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Abstract: Ever since Lotfi A. Zadeh published the paper ”Fuzzy Sets” in 1965 setting the basis of a new theory named
fuzzy sets theory, many scientists have developed this theory and its applications. Mathematicians were especially
interested in extending classical mathematical results in the fuzzy context. Such an extension was also done relating
fuzzy sets theory and geometric theory of analytic functions. The study begun in 2011 has many interesting published
outcomes and the present paper follows the line of the previous research in the field. The aim of the paper is to give some
references related to the connections already made between fuzzy sets theory and geometric theory of analytic functions
and to present some new results that might prove interesting for mathematicians willing to enlarge their views on certain
aspects of the merge between the two theories. Using the notions of fuzzy differential subordination and the classical
notion of differential subordination for analytic functions, two criteria for the univalence of the analytic functions are
stated in this work.

Key words: Analytic function, univalent function, fuzzy function, fuzzy differential subordination, dominant, best
dominant, differential subordination

1. Introduction and preliminaries

The starting point for fuzzy sets theory is the paper published by Lotfi A. Zadeh in 1965 [34]. At first, it was
received with skepticism but has reached now over 100,000 citations. As many researchers have tried to link
this theory with different domains of mathematics, the connection between fuzzy sets theory and the branch of
complex analysis that studies analytic functions in view of their geometric properties was established in 2011
[23].

The concept of differential subordination was introduced in two papers in 1978 [16] and 1981 [17],
developed by many authors continuing the study and synthesized by S.S. Miller and P.T. Mocanu in [18].
The concept of fuzzy subordination was introduced by G.I. Oros and Gh. Oros in 2011 [23] and the notion
of fuzzy differential subordination was introduced by the same authors in 2012 [24]. Both papers were well
received among the researchers interested in the topic of differential subordinations and are cited over 20 times
each.

In the paper published in 2017 [10], a nice review is done showing the history of the notion of fuzzy set and
its connections to different branches of science and technique, citing the results obtained up to that point related
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to fuzzy differential subordination concept. The first results published consolidated the direction of the study
adapting the classical theory of differential subordination to the new aspects of fuzzy differential subordination
giving methods for finding dominants and best dominants of the fuzzy differential subordinations [25] without
which the study could not continue. Then, the special case of Briot-Bouquet fuzzy differential subordinations
was studied [26]. The idea was picked up by other researchers which have started to investigate the new outcomes
being published on fuzzy differential subordinations [14]. In the next phase, fuzzy differential subordinations
were associated with different operators [1], [3] giving a new direction to the study. The investigations using
operators were continued in many papers [2, 28, 29], the study being prolific and of interest as it can be seen
from the numerous papers published in 2020 [8, 11, 12, 30].

An interesting turn was marked by the introduction of the dual notion of fuzzy differential superordination
in 2017 [9] following the general theory of differential superordination introduced by Miller and Mocanu in 2003
[19]. The idea was soon continued and the special case of first order fuzzy differential superordination was
studied [7].

Applications of both concepts of fuzzy differential subordinations and fuzzy differential superordinations
started to be investigated regarding their connection [15] and the study is pushed forward by the blend of
the notion of fuzzy differential subordination with special functions like fractional integral associated with
generalized Mittag-Leffler function [31], fractional derivative [32], and λ -pseudo starlike and λ -pseudo convex
functions [33].

The study of fuzzy subordinations and superordinations continue to develop as it can be seen in very
recent publications. New fuzzy differential subordinations were obtained using an integral operator for which
classical differential subordination results had been previously introduced [20] and also using a newly introduced
hypergeometric integral operator [21]. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel
distribution were obtained [27] and Atangana–Baleanu fractional integral was also considered for obtaining fuzzy
differential subordinations [4]. Fuzzy differential subordinations and superordinations emerged as applications
of the fractional calculus [5] and the two concepts were used together for obtaining fuzzy differential sandwich
theorems involving the fractional integral of confluent hypergeometric function [6].

