleven subspaces G = G1 ⊕ · · ·G12 which are characterized by:

G1 := {β ∈ G : β(X,Y, Z) = 1
2(n−1) {g(X,φ(Y ))θβ(φ(Z))

−g(X,φ(Z))θβ(φ(Y ))
−g(φ(X), φ(Y ))θβ(φ

2(Z))
+g(φ(X), φ(Z))θβ(φ

2(Y ))
}}

G2 := {β ∈ G : β(φ(X), φ(Y ), Z) = −β(X,Y, Z), θβ = 0}

G3 := {β ∈ G : β(ξ, Y, Z) = β(X, ξ, Z) = 0, β(X,Y, Z) = −β(Y,X,Z)}

G4 := {β ∈ G : β(ξ, Y, Z) = β(X, ξ, Z) = 0, SXY Zβ(X,Y, Z) = 0}
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G5 :=

{
β ∈ G : β(X,Y, Z) =

θβ(ξ)

2n
{η(Y )g(φ(X), φ(Z))− η(Z)g(φ(X), φ(Y ))}

}

G6 :=

{
β ∈ G : β(X,Y, Z) = −

θ∗β(ξ)

2n
{η(Y )g(X,φ(Z))− η(Z)g(X,φ(Y ))}

}
G7 := {β ∈ G : β(X,Y, Z) = −η(Y )β(X,Z, ξ) + η(Z)β(X,Y, ξ)

β(X,Y, ξ) = −β(Y,X, ξ) = −β(φ(X), φ(Y ), ξ), θ∗β(ξ) = 0
}

G8 := {β ∈ G : β(X,Y, Z) = −η(Y )β(X,Z, ξ) + η(Z)β(X,Y, ξ)
β(X,Y, ξ) = β(Y,X, ξ) = −β(φ(X), φ(Y ), ξ), θβ(ξ) = 0}

G9 := {β ∈ G : β(X,Y, Z) = −η(Y )β(X,Z, ξ) + η(Z)β(X,Y, ξ)
β(X,Y, ξ) = −β(Y,X, ξ) = β(φ(X), φ(Y ), ξ)}

G10 := {β ∈ G : β(X,Y, Z) = −η(Y )β(X,Z, ξ) + η(Z)β(X,Y, ξ)
β(X,Y, ξ) = β(Y,X, ξ) = β(φ(X), φ(Y ), ξ)}

G11 := {β ∈ G : β(X,Y, Z) = η(X)β(ξ, φ(Y ), φ(Z))}

G12 := {β ∈ G : β(X,Y, Z) = η(X) {η(Y )β(ξ, ξ, Z)− η(Z)β(ξ, ξ, Y )}} .

Such a decomposition allows any β ∈ G to be written as β(X,Y, Z) = β1(X,Y, Z) + · · ·+ β12(X,Y, Z) , where
projections βi(X,Y, Z) , i = 1, · · · , 12 are as follows [10]:

β1(X,Y, Z) = 1
2(n−1) {g(X,φ(Y ))θβ1

(φ(Z))− g(X,φ(Z))θβ1
(φ(Y ))

−g(φ(X), φ(Y ))θβ1(φ
2(Z)) + g(φ(X), φ(Z))θβ1(φ

2(Y ))
}

β2(X,Y, Z) =
1

2

{
β
(
φ2(X), φ2(Y ), φ2(Z)

)
− β

(
φ(X), φ2(Y ), φ(Z)

)}
− β1(X,Y, Z)

β3(X,Y, Z) = 1
6

{
β
(
φ2(X), φ2(Y ), φ2(Z)

)
+ β

(
φ(X), φ2(Y ), φ(Z)

)
+β

(
φ2(Y ), φ2(Z), φ2(X)

)
+ β

(
φ(Y ), φ2(Z), φ(X)

)
+β

(
φ2(Z), φ2(X), φ2(Y )

)
+ β

(
φ(Z), φ2(X), φ(Y )

)}
β4(X,Y, Z) =

1

2

{
β
(
φ2(X), φ2(Y ), φ2(Z)

)
+ β

(
φ(X), φ2(Y ), φ(Z)

)}
− β3(X,Y, Z)

β5(X,Y, Z) =
θβ5(ξ)

2n
{η(Y )g(φ(X), φ(Z))− η(Z)g(φ(X), φ(Y ))}

β6(X,Y, Z) = −
θ∗β6

(ξ)

2n
{η(Y )g(X,φ(Z))− η(Z)g(X,φ(Y ))}

β7(X,Y, Z) = − 1
4η(Y )

{
β
(
φ2(X), φ2(Z), ξ

)
− β (φ(X), φ(Z), ξ)

−β
(
φ2(Z), φ2(X), ξ

)
+ β (φ(Z), φ(X), ξ)

}
+ 1

4η(Z)
{
β
(
φ2(X), φ2(Y ), ξ

)
− β (φ(X), φ(Y ), ξ)

−β
(
φ2(Y ), φ2(X), ξ

)
+ β (φ(Y ), φ(X), ξ)

}
− β6(X,Y, Z)

β8(X,Y, Z) = − 1
4η(Y )

{
β
(
φ2(X), φ2(Z), ξ

)
− β (φ(X), φ(Z), ξ)

+β
(
φ2(Z), φ2(X), ξ

)
− β (φ(Z), φ(X), ξ)

}
+ 1

4η(Z)
{
β
(
φ2(X), φ2(Y ), ξ

)
− β (φ(X), φ(Y ), ξ)

+β
(
φ2(Y ), φ2(X), ξ

)
− β (φ(Y ), φ(X), ξ)

}
− β5(X,Y, Z)
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β9(X,Y, Z) = − 1
4η(Y )

{
β
(
φ2(X), φ2(Z), ξ

)
+ β (φ(X), φ(Z), ξ)

−β
(
φ2(Z), φ2(X), ξ

)
− β (φ(Z), φ(X), ξ)

