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Abstract: We introduce a new class of sets named, slack 2 -geodesic convex set on Riemannian manifolds and verify by a
nontrivial example. We define a geodesic E -pseudoconvex function with a suitable example. Some properties of geodesic
E -quasiconvex function are discussed. We establish some relationships between slack 2 -geodesic convex set, geodesic
E -pseudoconvex function and geodesic E -quasiconvex function. Moreover, an application of geodesic E -quasiconvex
function to a nonlinear programming problem is also presented.
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1. Introduction
The importance of convexity can be seen in various fields of mathematics, science, and engineering. Because
of its huge applications and to explore its real world problems, many generalizations have been proposed by
many scientists and scholars, see [1–3, 5, 10, 15] and references therein. Youness [21] showed that many results
for convex set hold for a wider range of sets called E -convex set and generalized the class of convex functions
to a new class of E -convex function. Some results of E -convexity were improved in [6, 8, 18, 20]. Soleimani-
damaneh [17] presented the concept of E -quasiconvex and E -pseudoconvex functions and discussed some of
their properties.

The natural generalization of convexity to geodesic convexity on a complete Riemannian manifold was
investigated [9, 16, 19]. Iqbal et al. [11] introduced a new class of sets and a new class of functions on Riemannian
manifolds, called geodesic E -convex set and geodesic E -convex function. Later, Kumari and Jayswal [13]
extended these results under geodesic E -preinvexity on Riemannian manifolds. Lupsa and Cristescu [7] and
Lupsa [14] presented the concept of convexity with respect to a given set and defined strong n -convexity, slack n -
convexity, strict convexity and slack convexity with respect to a given set. Motivated by the above, we introduce
a new class of sets named slack 2 -geodesic convex set with respect to a set on Riemannian manifolds, and its
existence is shown by a proper example. The notion of geodesic E -pseudoconvex function on the Riemannian
manifold is introduced and a nontrivial example for its existence is presented. Further, some relations between
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geodesic E -pseudoconvex function and geodesic E -quasiconvex function are discussed. Moreover, we study
some of the properties of geodesic E -quasiconvex function and its application in a nonlinear programming
problem.

2. Preliminaries
This section deals with some basic concepts of geodesic convexity on Riemannian manifolds. For the standard
material on convexity and optimization on Riemannian manifolds, one can consult [19]. Throughout the work,
we assume that M is an n -dimensional Riemannian manifold, E : M → M is a map, S is a nonempty subset
of M (where not otherwise mentioned).

Let E : Rn → Rn be a map.
Youness [21] generalized the concept of convex set to E -convex set as follows:

Definition 2.1 A set A ⊆ Rn is said to be E -convex with respect to a map E if
(1− µ)E(x) + µE(y) ∈ A for all x, y ∈ A and µ ∈ [0, 1] .

Every convex set is E -convex set if E is an identity map. If A ⊆ Rn is an E -convex set, then E(A) ⊆ A . If
E(A) is a convex set and E(A) ⊆ A , then A is E -convex set.

Definition 2.2 Let φ : Rn → R be a real-valued function defined on an E−convex set A ⊆ Rn . Then the
function φ is E -convex if
φ
(
(1− µ)E(x) + µE(y)

)
≤ (1− µ)φ

(
E(x)

)
+ µφ

(
E(y)

)
for all x, y ∈ A and µ ∈ [0, 1] .

If the above inequality is strict for E(x) ̸= E(y) , then φ is said to be strictly E -convex function. If E is an
identity map, then every (strictly) convex function is (strictly) E -convex function.
Let γ : [a, b] → M be a piecewise C1 curve. The length of a curve γ is defined by

L(γ) =
∫ b

a

∥γ′(µ)∥γ(t)d(µ).

For any two points α, β ∈ M,

d(α, β) := inf
{
L(γ) : γ is a piecewise C1 curve joining α to β

}
.

Then distance d induces the original topology on a Riemannian manifold. On M , there exists a covariant
derivation called Levi-Civita connection, denoted by ∇XY , for any vector fields X,Y ∈ M .