Fuzzy differential subordination concept is introduced without the use of concepts from Fuzzy Set Theory,
such as fuzzy arithmetic, fuzzy analysis, fuzzy numbers, Zadeh’s extension principle, stacking theorem since it
is well-known that the approach on complex numbers is completely different from that on real numbers. The
notion of subordination was introduced in the theory of complex valued functions in order to extend the idea of
inequality which can be applied for real numbers but not for complex numbers. A short history of the emergence
of the concept can be found in [22]. The introduction of the concept of fuzzy differential subordination is the
first attempt to embed the fuzzy set notion into the study related to geometric theory of analytic functions.

It is now obvious that the link between the two distinct domains, fuzzy sets theory and geometric theory
of analytic functions, is durable and generates studies which reach original and interesting results.

The investigation of the present paper uses means of the classical theory of differential subordination and
notions already adapted to fuzzy differential subordination.

The main classes of univalent functions used in this paper are first presented.
The unit disc of the complex plane is denoted by U and defined as

U = {z ∈ C : |z| < 1}.
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H(U) is the class of analytic functions in the unit disc. For n a positive integer and a a complex number,
the class H[a, n] is defined as consisting of all functions from class H(U) who have the serial development

f(z) = a+ anz
n + an+1z

n+1 + . . . ,

with H0 = H[0, 1] . The classical definition of class An is considered,

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + . . .},

with z ∈ U and A1 written simply as A . All the functions in class A which are univalent in U form the

class denoted by S . In particular, the functions in class A that have the property that Re zf ′(z)
f(z) > 0 are called

starlike functions and their class is denoted by S∗ . The special class of starlike functions of order α is defined
as

S∗(α) =

{
f ∈ A : Re

zf ′(z)

f(z)
> α

}
, α < 1.

The functions from class A which have the property that

Re
zf ′′(z)

f ′(z)
+ 1 > 0

represent the class of convex functions denoted by K .
The class of Carathéodory functions is defined as

P = {p ∈ H (U) : p (0) = 1, Re p (z) > 0, z ∈ U} .

Some definitions and lemmas from the theory of differential subordination are needed for the study to be
conducted.

Definition 1.1 [18, pp. 4] A function L(z, t) , z ∈ U , t ≥ 0 , is a subordination chain if L(·, t) is analytic and
univalent in U , for all t ≥ 0 , and

L(z, t1) ≺ L(z, t2), when 0 ≤ t1 ≤ t2.

Definition 1.2 [18, Definition 2.2.d] We denote by Q the set of functions q that are analytic and injective on
U \ E(q) , where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) = ∞

}
and are such that q′(ζ) ̸= 0 , for ζ ∈ ∂U \ E(q) .

The set E(q) is called exception set.

Lemma A. [18, Lemma 2.2.d] Let q ∈ Q , with q(0) = a and let

p(z) = a+ anz
n + an+1z

n+1 + . . .

be analytic in U , with p(z) ̸= a and n ≥ 1 . If p is not subordinate to q , then there exist points z0 = r0e
iθ0 ∈ U

and ζ0 ∈ ∂U \ E(q) and an m ≥ n ≥ 1 for which p(Ur0) ⊂ q(U) such that
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(i) p(z0) = q(ζ0) ;
(ii) z0p′(z0) = mζ0q

′(ζ0) and

(iii) Re z0p
′′(z0)

p′(z0)
+ 1 ≥ m

[
ζ0q

′′(ζ0)
q′(ζ0)

+ 1
]

.

Lemma B. [18, p. 4] The function
L(z, t) = a1(t)z + a2(t)z

2 + . . .

with a1(t) ̸= 0 , for t ≥ 0 , and lim
t→∞

|a1(t)| = ∞ , is a subordination chain if and only if there exist constants

t ∈ (0, 1] and M > 0 such that:
(j) L(z, t) is analytic in |z| < r for each t ≥ 0 , locally absolutely continuous in t ≥ 0 for each |z| < r ,

and satisfies
|L(z, t)| ≤M |a1(t)|, for |z| < r and t ≥ 0.