}
+ 1

4η(Z)
{
β
(
φ2(X), φ2(Y ), ξ

)
+ β (φ(X), φ(Y ), ξ)

−β
(
φ2(Y ), φ2(X), ξ

)
− β (φ(Y ), φ(X), ξ)

}
β10(X,Y, Z) = − 1

4η(Y )
{
β
(
φ2(X), φ2(Z), ξ

)
+ β (φ(X), φ(Z), ξ)

+β
(
φ2(Z), φ2(X), ξ

)
+ β (φ(Z), φ(X), ξ)

}
+ 1

4η(Z)
{
β
(
φ2(X), φ2(Y ), ξ

)
+ β (φ(X), φ(Y ), ξ)

+β
(
φ2(Y ), φ2(X), ξ

)
+ β (φ(Y ), φ(X), ξ)

}
β11(X,Y, Z) = η(X)β(ξ, φ2(Y ), φ2(Z))

β12(X,Y, Z) = η(X)
{
η(Y )β(ξ, ξ, φ2(Z)− η(Z)β(ξ, ξ, φ2(Y )

}
If a smooth manifold N has a tensor field J (almost product structure) and a pseudo-Riemannian metric

h satisfies the conditions

• J2(X) = X ,

• h(J(X), J(Y )) = −h(X,Y )

for all vector fields X,Y on N , then the manifold N is called an almost para-Hermitian manifold [6]. An
almost para-Hermitian manifold has even dimension (dimN = 2n) and the structure group of the tangent
bundle reduces to the group

G =

{(
A 0
0 (A−1)t

)
: A ∈ GL(n,R)

}
.

The fundamental 2-form F on N is defined by

F (X,Y ) = h(J(X), Y )

for all vector fields X,Y on N . The covariant derivative of F with respect to the Levi-civita connection of h

is
α(X,Y, Z) = (∇XF ) (Y, Z) = h ((∇XJ) (Y ), Z) .

The tensor α has the following properties:

α(X,Y, Z) = −α(X,Z, Y ),

α (X, J(Y ), J(Z)) = α(X,Y, Z).

The tangent space TpN at each point p ∈ N splits as TpN = V ⊕H [6], where V and H are the eigenspaces of
eigenvalues +1 and −1 of J , respectively. One can choose the basis {A1, · · · , An, U1, · · · , Un} of TpN , where
{A1, · · · , An} and {U1, · · · , Un} are bases of V and H , respectively, in which the expressions of h and J are

h =

(
0 In
In 0

)
, J =

(
In 0
0 −In

)
.

The base {A1, · · · , An, U1, · · · , Un} is called a local adapted base. The subspace W of ⊗0
3TpN is defined as

follows:
W :=

{
α ∈ ⊗3T ∗ | α(X,Y, Z) = α(X, J(Y ), J(Z)) = −α(X,Z, Y ),

}
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According to the symmetries of the W , this space splits into the direct sum W = W1⊕· · ·⊕W8 . The subspaces
Wi are invariant and irreducible under GL(n,R) . The following 8 relations are used to define subspaces. An
almost para-Hermitian manifold satisfying the following 8 relations, is called parakaehlerian. For i = 1, · · · 8 ,
the class Wi is characterized by all these relations except (i); the class Wi+Wj is the class satisfying all relations
except i and j, and so on [6]. Characteristic conditions of the different classes of almost para-Hermitian manifolds:

(i) SA,B,C (∇AF ) (B,C) = 0 for all A,B,C ∈ V .

(ii) ∇AA ∈ V for all A ∈ V .

(iii) (∇AF ) (U, V ) = θ(V )h(A,U)− θ(U)h(A, V ) for all A ∈ V , U, V ∈ H .

(iv)
n∑

i=1

(∇AiF ) (Ui, U) = 0 , where {A1, · · · , An, U1, · · · , Un} is a local adapted frame and U ∈ H .

(v) SU,V,W (∇UF ) (V,W ) = 0 for all U, V,W ∈ H .

(vi) ∇UU ∈ H for all U ∈ H .

(vii) (∇UF ) (A,B) = θ(A)h(U,B)− θ(B)h(U,A) , for all A,B ∈ V , U ∈ H .

(viii)
n∑

i=1

(∇UiF ) (Ai, A) = 0 where {A1, · · · , An, U1, · · · , Un} is a local adapted frame and A ∈ V .

Here, the Lee form θ on 2n−dimensional almost para-Hermitian manifold (M,k, J) is defined as

Θ(X) = − 1

n− 1
δF (J(X))

for any vector field X [6].

3. Almost para-Hermitian manifolds from almost paracontact manifold

In this section, first, we define an almost para-Hermitian structure on the product of an almost paracontact
manifold with R . Then, we give the relations between covariant derivatives.

Let (M,φ, ξ, η, g) be a (2n+1) -dimensional almost paracontact metric manifold and consider the product
manifold M × R . A vector field on the manifold M × R is the form

(
X, a d

dt

)
where t is the coordinate of R

and a is a smooth function on M ×R . The almost para-complex structure (or almost product structure) J on
M × R is defined by

J

(
X, a

d

dt

)
=

(
φ(X) + aξ, η(X)

d

dt

)
(3.1)

and we define a pseudo-Riemannian metric on M × R with signature (n+ 1, n+ 1) by

h

((
X, a

d

dt

)
,

(
Y, b

d

dt

))
:= g(X,Y )− ab. (3.2)
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One can easily see that

h

(
J

(
X, a

d

dt

)
, J

(
Y, b

d

dt

))
= −h

((
X, a

d

dt

)
,

(
Y, b

d

dt

))
. (3.3)

The para-Kaehler form F of the almost para-Hermitian manifold (M × R, J, h) is given by

F

((
X, a

d

dt

)
,

(
Y, b

d

dt

))
:= h

(
J

(
X, a

d

dt

)
,

(
Y, b

d

dt

))
. (3.4)