Definition 2.3 A geodesic is a C∞ smooth path γ . The tangent on geodesic is parallel along the path γ , that
is, γ satisfies the equation ∇dγ(µ)/dµdγ(µ)/dµ = 0 .

Iqbal et al. [11] presented the following geodesic E -convex (GEC) set and geodesic E -convex (GEC) function
on Riemannian manifolds.

Definition 2.4 [11] A set S is called GEC set if there exists a unique geodesic γE(x),E(y)(µ) of length d(x, y) ,
which belongs to S , for all x, y ∈ S and µ ∈ [0, 1] . Let S ⊆ M.
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Definition 2.5 [11] A function φ : S → R is said to be GEC defined on GEC set S , if

φ
(
γE(x),E(y)(µ)

)
≤ (1− µ)φ

(
E(y)

)
+ µφ

(
E(x)

)
for all x, y ∈ S and µ ∈ [0, 1] .

Definition 2.6 Let S ⊆ M be totally convex set. A function φ : S → R is called quasiconvex if

φ
(
γx,y(µ)

)
⩽ max

{
φ(x), φ(y)

}
for all x, y ∈ S and µ ∈ [0, 1] .

If the above inequality is strict for x ̸= y and µ ∈ (0, 1) , then a function φ is called to be strict quasiconvex.
A function φ : S → R is called strongly quasiconvex if

φ(γx,y(µ)) < max{φ(x), φ(y)}

for all x, y ∈ S , µ ∈ (0, 1) and φ(x) ̸= φ(y) . Every strongly quasiconvex function is strictly quasiconvex, but
the converse is not necessarily true.

Iqbal et al. [11] generalized the E -quasiconvexity [18] on Riemannian manifolds as follows:

Definition 2.7 Let S ⊆ M be a nonempty GEC set. A function φ : S → R is said to be:

(i) geodesic E -quasiconvex if for all x, y ∈ S and µ ∈ [0, 1] ,

φ
(
γE(x),E(y)(µ)

)
≤ max

{
φ
(
E(x)

)
, φ

(
E(y)

)}
;

(ii) strictly geodesic E -quasiconvex if for all x, y ∈ S with φ
(
E(x)

)
̸= φ

(
E(y)

)
and µ ∈ (0, 1) ,

φ
(
γE(x),E(y)(µ)

)
< max

{
φ
(
E(x)

)
, φ

(
E(y)

)}
.

The following important characterization of geodesic E -quasiconvex function was given by Iqbal et al. [11]

Theorem 2.8 [11] A function φ : S → R defined on a GEC set S is said to be geodesic E -quasiconvex function
if the lower level set Lr(φ) of its restriction φ : E(S) → R is convex function for each r ∈ R .

3. Slack 2-convexity

Iqbal et al. [11] defined E -epigraph of φ on S ⊆ M as follows:

epiE(φ) =
{(

E(x), a
)
: x ∈ S, a ∈ R, φ

(
E(x)

)
≤ a

}
.

The α -level set corresponding to the above epigraph set is given by

Kα,E(φ) =
{
z ∈ E(S) : φ(z) ≤ α

}
.

Lupsa and Cristescu [7] and Lupsa [14] defined a new class of convex sets called slack 2 -convex set with respect
to a given set. We generalize it on Riemannian manifolds and define slack 2 -geodesic convex set.
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Definition 3.1 Suppose A and B are two subsets of M . A is said to be slack 2-geodesic convex set with
respect to B if for every x, y ∈ A∩B and every µ ∈ [0, 1] with the property γx,y(µ) ∈ B , we have γx,y(µ) ∈ A .

In the following example (Figure 1,2), we show that a slack 2 -geodesic convex set need not be geodesic convex
set. It means slack 2 -geodesic convex set is an independent class of sets.

Example 3.2 Consider the sets

X =
{
(x, y, z) : x2 + y2 + z2 = 2, z > 1

}
and

Y =
{
(x− 1)2 + y2 ≤ 1

4
, z > 0

}
.

Then the set A = X \ Y is slack 2-geodesic convex with respect to the set

B =
{
(x, y, z) : x2 + y2 + z2 = 2, x < 0

}
,

while A is not a geodesic convex set.