(jj) there exists a function p(z, t) analytic in U for all t ∈ [0,∞) and measurable in [0,∞) for each
z ∈ U , such that Re p(z, t) > 0 for z ∈ U , t ∈ [0,∞) and

∂L(z, t)

∂t
= z · ∂L(z, t)

∂z
p(z, t),

for |z| < r and for almost all t ∈ [0,∞) .
Note that the univalency of the function L(z, t) can be extended from |z| < r to all of U .

Definition 1.3 [18, p. 4] Let f and F be analytic in U . The function f is said to be subordinate to F ,
written f ≺ F or f(z) ≺ F (z) , if there exists a function w analytic in U , with w(0) = 0 and |w(z)| < 1 , and
such that f(z) = F (w(z)) . If F is univalent, then f ≺ F if and only if f(0) = F (0) and f(U) ⊂ F (U) .

In order to use the concept of fuzzy differential subordination, we remember the following definitions.

Definition 1.4 [13] Let X be a nonempty set. An application F : X → [0, 1] is called fuzzy subset.

An alternate definition, more precise, would be the following:
A Pair (A,FA) , where FA : X → [0, 1] and

A = {x ∈ X : 0 < FA (x) ≤ 1}

is called fuzzy subset of X .
The set A is called the support of the fuzzy set (A,FA) and FA is called membership function of the

fuzzy set (A,FA) .
One can also denote A =supp(A,FA) .

Definition 1.5 [13] Let (M,FM ) and (N,FN ) be two fuzzy subsets of X . For the fuzzy subsets M and N ,
we say that M = N if and only if FM (x) = FN (x) , x ∈ X and we denote by (M,FM ) = (N,FN ) . The fuzzy
subset (M,FM ) is contained in the fuzzy subset (N,FN ) if and only if FM (x) ≤ FN (x) , x ∈ X and we denote
the inclusion relation by (M,FM ) ⊆ (N,FN ) .
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In [23], the following definition was introduced for the notion of fuzzy differential subordination as a
generalization of the classical notion of differential subordination:

Let D ⊂ C and f, g ∈ H (D) be holomorphic functions. We denote by

f (D) =
{
f (z) |0 < Ff(D)f (z) ≤ 1, z ∈ D

}
= supp

(
f (D) , Ff(D)

)
and

g (D) =
{
g (z) |0 < Fg(D)g (z) ≤ 1, z ∈ D

}
= supp

(
g (D) , Fg(D)

)
.

Definition 1.6 [23] Let D ⊂ C and let z0 ∈ D be a fixed point. We take the functions f, g ∈ H(D) . The
function f is said to be fuzzy subordinate to g and we write f ≺F g or f(z) ≺F g(z) , if there exists a function
F : C → [0, 1] , such that

(t) f(z0) = g(z0) ;
(tt) Ff(D)f(z) ≤ Fg(D)g(z) , z ∈ D .

Remark 1.7 a) For making it easy to write, we shall use the following form:
(tt) F (f (z)) ≤ F (g (z)) for all z ∈ D.

b) If g is univalent, then f ≺F g if and only if f(z0) = g(z0) and f(D) ⊂ g(D) .
c) Such a function F : C → [0, 1] can be considered

F (z) =
|z|

1 + |z|
, F (z) =

1

1 + |z|
.

d) If D = U then inequalities (t) and (tt) become:
(t’) f (0) = g (0)

(tt’) f (U) ⊂ g (U) ,

which is equivalent to Definition 1.3, where the classical definition of subordination is given.