Hence, one can express the form F in terms of Φ , η as

F

((
X, a

d

dt

)
,

(
Y, b

d

dt

))
= Φ(X,Y ) + aη(Y )− bη(X). (3.5)

Let ∇ be the pseudo-Riemannian connection of (M,φ, ξ, η, g) . Levi-Civita covariant derivative of the metric h

on M × R is obtained using the Kozsul formula as

∇(X,a d
dt )

(
Y, b

d

dt

)
=

(
∇XY,

(
X[b] + a

db

dt

)
d

dt

)
. (3.6)

Note that the covariant derivative on the product manifold M × R will also be denoted with the same symbol
∇ . Also, covariant derivative of the 2-form F is calculated as

(
∇(X,a d

dt )
F
)((

Y, b
d

dt

)
,

(
Z, c

d

dt

))
= β(X,Y, Z)− c (∇Xη) (Y ) + b (∇Xη) (Z),

for any vector fields
(
X, a d

dt

)
,
(
Y, b d

dt

)
and

(
Z, c d

dt

)
on M ×R . Note that the right hand side of the expression

(
∇(X,a d

dt )
J
)(

Y, b
d

dt

)
=

(
(∇Xφ) (Y ) + b∇Xξ, (∇Xη) (Y )

d

dt

)
does not depend on the function a similar to the almost contact case studied in [9].

Differential of the fundamental 2-form F can be evaluated as

dF

((
X, a

d

dt

)
,

(
Y, b

d

dt

)
,

(
Z, c

d

dt

))
= dΦ(X,Y, Z)− 2a

3
dη(Y, Z)

+
2b

3
dη(X,Z)− 2c

3
dη(X,Y ).

Let {e1, · · · , en, φ(e1), · · · , φ(en), ξ} be a local pseudo-orthonormal φ− frame field on M . Then, one can obtain
an orthonormal frame field on M × R as follows:{

(e1, 0) , · · · , (en, 0) , (φ(e1), 0) , · · · , (φ(en), 0) , (ξ, 0) ,
(
0,

d

dt

)}
Using this frame, the coderivative of F is calculated as

δF (X, a
d

dt
) = −θ(X)− aθ∗(ξ). (3.7)
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4. Relations between almost paracontact metric manifolds and almost para-Hermitian manifolds
In this section, we examine the relations between the classes of the almost paracontact metric manifolds and
almost para-Hermitian manifolds. First, it is immediate that (M × R, J, h) is parakahlerian if and only if almost
parcontact metric manifold (M,φ, ξ, η, g) is paracosymplectic. Now, we consider the product manifold M × R
of type W1 .

Theorem 4.1 Let (M,φ, ξ, η, g) be a (2n+1)-dimensional almost paracontact metric manifold. If the product
manifold M × R is of class W1 , then the manifold M belongs to the class G3 .

Proof Let M × R be of class W1 . The following equalities are satisfied:

h

((
∇(X,a d

dt )
J
)
(X, a

d

dt
), (Y, b

d

dt
)

)
= 0, (4.1)

for all vector fields
(
X, a d

dt

)
,
(
Y, b d

dt

)
and

J (∇UA) = ∇UA, J (∇AU) = −∇AU, J (∇UV ) = −∇UV (4.2)

for all U, V ∈ H and A ∈ V . In equation (4.1), setting the functions a = b = 0 , we obtain

(∇Xφ) (X) = 0, (4.3)

(∇Xη) (X) = 0. (4.4)

The equality (4.3) implies that β(X,X,Z) for all vector fields X,Z on M . Replacing X with X + Y in the
equality (4.3) we obtain

β(X,Y, Z) = −β(Y,X,Z). (4.5)

From equations (4.4), for all vector fields X,Y on M , we get

g(∇Xξ, Y ) + g(∇Y ξ,X) = 0, (4.6)

hence ξ is Killing and ∇ξξ = 0 . For any vector field X on M , we have

(
φ(X) +X, η(X)

d

dt

)
∈ V,

(
φ(X)−X, η(X)

d

dt

)
∈ H.

It follows from the condition ∇UA ∈ V , that

∇φ(X)ξ −∇Xξ = φ
(
∇φ(X)ξ

)
− φ (∇Xξ) (4.7)

and

β (φ(X), φ(Y ), Z) + β (φ(X), Y, Z)

− β(X,Y, Z)− β (X,φ(Y ), Z) (4.8)

= η(Y )g (∇Xξ, Z)− η(Y )g
(
∇φ(X)ξ, Z

)
.
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Similarly, from equation J (∇AU) = −∇AU , we obtain

∇φ(X)ξ +∇Xξ = −φ
(
∇φ(X)ξ

)
− φ (∇Xξ) , (4.9)

−β (φ(X), φ(Y ), Z) + β (φ(X), Y, Z)

+ β(X,Y, Z)− β (X,φ(Y ), Z) (4.10)

= η(Y )g (∇Xξ, Z) + η(Y )g
(
∇φ(X)ξ, Z

)
.

Substituting X in (4.8) and (4.10) with ξ we obtain

β(ξ, Y, Z) = 0 (4.11)

and
β(Y, ξ, Z) = 0 (4.12)

is obtained from the equation (4.5). From the equations (4.5), (4.11), and (4.12), it follows that the almost
paracontact metric manifold M is of the class G3 . 2

Similarly, it can be shown that if the product manifold M ×R is of class W5 , then the manifold M also
belongs to the class G3 . Then we can say that if the M × R is of class W1 ⊕W5 , then the manifold M also
belongs to the class G3 .

The reverse of this statement is also true:

Theorem 4.2 If the almost paracontact metric manifold (M,φ, ξ, η, g) is of class G3 , the manifold M × R
belongs to the class W1 ⊕W5 .