Figure 1. Set A - The cylindrical portion (set Y ) re-
moved from the set X (a better view in the adjoining
figure).

Figure 2. Set A - the top view.

Theorem 3.3 Assume that φ : S → R and E : M → M are two functions. Let S be a nonempty GEC subset
of M . If E(S) is a geodesic convex set and epiE(φ) is a slack 2-geodesic convex set with respect to E(S)×R ,
then φ is a GEC function on S .

Proof. Let x, y ∈ S and µ ∈ [0, 1] . Since
(
E(x), φ(E(x))

)
∈ epiE(φ) , and

(
E(x), φ(E(x))

)
∈ E(S) × R ,

therefore, (
E(x), φ

(
E(x)

))
,
(
E(y), φ

(
E(y)

))
∈ E(S)× R ∩ epiE(φ).

Using geodesic convexity of E(S) , we get

γE(x),E(y)(µ) ∈ E(S),
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hence (
γE(x),E(y)(µ), (1− µ)φ

(
E(x)

)
+ µφ

(
E(y)

))
∈ E(S)× R

which implies that (
γE(x),E(y)(µ), (1− µ)φ

(
E(x)

)
+ µφ

(
E(y)

))
∈ epiE(φ) (3.1)

as epiE(φ) is a slack 2 -geodesic convex set with respect to E(S)× R .
From (3.1), it follows that

φ
(
γE(x),E(y)(µ)

)
≤ (1− µ)φ

(
E(x)

)
+ µφ

(
E(y)

)
.

Hence φ is GEC function on S .

Remark 3.4 Geodesic convexity of E(S) is a must for the above theorem to hold.

Theorem 3.5 Assume that φ : S → R and E : M → M are two functions. Let S be a nonempty GEC subset
of M . If φ is a geodesic E convex function on S , then epi(φ) is a slack 2-geodesic convex set with respect to
E(S)× R .

Proof. Let (x, a), (y, b) ∈ E(S)× R ∩ epi(φ) and µ ∈ [0, 1] such that

(
γx,y(µ), (1− µ)a+ µb

)
∈ E(S)× R.

Then x, y ∈ E(S) ⊆ S , φ(x) ≤ a , φ(y) ≤ b and γx,y(µ) ∈ E(S) ⊆ S.

Since x, y ∈ E(S) , then there exist x′ and y′ in S such that x = E(x′), y = E(y′) .
From the geodesic E -convexity of φ , we have

φ
(
γx,y(µ)) = φ(γE(x′),E(y′)(µ))

≤ (1− µ)φ
(
E(x′)

)
+ µφ

(
E(y′)

)
= (1− µ)φ(x) + µφ(y)

≤ (1− µ)a+ µb.

Therefore,
(
γx,y(µ), (1− µ)a+ µb

)
∈ epi(φ).

Hence, epi(φ) is a slack 2 -geodesic convex set with respect to E(S)× R.

The following theorem is an analogous result of Theorem 3.3, which provides another sufficient condition
for φ to be a GEC function.

Theorem 3.6 Assume that φ : S → R and E : M → M are two functions. Let S be a nonempty GEC subset
of M . If E(S) is a geodesic convex set and epi(φ) is a slack 2-geodesic convex set with respect to E(S)× R ,
then φ is a GEC function on S .

Proof. Let x, y ∈ S and µ ∈ [0, 1] . Since
(
E(x), φ

(
E(x)

))
∈ epi(φ) and

(
E(x), φ

(
E(x)

))
∈ E(S) × R , we

have (
E(x), φ

(
E(x)

))
,
(
E(y), φ

(
E(y)

))
∈ E(S)× R ∩ epi(φ).
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Geodesic convexity of E(S) implies that

γE(x),E(y)(µ) ∈ E(S).

Therefore, (
γE(x),E(y)(µ), (1− µ)φ

(
E(x)

)
+ µφ

(
E(y)

))
∈ E(S)× R

which implies that (
γE(x),E(y)(µ), (1− µ)φ

(
E(x)

)
+ µφ

(
E(y)

))
∈ epi(φ). (3.2)

This shows that epi(φ) is a slack 2 -geodesic convex set with respect to E(S)× R .
From (3.2), we have

φ
(
γE(x),E(y)(µ)

)
≤ (1− µ)φ

(
E(x)

)
+ µφ

(
E(y)

)
.