Definition 1.8 [24] Let ψ : C3 × U → C , a ∈ C , and let h be univalent in U , with h(0) = ψ(a, 0, 0, 0) , q
be univalent in U , with q(0) = a , and p be analytic in U , with p(0) = a . Also, ψ(p(z), zp′ (z) , z2p′′(z); z)
is analytic in U and F : C → [0, 1] . If p is analytic in U and satisfies the (second-order) fuzzy differential
subordination

F (ψ(p(z), zp′2p′′(z); z)) ≤ F (h(z)) (1.1)

i.e.
ψ(p(z), zp′2p′′(z); z) ≺F h(z), z ∈ U, (1.2)

then p is called a fuzzy solution of the fuzzy differential subordination.

The univalent function q is called a fuzzy dominant of the fuzzy solution of the fuzzy differential
subordination, or more simply a fuzzy dominant, if

p(z) ≺F q(z), z ∈ U,

for all p satisfying (1.1) or (1.2). A fuzzy dominant q̃ that satisfies

q̃(z) ≺F q(z), z ∈ U,
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for all fuzzy dominants q of (1.1) or (1.2) is said to be fuzzy best dominant of (1.1). Note that the fuzzy best
dominant is unique up to a rotation in U .

The present paper continues the idea of adapting the results from the theory of differential subordination
to the new aspects of fuzzy differential subordination. Obtaining univalence criteria for analytic functions is
an important topic in the study concerning those functions and many such criteria were obtained using the
classical theory of differential subordination. The theorem stated and proven in the next section and the
corollaries associated with it show how sufficient conditions for univalence can be found using fuzzy differential
subordinations.

2. Main results
The original part of this paper consists of proving a theorem using fuzzy differential subordinations and stating
two univalence criteria in two corollaries derived from the proof of this theorem.

Theorem 2.1 Let p and h be analytic in U , with p(0) = h(0) , let φ : D ⊂ C → C , be analytic in a domain
D containing p(U) and F : C → [0, 1],

F (z) =
|z|

1 + |z|
, z ∈ U.

If
(k) Reφ[p(z)] > 0, z ∈ U , and
(kk) h is convex, then

|p(z) + zp′(z) · φ[p(z)]|
1 + |p(z) + zp′(z) · φ[p(z)]|

≤ |h(z)|
1 + |h(z)|

(2.1)

that is
F (p(z) + zp′(z) · φ[p(z)]) ≤ F (h(z)), (2.2)

i.e.
p(z) + zp′(z) · φ[p(z)] ≺F h(z), z ∈ U, (2.3)

implies
|p(z)|

1 + |p(z)|
≤ |h(z)|

1 + |h(z)|

which gives that
F (p(z)) ≤ F (h(z)),

i.e.
p(z) ≺F h(z), z ∈ U.

Proof. Without loss of generality, we can assume that p , φ , and h satisfy the conditions of the theorem on
the closed disc U .

Let the function ψ : C2 × U → C be defined as

ψ(r, s) = r + s · φ(r), r, s ∈ C. (2.4)

For r = p(z) , s = zp′(z) , relation (2.4) becomes

ψ(p(z), zp′(z)) = p(z) + zp′(z) · φ[p(z)], z ∈ U. (2.5)
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Using (2.5) in (2.1), we have
|ψ(p(z), zp′(z))|

1 + |ψ(p(z), zp′(z))|
≤ |h(z)|

1 + |h(z)|
, z ∈ U, (2.6)

and relation (2.2) becomes
ψ(p(z), zp′(z)) ≺F h(z), z ∈ U. (2.7)

For z = z0 , using Remark 1.7, relation (2.7) is equivalent to

ψ(p(z0), z0p
′(z0)) ∈ h(U). (2.8)

In order to prove that (2.1) or (2.7) implies that p is subordinate to function h , Lemma A must be applied.
For that, we assume that the functions p, φ, h satisfy the conditions in Lemma A in the unit disc U . If p is not
subordinate to h , by Lemma A, there exist points z0 = r0e

iθ0 ∈ U , ζ0 ∈ ∂U \ E(q) and m ≥ 1 , that satisfy

p(z0) = h(ζ0), z0p
′(z0) = mζ0h

′(ζ0), |ζ0| = 1.