Proof Let (M,φ, η, ξ, g) be an almost paracontact metric manifold of class G3 . Defining relations of the class
G3 are

β(X,Y, Z) = β(φ(X), φ(Y ), Z) (4.13)

and

β(X,Y, Z) =
1

3
{β(X,Y, Z) + β(Y, Z,X) + β(Z,X, Y )} . (4.14)

From equation (4.13), we obtain
β(ξ, Y, Z) = β(X, ξ, Z) = 0 (4.15)

for all vector fiels X,Y, Z on M . From equation (4.14) we obtain

β(X,Y, Z) = −β(Y,X,Z). (4.16)

Since β(X, ξ, φ(Z)) = 0 , ξ is parallel. Then for all (X, a d
dt ) vector field on M × R one can obtain

(
∇(X,a d

dt )
J
)
(X, a

d

dt
) =

(
(∇Xφ) (X) + a∇Xξ, (∇Xη) (X)

d

dt

)
(4.17)

= (0, 0). (4.18)
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Let U ∈ H , A ∈ V . Then we can take U =
(
X,−η(X) d

dt

)
and A =

(
Y, η(Y ) d

dt

)
such that φ(X) = −φ2(X)

and φ(Y ) = φ2(Y ) . Since φ(X) = −φ2(X) and φ(Y ) = φ2(Y ) , we have

β(X,Y, Z) = β(φ(X), φ(Y ), Z) = −β(φ2(X), φ2(Y ), Z) = −β(X,Y, Z).

Hence (∇Xφ) (Y ) = 0 . On employing the expression φ(Y ) = Y−η(Y )ξ when used in the equation (∇Xφ) (Y ) =

0 , one obtains
∇XY − η(∇XY )ξ = φ (∇XY ) .

Hence, we have
J (∇UA) = J

(
∇XY, η(∇XY ) d

dt

)
=

(
φ (∇XY ) + η(∇XY )ξ, η(∇XY ) d

dt

)
=

(
∇XY, η(∇XY ) d

dt

)
= ∇UA.

Similarly, it is proved that J (∇AU) = −∇AU . We know that defining relations of the class W1 ⊕W5 [6] are

(
∇(X,a d

dt )
F
)((

X, a
d

dt

)
,

(
Y, b

d

dt

))
= 0,

∇UA ∈ V, ∇AU ∈ H, for all A ∈ V, U ∈ U .

Thus, it has been shown that the almost para-Hermitian manifold M × R belongs to the class W1 ⊕W5 . 2

As a result, the manifold M is of the class G3 if and only if the product manifold M ×R belongs to the
class W1 ⊕W5 .

At this step, we examine the class W2 . First we show that if the manifold M × R is of class W2 , then
M belongs to the class G4 ⊕G10 .

Theorem 4.3 Let (M,φ, ξ, η, g) be a (2n+1)-dimensional almost paracontact metric manifold. If the M ×R
is of class W2 , then the manifold M belongs to the class G4 ⊕G10 .

Proof Let M × R be of class W2 . Then the following equalities are satisfied:

dF = 0, (4.19)

∇UA ∈ V, ∇AU ∈ H, ∇UV ∈ H. (4.20)

Since
0 = dF

((
X, a d

dt

)
,
(
Y, b d

dt

)
,
(
Z, c d

dt

))
= dΦ(X,Y, Z)− 2c

3 dη(X,Y )− 2a
3 dη(Y, Z) + 2b

3 dη(X,Z)

for all vector fields
(
X, a d

dt

)
,
(
Y, b d

dt

)
,
(
Z, c d

dt

)
, setting a = b = c = 0 , one can obtain

dΦ(X,Y, Z) = 0. (4.21)

If we take a = b = 0 and c = 1 ,
dη(X,Y ) = 0 (4.22)
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is obtained. In addition, one can obtain

g(∇Xξ, Y ) = g(∇Y ξ,X), ∇ξξ = 0

for all vector fields X,Y on M from equation (4.22). Since ∇UA ∈ V , we have (4.7), (4.8). In equation (4.8),
if X = ξ is taken,

β(ξ, Y, Z) = −β (ξ, φ(Y ), Z) (4.23)

is obtained. Since ∇AU ∈ H is satisfied in the class W2 , we have equations (4.9) and (4.10). Setting X = ξ in
(4.10),

β(ξ, Y, Z)− β(ξ, φ(Y ), Z) = 0 (4.24)

is obtained. Hence, from (4.23) and (4.24) we get

β(ξ, Y, Z) = 0. (4.25)

Moreover, from the equation

0 = dΦ(ξ, Y, Z) = β(ξ, Y, Z) + β(Y, Z, ξ) + β(Z, ξ, Y ),

one obtains the equation
β(Y, Z, ξ) = β(Z, Y, ξ).

In (4.8) and (4.10), setting Y = φ(Y ) we gives

β (φ(X), φ(Y ), Z) = β
(
X,φ2(Y ), Z

)
, (4.26)

β
(
φ(X), φ2(Y ), Z

)
= β (X,φ(Y ), Z) . (4.27)

From equations (4.26) and (4.27),

β
(
φ2(X), φ2(Y ), φ2(Z)

)
= β

(
φ(X), φ(Y ), φ2(Z)

)
= −β

(
φ(X), φ2(Z), φ(Y )

)
= −β

(
φ2(X), φ(Z), φ(Y )

)
(4.28)

= β
(
φ2(X), φ(Y ), φ(Z)

)
= β

(
φ(X), φ2(Y ), φ(Z)

)
is obtained. We then have β2(X,Y, Z) = −β1(X,Y, Z) and β1(X,Y, Z) = β2(X,Y, Z) = 0 . From equation
(4.28), we get β3(X,Y, Z) = 0 . In (4.26), setting X = φ(X) , Y = φ(Y ) and Z = ξ , β7(X,Y, Z) = −β6(X,Y, Z)

is obtained. Hence, we get β7(X,Y, Z) = β6(X,Y, Z) = 0 . Similarly β8(X,Y, Z) = −β5(X,Y, Z) and
β8(X,Y, Z) = β5(X,Y, Z) = 0 is obtained. For all vector fields X,Y , since