Since h is analytic in U , the function

L(z, t) = h(z) + tzh′(z)φ[p(z0)] = a1(t) + a2(t)z
2 + . . . (2.9)

is analytic in U , for all t ≥ 0 , and is continuously differentiable on [0,∞) for all z ∈ U . Differentiating (2.9),
with respect to z , we obtain

∂L(z, t)
∂z

= a1(t) + 2a2(t)z + . . . (2.10)

= h′(z) + th′(z)φ[p(z0)] + tzh′′(z) · φ[p(z0)].

For z = 0 , we have
a1(t) = h′(0)(1 + tφ[p(z0)]) ̸= 0 for t ≥ 0,

since h is a convex function in U , hence univalent, and lim
t→∞

|a1(t)| = ∞ .

Differentiating (2.9) with respect to t , we obtain

∂L(z, t)

∂t
= z · h′(z) · φ[p(z0)], z ∈ U. (2.11)

A simple calculation combined with (k) and (kk) yields

Re

[
z · ∂L(z, t)/∂z
∂L(z, t)/∂t

]
= Re

1

φ(p(z0))
+ t · Re

[
1 +

zh′′(z)

h′(z)

]
> 0, (2.12)

for z ∈ U and t ≥ 0 .
Using Lemma B, relation (2.12) gives that L(z, t) is a subordination chain, which by definition implies

L(z, s) ≺ L(z, t), when 0 ≤ s ≤ t. (2.13)

For z = 0 , we have
L(z, 0) ≺ L(z, t), t ≥ 0. (2.14)
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On the other hand, if L(z, 0) = h(z) , the relation (2.14) becomes

h(z) ≺ L(z, t) (2.15)

and we deduce that L(z, t) ̸∈ h(z) , for z ∈ U and t ≥ 0 .
For z = ζ0 , |ζ0| = 1 and t = m ≥ 0 , we have

L(ζ0,m) ̸∈ h(z). (2.16)

We have supposed that p ⊀F h , then using Lemma A, we have that

p(z0) = h(ζ0) and z0p
′(z0) = mζ0h

′(ζ0).

We calculate

ψ(p(z0), z0p
′(z0)) = p(z0) + z0p

′(z0) · φ[p(z0)]

= h(ζ0) +mζ0h
′(ζ0) · φ[h(ζ0)]

= L(ζ0,m).

Using (2.15), we obtain that ψ(p(z0), z0p′(z0)) ̸∈ h(U) . Since this contradicts (2.8), we conclude that

p(z) ≺F h(z), z ∈ U.

Remark 2.2 If h(z) = 1+z
1−z is a convex function with Reh(z) > 0 , then we obtain the following criterion for

univalence:

Corollary 2.3 Let p and h(z) = 1+z
1−z be analytic in U , with p(0) = h(0) = 1 , let φ : D ⊂ C → C be analytic

in the domain D containing p(U) , and F : C → [0, 1] ,

F (z) =
|z|

1 + |z|
, z ∈ U.

If
(ℓ) Reφ[p(z)] > 0, z ∈ U , and
(ℓℓ) h is convex in U , then

|p(z) + zp′(z) · φ[p(z)]|
1 + |p(z) + zp′(z) · φ[p(z)]|

≤

∣∣∣ 1+z
1−z

∣∣∣
1 +

∣∣∣ 1+z
1−z

∣∣∣
that is

F (p(z) + zp′(z) · φ[p(z)]) ≤ F

(
1 + z

1− z

)
,

i.e.

p(z) + zp′(z) · φ[p(z)] ≺F
1 + z

1− z
, z ∈ U,
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implies

|p(z)|
1 + |p(z)|

≤

∣∣∣ 1+z
1−z

∣∣∣
1 +

∣∣∣ 1+z
1−z

∣∣∣
which gives that

F (p(z)) ≤ F

(
1 + z

1− z

)
i.e.

p(z) ≺F
1 + z

1− z
, z ∈ U

and p ∈ P.

Proof. From the proof of Theorem 2.1, we get

p(z) ≺F h(z) =
1 + z

1− z
, z ∈ U. (2.17)

We now show that function h is convex in U which is equivalent to

Re
zf ′′ (z)

f ′ (z)
+ 1 > 0.

We evaluate:

h′ (z) =
2

(1− z)
2 ; h′′ (z) =

4

(1− z)
3 .

We now have
zh′′ (z)

h′ (z)
+ 1 =

4z
(1−z)3

2
(1−z)2

+ 1 =
2z

1− z
+ 1 =

1 + z

1− z
.

In order to compute Re 1+z
1−z , we consider z = ρ (cosα+ i sinα) ∈ U , 0 ≤ ρ < 1 . Then we obtain

Re
1 + z

1− z
= Re

1 + ρ cosα+ ρi sinα

1− ρ cosα− ρi sinα
=

Re
(1 + ρ cosα+ ρi sin) (1− ρ cosα+ ρi sin)

(1− ρ cosα)
2
+ ρ2 sin2 α

=

Re
1− ρ2 cos2 α− ρ2 sin2 α

(1− ρ cosα)
2
+ ρ2 sin2 α

= Re
1− ρ2

(1− ρ cosα)
2
+ ρ2 sin2 α

> 0,

since ρ < 1.

Hence, Re zh′′(z)
h′(z) + 1 = Re 1+z

1−z > 0 , z ∈ U , which gives that function h is convex in U .

Since h is a convex function, h(U) is a convex domain and

Reh(z) = Re
1 + z

1− z
> 0, z ∈ U,
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the differential subordination (2.17) is equivalent to

Re p(z) > Re
1 + z

1− z
> 0,

hence p ∈ P .

Remark 2.4 If h(z) = 1
1−z , z ∈ U , is a convex function with

Re
1

1− z
=

1

2
, z ∈ U,

then we obtain the following univalence criterion:

Corollary 2.5 Let p and h(z) = 1
1−z be analytic in U , with p(0) = h(0) = 1 , let φ : D ⊂ C → C be analytic

in a domain D containing p(U) and

F : C → [0, 1], F (z) =
|z|

1 + |z|
, z ∈ U.

If
(m) Reφ[p(z)] > 0, z ∈ U , and
(mm) h(z) = 1

1−z convex in U , then

|p(z) + zp′(z) · φ[p(z)]|
1 + |p(z) + zp′(z) · φ[p(z)]|

≤

∣∣∣ 1
1−z

∣∣∣
1 +

∣∣∣ 1
1−z

∣∣∣ , z ∈ U,

that is

F (p(z) + zp′(z) · φ[p(z)]) ≤ F

(
1

1− z

)
, z ∈ U,

i.e.

p(z) + zp′(z) · φ[p(z)] ≺F
1

1− z
, z ∈ U,

implies

|p(z)|
1 + |p(z)|

≤

∣∣∣ 1
1−z

∣∣∣
1 +

∣∣∣ 1
1−z

∣∣∣ , z ∈ U,

which gives that

F (p(z)) ≤ F

(
1

1− z

)
, z ∈ U,

i.e.

p(z) ≺F h(z) =
1

1− z
, z ∈ U

and p ∈ P .
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Proof. From the proof of Theorem 2.1, we have that

p(z) ≺F h(z) =
1

1− z
, z ∈ U. (2.18)

We next prove that function h is convex in U which is equivalent to

Re
zf ′′ (z)

f ′ (z)
+ 1 > 0.

We have

h′ (z) =
1

(1− z)
2 ; h′′ (z) =

2

(1− z)
3 .

We obtain

zf ′′ (z)

f ′ (z)
+ 1 =

2z
(1−z)3

1
(1−z)2

+ 1 =
2z

1− z
+ 1 =

1 + z

1− z
.

We have seen in the proof of Corollary 2.3 that Re 1+z
1−z > 0 ; hence, function h (z) = 1

1−z is convex in U .