β(X,Y, ξ) = β(Y,X, ξ),

we get β(φ2(X), φ2(Y ), ξ) = β(φ2(Y ), φ2(X), ξ) , from which follows β9(X,Y, Z) = 0 . For all vector fields
X,Y , having β(ξ, Y, Z) = 0 , one obtains β11(X,Y, Z) = β12(X,Y, Z) = 0 . We thus arrive at

β(X,Y, Z) = β4(X,Y, Z) + β10(X,Y, Z)
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Hence, the almost paracontact metric manifold M is in the class of G4 ⊕G10 . 2

It may similarly be shown that if the product manifold M × R is of class W6 , the manifold M also
belongs to the class G4 ⊕G10 . We can then say that if the M × R is of class W2 ⊕W6 , then the manifold M

also belongs to the class G4 ⊕G10 .
At this step, we investigate the reverse of this theorem. First, we consider a manifold of the class G4 .

Theorem 4.4 If the almost paracontact metric manifold (M,φ, ξ, η, g) is of the class G4 , the manifold M ×R
belongs to the class W2 ⊕W6 .

Proof Let (M,φ, η, ξ, g) be an almost paracontact metric manifold of class G4 . We know that the defining
relations of the class G4 are

β(X,Y, Z) + β(Y, Z,X) + β(Z,X, Y ) = 0 (4.29)

and
β(ξ, Y, Z) = β(X, ξ, Z) = 0. (4.30)

From equation (4.30), we obtain ξ is parallel, which together with equation (4.29) being satisfying, implies that

dF = 0.

Let U ∈ H and A ∈ V . Then, we take U =
(
X,−η(X) d

dt

)
and A =

(
Y, η(Y ) d

dt

)
such that φ2(X) = −φ(X) ,

φ2(Y ) = φ(Y ) . In the class G4 , since β(φ(X), φ(Y ), Z) = β(X,Y, Z) is satisfied, it follows that

β(X,Y, Z) = β(φ(X), φ(Y ), Z)) = −β(φ2(X), φ2(Y ), Z)) = −β(X,Y, Z).

Hence, (∇Xφ) (Y ) = 0 when φ2(X) = −φ(X) and φ2(Y ) = φ(Y ) . Since

0 = (∇Xφ) (Y ) = ∇Xφ(Y )− φ (∇XY )
= ∇Xφ2(Y )− φ (∇XY )
= ∇XY −X[η(Y )]ξ − φ (∇XY )
= ∇XY − η (∇XY ) ξ − φ (∇XY ) ,

one can obtain
J (∇UA) = J

(
∇XY, η (∇XY ) d

dt

)
=

(
φ (∇XY ) + η (∇XY ) ξ, η (∇XY ) d

dt

)
=

(
∇XY, η (∇XY ) d

dt

)
= ∇UA.

Similarly, it can be shown that ∇AU ∈ H where A ∈ V , U ∈ H . Hence, we get the manifold M × R in the
class W2 ⊕W6 . 2

Using similar methods, it is proven that the product manifold M × R is of the class W2 ⊕ W6 if the
almost paracontact metric manifold M is of the class G10 . Hence we get the following theorem:

Theorem 4.5 The manifold M × R is of class W2 ⊕W6 if and only if M belongs to class G4 ⊕G10 .

Now the para-Hermitian semi-parakahlerian classes W3 and W7 will be analyzed.
First we prove that if the manifold M × R is of class W3 , then M belongs to the class G2 ⊕G7 ⊕G8 .

In addition, it can similarly be proved that if the manifold M × R is of class W7 , then M also belongs to the
class G2 ⊕G7 ⊕G8 .
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Theorem 4.6 Let (M,φ, ξ, η, g) be a (2n+1)-dimensional almost paracontact metric manifold. If the M ×R
is of class W3 , then the manifold M belongs to the class G2 ⊕G7 ⊕G8 .

Proof Since the product manifold M × R is of the class W3 , for all vector fields
(
X, a d

dt

)
,

0 = δF

(
X, a

d

dt

)
= −θβ(X)− aθ∗β(ξ).

Setting a = 0 , one obtains
θβ(X) = 0

and setting X = 0 and a = 1 , θ∗(ξ) = 0 is obtained. In the class W3 , since ∇AB ∈ V , where A,B ∈ V , we
get

∇φ(X)ξ +∇Xξ = φ
(
∇φ(X)

)
+ φ (∇Xξ) (4.31)

and

β(φ(X), φ(Y ), Z) + β(X,φ(Y ), Z) + β(φ(X), Y, Z) + β(X,Y, Z)

= −η(Y )g
(
∇φ(X)ξ, Z

)
− η(Y )g (∇Xξ, Z) . (4.32)

Since ∇UV ∈ H , where U, V ∈ H , we have equations

∇φ(X)ξ −∇Xξ = −φ
(
∇φ(X)ξ

)
+ φ (∇Xξ) , (4.33)

−β (φ(X), φ(Y ), Z) + β (φ(X), Y, Z)

− β(X,Y, Z) + β (X,φ(Y ), Z) (4.34)

= −η(Y )g (∇Xξ, Z) + η(Y )g
(
∇φ(X)ξ, Z

)
.

From equations (4.32) and (4.34) , one can obtain

β(φ(X), Y, Z) + β(X,φ(Y ), Z) = −η(Y )g (∇Xξ, Z) (4.35)

and
β(φ(X), φ(Y ), Z) + β(X,Y, Z) = −η(Y )g

(
∇φ(X)ξ, Z

)
. (4.36)

In equation (4.36), taking X = ξ ,
β(ξ, Y, Z) = 0 (4.37)

is obtained. In equation (4.36), setting Z = ξ we obtain

β(φ(X), φ(Y ), ξ) = −β(X,Y, ξ). (4.38)

Equation (4.37) implies that β11(X,Y, Z) = β12(X,Y, Z) = 0 . The identity β9(X,Y, Z) = β10(X,Y, Z) = 0

follows from equation (4.38). Setting X = φ(X) and Y = φ(Y ) in equation (4.36) results in

β(φ2(X), φ2(Y ), Z) = −β(φ(X), φ(Y ), Z).
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Consequently, we get
β
(
φ2(X), φ2(Y ), φ2(Z)

)
+ β

(
φ(X), φ2(Y ), φ(Z)

)
= 0,

which yields β3(X,Y, Z) = β4(X,Y, Z) = 0 . Since δΦ = 0 , θβ1(X) = θβ5(X) = 0 and

β1(X,Y, Z) = β5(X,Y, Z) = 0

is obtained. Moreover, since θ∗β(ξ) = 0 , θ∗β6
(ξ) = 0 and β6(X,Y, Z) = 0 are obtained. Thus the manifold M is

of the class G2 ⊕G7 ⊕G8 . 2

At this step, we consider the almost paracontact metric manifold M of the class G2 .

Theorem 4.7 If the almost paracontact metric manifold (M,φ, ξ, η, g) is of the class G2 , the manifold M ×R
belongs to the class W3 ⊕W7 .

Proof Let the manifold M be of class G2 . From the defining relation of this class, since

β(X, ξ, φ(Y )) = 0,

for any vector field X,Y , we get ∇Xξ = 0 . Let {e1, e2, · · · , en, φ(e1), · · · , φ(en), ξ} be a frame field on M . In
this class, since

0 = β(ei, ξ, φ(ei)) = −β(ei, φ(ei), ξ)) = β(φ(ei), ei, ξ),

we have θ∗(ξ) = 0 . In addition, we know that θ(X) = 0 in the class G2 for all X . Hence we get

δF

(
X, a

d

dt

)
= −θβ(X)− θ∗β(ξ) = 0− a.0 = 0

for any vector field
(
X, a d

dt

)
.

Let A,B ∈ V . We can take A =
(
X, η(X) d

dt

)
and B =

(
Y, η(Y ) d

dt

)
such that φ(X) = φ2(X) ,φ(Y ) =

φ2(Y ) . Then
β(X,Y, Z) = −β(φ(X), φ(Y ), Z) = −β(φ2(X), φ2(Y ), Z) = −β(X,Y, Z)

and we have (∇Xφ) (Y ) = 0 since φ(X) = φ2(X) ,φ(Y ) = φ2(Y ) . Moreover

0 = (∇Xφ) (Y ) = ∇Xφ(Y )− φ (∇XY )
= ∇Xφ2(Y )− φ (∇XY )
= ∇XY − η (∇XY ) ξ − φ (∇XY )

can be obtained. Then we have

∇AB =
(
∇XY, η (∇XY ) d

dt

)
=

(
η (∇XY ) ξ + φ (∇XY ) , η (∇XY ) d

dt

)
= J (∇AB) ,

that is ∇AB ∈ V .
Let U, V ∈ H . We take U =

(
X,−η(X) d

dt

)
, V =

(
Y,−η(Y ) d

dt

)
, such that φ(X) = −φ2(X), φ(Y ) =

−φ2(Y ) . Then

β(X,Y, Z) = −β(φ(X), φ(Y ), Z) = −β(φ2(X), φ2(Y ), Z) = −β(X,Y, Z)
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and we have (∇Xφ) (Y ) = 0 since φ(X) = −φ2(X) , φ(Y ) = −φ2(Y ) . Moreover

0 = (∇Xφ) (Y ) = ∇Xφ(Y )− φ (∇XY )
= −∇Xφ2(Y )− φ (∇XY )
= −∇XY + η (∇XY ) ξ − φ (∇XY )

can be obtained. Thus we have

∇UV =
(
∇XY,−η (∇XY ) d

dt

)
=

(
η (∇XY ) ξ − φ (∇XY ) , η (∇XY ) d

dt

)
= −J (∇UV ) ,

that is ∇UV ∈ H . As a result, we get that if the manifold M is of the class G2 , then the product manifold
M × R is of the class W3 ⊕W7 . 2

Similarly, if the manifold M is of class G7 (or G8 ), it can be shown that the product manifold M × R
is of class W3 ⊕W7 . Hence we get the following theorem:

Theorem 4.8 The manifold M × R is of class W3 ⊕W7 if and only if M belongs to class G2 ⊕G7 ⊕G8 .

Finally, we study the primitive classes W4 and W8 .

Theorem 4.9 If the manifold M ×R is from class W4 , which is one of the primitive classes, the manifold M

is from the G5 ⊕G6 class.

Proof Let the product manifold (M × R, h, J) be of class W4 . Then the following equality satisfied [6]:

1

2n

{
δF

(
Y, b

d

dt

)
h

((
X, a

d

dt

)
,

(
Z, c

d

dt

))
−δF

(
Z, c

d

dt

)
h

((
X, a

d

dt

)
,

(
Y, b

d

dt

))
(4.39)

+δF

(
J

(
Y, b

d

dt

))
h

((
X, a

d

dt

)
, J

(
Z, c

d

dt

))
−δF

(
J

(
Z, c

d

dt

))
h

((
X, a

d

dt

)
, J

(
Y, b

d

dt

))}
=

(
∇(X,a d

dt )
F
)((

Y, b
d

dt

)
,

(
Z, c

d

dt

))

for all vector fields
(
X, a d

dt

)
,
(
Y, b d

dt

)
,
(
Z, c d

dt

)
and

∇AB ∈ V, ∇UA ∈ V, ∇UV ∈ H
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for all vector field A,B ∈ V , U, V ∈ H . Equation (4.39) can be written as

β(X,Y, Z) + b (∇Xη) (Z)− c (∇Xη) (Y )

=
1

2n
{−θβ(Y )g(X,Z) + θβ(Z)g(X,Y ) (4.40)

−θβ(φ(Y ))g(X,φ(Z)) + θβ(φ(Z))g(X,φ(Y ))