Since h is a convex function, h(U) is a convex domain and

Reh(z) = Re
1

1− z
=

1

2
, z ∈ U,

differential subordination (2.18) is equivalent to

Re p(z) > Re
1

1− z
=

1

2
, z ∈ U ;

hence, p ∈ P .

Example 2.6 Let p (z) = 1 + 1
2z , z ∈ U , let h (z) = 1

1−z be a convex function in U with p (0) = h (0) = 1 .

Let φ : D ⊂ C → C, φ (w) = 1 + w and F : C → [0, 1] , F (z) = 1
1+|z| , where z = ρ cosα + iρ sinα , z ∈ U ,

0 ≤ ρ < 1.

We have p (z) + zp′ (z) · φ [p (z)] = 1 + 3
2z +

1
4z

2 and using Corollary 2.5, we can write:
If
(m)

Reφ [p (z)] = Re [1 + p (z)] = Re

[
2 +

1

2
z

]
= Re

(
2 +

1

2
ρ cosα+ i

1

2
ρ sinα

)

= 2 +
1

2
ρ cosα =

3

2
+

1 + ρ cosα

2
>

3

2
> 0, z ∈ U ;

(mm)

h (z) =
1

1− z
, Re

[
zh′′ (z)

h′ (z)
+ 1

]
> 0, z ∈ U,
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then

F

(
1 +

3

2
z +

1

4
z2
)

≤ F

(
1

1− z

)
,

equivalently written
1

1 +
∣∣1 + 3

2z +
1
4z

2
∣∣ ≤ 1

1 +
∣∣∣ 1
1−z

∣∣∣ ,
which is the fuzzy differential subordination

1 +
3

2
z +

1

4
z2 ≺F

1

1− z
, z ∈ U,

implies
F (p (z)) ≤ F (h (z)) ,

equivalently written
1

1 +
∣∣1 + 1

2z
∣∣ ≤ 1

1 +
∣∣∣ 1
1−z

∣∣∣ , z ∈ U,

which is the fuzzy differential subordination

1 +
1

2
z ≺F

1

1− z
, z ∈ U. (2.19)

Since h (z) = 1
1−z is convex in U , fuzzy differential subordination (2.19) is equivalent to:

Re

(
1 +

1

2
z

)
> Re

1

1− z
, z ∈ U.

Since Re 1
1−z = 1

2 , we can write Re
(
1 + 1

2z
)
> 1

2 , which means that p (z) = 1 + 1
2z ∈ P .

Indeed, since p (0) = h (0) = 1 , we get that p (U) =
{
t ∈ C : Re t > 3

2

}
and h (U) =

{
v ∈ C : Re v > 1

2

}
;

hence, p (U) ⊂ h (U) .

Using Definition 1.6 and Remark 1.7d, we get that

F (p (z)) ≤ F (h (z)) ,

which is the fuzzy differential subordination

1 +
1

2
z ≺F

1

1− z
. (2.20)

Since h (z) = 1
1−z is convex in U , fuzzy differential subordination (2.20) is equivalent to

Re

(
1 +

1

2
z

)
> Re

1

1− z
=

1

2
;

hence, p (z) = 1 + 1
2z ∈ P.
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3. Conclusion
The connection between fuzzy sets theory and geometric theory of analytic functions is clearly strong and
durable and adapting the notions of the theory of differential subordination to the fuzzy sets theory obviously
works and has outcomes that are of interest for the researchers in the field of complex analysis who want to
extend their focus as it can be seen from the few papers cited in the present paper which are, of course, just
a selection not all the work done on this topic. The original results of this paper are just the starting point
for a new direction concerning the study of the univalence of analytic functions. The results stated here prove
that stating such conditions is possible using the theory of fuzzy differential subordination. The next step is
to associate to the study of univalence with different types of operators just as they were associated with the
general investigations done concerning fuzzy differential subordinations. Then this study could be continued
using the dual notion of fuzzy differential superordination, and connections between the two theories might be
established through sandwich-type theorems familiar to the field of geometric theory of analytic functions.
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