−η(Y )θ∗β(ξ)g(X,φ(Z)) + η(Z)θ∗β(ξ)g(X,φ(Y ))
}

+
1

2n
ac {θβ(Y )− η(Y )θβ(ξ)} −

1

2n
ab {θβ(Z)− η(Z)θβ(ξ)}

+
1

2n
b
{
θ∗β(ξ)g(φ(X), φ(Z))− θβ(ξ)g(X,φ(Z))

}
− 1

2n
c
{
θ∗β(ξ)g(φ(X), φ(Y ))− θβ(ξ)g(X,φ(Y ))

}
+

1

2n
{bη(X)θβ (φ(Z))− cη(X)θβ (φ(Y ))}

+
1

2n
a {−η(Y )θβ (φ(Z)) + η(Z)θβ (φ(Y ))}

In equation (4.39), taking X = 0 , Y = 0 , a = b = 1 and c = 0 gives

δΦ(Z) = η(Z)δΦ(ξ).

In the last equation, setting Z = φ(Z) we get δΦ(φ(Z)) = 0 . In equation (4.39), setting a = b = c = 0 , we get

β(X,Y, Z) =
1

2n
{θ(Z)g(X,Y )− θ(Y )g(X,Z) (4.41)

−η(Y )θ∗(ξ)g(X,φ(Z)) + η(Z)θ∗(ξ)g(X,φ(Y ))} .

From the last equation (4.41), we get β(ξ, ξ, φ2(Z)) = 0 and β(X,φ(Y ), φ(Z)) = 0 . Hence

β11(X,Y, Z) = β12(X,Y, Z) = 0.

Since β(X,φ(Y ), φ(Z)) = 0 , we get β1(X,Y, Z) = 0− β2(X,Y, Z) and β3(X,Y, Z) = 0− β4(X,Y, Z) , then

β1(X,Y, Z) = β2(X,Y, Z) = β3(X,Y, Z) = β4(X,Y, Z) = 0

From equation (4.41), one can obtain

β(φ(X), φ(Y ), ξ) = −β(X,Y, ξ). (4.42)

then we get β9(X,Y, Z) = β10(X,Y, Z) = 0 . From the defining relation of the class G7 , we have θ∗β7
(ξ) = 0 .

In addition, since equation (4.42) is satisfied, we get θ∗β8
(ξ) = 0 , also one can obtain easily θ∗β5

(ξ) = 0 . Then
θ∗(ξ) = θβ6

(ξ) = 0 . When similar calculations are carried out, θ(ξ) = θβ5
(ξ) = 0 is obtained.

Since ∇UA ∈ V, ∇UV ∈ H, ∇AB ∈ V , equations (4.8), (4.34), and (4.32) are satisfied. Then from
these equations we have

β(φ(X), φ(Y ), ξ) = −β(φ(X), Y, ξ) = β(X,φ(Y ), ξ) = −β(X,Y, ξ).
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From these equations we have θ(ξ) = −θ∗(ξ) . However, we obtained no further contribution from the equations
above to eliminate either the class G5 or G6 . When all the obtained results are used, we arrive at

β(X,Y, Z) =
θ(ξ)

2n
{−η(Y )g(X,Z) + η(Z)g(X,Y )} (4.43)

+
θ∗(ξ)

2n
{−η(Y )g(X,φ(Z)) + η(Z)g(X,φ(Y ))} ,

and as a result, we have that the almost paracontact metric manifold M is of the class G5 ⊕G6 . 2

In a similar manner, it can be proved that if the manifold M × R is from class W8 , which is another
primitive class, the manifold M is from the G5 ⊕G6 class too. We can express the following theorem:

Theorem 4.10 If the manifold M × R is from class W4 ⊕ W8 , then the manifold M is from the G5 ⊕ G6

class.

In addition, we can get the inverse of this theorem:

Theorem 4.11 If the manifold M belongs to the class G5 , then M × R is from class W4 ⊕W8 .

Proof Let the almost paracontact metric manifold (M,φ, ξ, η, g) be of class G5 . Then β(X,Y, Z) =

θ(ξ)
2n {η(Y )g (φ(X), φ(Z))− η(Z)g (φ(X), φ(Y ))} . Since

β(ei, φ(ei), X) = β(φ(ei), ei, X) = 0

we obtain θ∗(X) = 0 . In addition, in the class G5 we have θ(X) = η(X)θ(ξ) . Then we get θ(φ(X)) = 0 . The
right hand side of equation (4.40) reduces as

1

2n
θ(ξ) {−η(Y )g(X,Z) + η(Z)g(X,Y )} (4.44)

− b

2n
θ(ξ)g(X,φ(Z)) +

c

2n
θ(ξ)g(X,φ(Y ))

On the other hand, since equation

(∇Xη) (y) = β(X, ξ, φ(Y )) = β5(X, ξ, φ(Y )) =
θ(ξ)

2n
g(φ(X), y)

is satisfied, equation (4.40) is obtained.

Let A,B ∈ V . Then we can take A =
(
X, η(X) d

dt

)
, B =

(
Y, η(Y ) d

dt

)
such that φ2(X) = φ(X ),

φ2(Y ) = φ(Y ) . We note that ∇ξξ = 0 in the class G5 . Moreover, since φ2(X) = φ(X ), φ2(Y ) = φ(Y ) , we
have g (∇Xξ, Y ) = 0 . Then we have

∇AB =

(
∇XY, η (∇XY )

d

dt

)
and

J (∇AB) =

(
φ (∇XY ) + η (∇XY ) ξ, η (∇XY ) .

d

dt

)
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In the class G5 we have

(∇Xφ) (Y ) =
θ(ξ)

2n

{
−η(Y )φ2(X)− g (φ(X), φ(Y )) ξ

}
. (4.45)

Since φ2(X) = φ(X) and φ2(Y ) = φ(Y ) , left hand side of equation (4.45) is

(∇Xφ) (Y ) = ∇Xφ(Y )− φ (∇XY )
= ∇Xφ2(Y )− φ (∇XY )
= ∇XY −X [η(Y )] ξ − η(Y )∇Xξ − φ (∇XY ) ,

and right-hand side of equation (4.45) is

−θβ5(ξ)

2n

{
η(Y )φ2(X) + g (φ(X), φ(Y )) ξ

}
= −η(Y )∇Xξ.

Then, we get
∇XY − η (∇XY ) ξ = φ (∇XY ) .

Hence we obtain that
J (∇AB) =

(
φ (∇XY ) +X[η(Y )]ξ, η (∇XY ) d

dt )
)

=
(
∇XY, η (∇XY ) d

dt

)
= ∇AB.

Let U, V ∈ H . Then we can take U =
(
X,−η(X) d

dt

)
, V =

(
Y,−η(Y ) d

dt

)
such that φ2(X) = −φ(X) ,

φ2(Y ) = −φ(Y ) . Since φ2(X) = −φ(X) , φ2(Y ) = −φ(Y ) , we have β(X, ξ, φ(Y )) = 0 and hence we get
g (∇Xξ, Y ) = 0 and X [η(Y )] = η (∇XY ) . In addition, we have

∇UV =

(
∇XY,−η (∇XY )

d

dt

)

and

J (∇UV ) =

(
φ (∇XY )− η (∇XY ) ξ, η (∇XY )

d

dt

)
.

In the class G5 , we have equation (4.45) and since φ2(X) = −φ(X) and φ2(Y ) = −φ(Y ) , left hand side of
equation (4.45) is

(∇Xφ) (Y ) = ∇Xφ(Y )− φ (∇XY )
= −∇Xφ2(Y )− φ (∇XY )
= −∇XY +X [η(Y )] ξ + η(Y )∇Xξ − φ (∇XY ) ,

and right-hand side of equation (4.45) is

−θβ5
(ξ)

2n

{
η(Y )φ2(X) + g (φ(X), φ(Y )) ξ

}
= η(Y )∇Xξ.

It follows that
−∇XY + η (∇XY ) ξ = φ (∇XY ) .
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Hence, we obtain that
J (∇UV ) =

(
φ (∇XY )−X[η(Y )]ξ, η (∇XY ) d

dt )
)

=
(
−∇XY, η (∇XY ) d

dt

)
= −∇UV.

Since all conditions are satisfied, the product manifold M × R is of the class W4 ⊕W8 . 2

Similarly, it can be shown that if the almost paracontact metric manifold is of the class G6 , then the
manifold M × R is of the class W4 ⊕W8 . Thus, we can express the following theorem:

Theorem 4.12 The almost contact metric manifold M is of the class G5 ⊕G6 iff the almost para-Hermitian
manifold M × R is of the class W4 ⊕W8 .

Finally, we give some examples:
Let G be the 7−dimensional Lie group whose Lie algebra g with basis {E0, E1, · · · , E6} of left invariant

fields and non-zero brackets of this Lie algebra are:

[E0, E1] = E4, [E0, E2] = E5, [E0, E3] = E6,

[E0, E4] = E1, [E0, E5] = E2, [E0, E6] = E3.

We define a left-invariant almost paracontact metric structure on G as:

φ(E1) = E4, φ(E2) = E5, φ(E3) = E6,

φ(E4) = E1, φ(E5) = E2, φ(E6) = E3, φ(E0) = 0,

ξ = E0, η(E0) = 1

g(E0, E0) = g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

g(E4, E4) = g(E5, E5) = g(E6, E6) = −1, g(Ei, Ej) = 0, i ̸= j.

One can easily check that (L,φ, ξ, η, g) is a 7-dimensional almost paracontact metric manifold with parallel
structure, i.e. ∇φ = 0 . If the product of M with R is taken, we obtain the para-Hermitian structure on
M × R . This example can also be generalized to higher dimensions.

Consider the following vector fields on R3

E1 =
∂

∂x
, E2 = x

∂

∂y
+

∂

∂z
, E3 =

∂

∂y

and pseudo-Riemannian metric

g = dx⊗ dx+ dy ⊗ dy + (x2 − 1)dz ⊗ dz − x (dy ⊗ dz + dz ⊗ dy) .

Lie brackets of vector fields are

[E1, E2] = E3, [E1, E3] = 0, [E2, E3] = 0.

From Koszul’s formula, we have

∇E1
E1 = 0, ∇E1

E2 =
1

2
E3, ∇E1

E3 =
1

2
E2,
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∇E2
E1 = −1

2
E3, ∇E2

E2 = 0, ∇E2
E3 =

1

2
E1,

∇E3
E1 =

1

2
E2, ∇E3

E2 =
1

2
E1, ∇E3

E3 = 0.

If we take ξ = E3 , φ(E1) = E2 , φ(E2) = E1 , we have almost paracontact metric structure of the class G5 .
Then we obtain an almost para-Hermitian structure of the class W4 ⊕W8 on R4 = R3 × R by using Theorem
4.11.

Hyperboloids H2n+1
n+1 (1) and the hyperbolic Heisenberg group H2n+1 are paraSasakian manifolds [7].

Then we can obtain almost para-Hermitian manifolds H2n+1
n+1 (1) × R and H2n+1 × R which are of the class

W4 ⊕W8 from the Theorem 4.11.
A manifold from the class G6 is called α−paraKenmotsu manifold. Then if a paraKenmotsu manifold

product with R , the almost para-Hermitian manifold M × R is of the class W4 ⊕W8 from the Theorem 4.11.
Examples of α−paraKenmotsu manifolds can be found in [10, 11].

We know that dimG3 = (n−2)(n−1)n
3 [10]. Then an almost paracontact metric manifold of class G3 will

have a dimension of at least 7 . We could not find an example of class G3 in the literature. We have investigated
at least 7 dimensional Lie algebras. However, we have not achieved results so far. Our calculations on this
subject continue.
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