Hence φ is a GEC function on S .

The following theorem is a characterization of a GEC function.

Theorem 3.7 Assume that φ : S → R and E : M → M are two functions, where E(S) is a geodesic convex
set. Then, φ is a geodesic E convex function on S iff epi(φ) is a slack 2-geodesic convex set with respect to
E(S)× R

Proof. The proof can be easily deduced from Theorems 3.5 and 3.6.

The following theorem yields a necessary condition for φ to be a GEC function.

Theorem 3.8 If φ : S → R is a GEC function on S , then Kα(φ) is a slack 2-geodesic convex set with respect
to E(S) , for all α ∈ R .

Proof. Let z1, z2 ∈ Kα(φ) ∩ E(S) and µ ∈ [0, 1] , such that

γz1,z2(µ) ∈ E(S) ⊆ S.

This implies that z1, z2 ∈ E(S) ⊆ S , φ(z1) ≤ α and φ(z2) ≤ α . Also, there exist x1, x2 ∈ S , such that
z1 = E(x1) and z2 = E(x2) . By the geodesic E -convexity of φ , we have

φ
(
γz1,z2(µ)

)
= φ

(
γE(x1),E(x2)(µ)

)
≤ (1− µ)φ

(
E(x1)

)
+ µφ

(
E(x2)

)
= (1− µ)φ(z1) + µφ(z2)

≤ α.

Hence, γz1,z2(µ) ∈ Kα(φ) .

In the following theorems, we give some characterizations of a geodesic E -quasiconvex function in terms
of α -level set and slack 2-geodesic convex set.

Theorem 3.9 Let E(S) be a geodesic convex set and E(S) ⊆ S . The function φ : S → R is a geodesic
E -quasiconvex on S if and only if Kα,E(φ) is a geodesic convex set for each α ∈ R .
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Proof. Let Kα,E(φ) be a geodesic convex set. Then for x1, x2 ∈ S and µ ∈ [0, 1] , we have

γE(x1),E(x2)(µ) ∈ Kα,E(φ),

for E(x1), E(x2) ∈ Kα,E(φ) . By setting α = max{φ(E(x1)), φ(E(x2))} , we get

φ(γE(x1),E(x2)(µ)) ≤ α = max{φ(E(x1)), φ(E(x2))},

which implies the geodesic E -quasiconvexity of φ .

Conversely, let φ be a geodesic E -quasiconvex function on S and z1, z2 ∈ Kα(φ) , µ ∈ [0, 1] . Then, there exist
x1, x2 ∈ S such that z1 = E(x1) and z2 = E(x2) , φ(z1) ≤ α and φ(z2) ≤ α . Since E(S) is geodesic convex
set, we have γz1,z2(µ) ∈ E(S) and

φ
(
γz1,z2(µ)

)
= φ

(
γE(x1),E(x2)(µ)

)
≤ max

{
φ
(
E(x1)

)
, φ

(
E(x2)

)}
≤ α.

Thus, γz1,z2(µ) ∈ Kα(φ).

Theorem 3.10 Let E(S) be a geodesic convex set and E(S) ⊆ S . The function φ : S → R is a geodesic
E -quasiconvex on S if and only if Kα(φ) is a slack 2-geodesic convex set with respect to E(S) for each α ∈ R.

Proof. The proof follows on similar lines of Theorem 3.9.

4. Geodesic E-pseudoconvexity and quasiconvexity

The concept of E -pseudoconvex functions on Rn was introduced by Soleimani-damaneh [17] as follows:

Definition 4.1 [17] Let S be a nonempty convex open set in Rn. A differentiable function φ : Rn → R
is said to be E -pseudoconvex on S , if for every x, y ∈ S such that ∇φ(E(x))(E(y) − E(x)) ⩾ 0 , we have
φ(E(y)) ⩾ φ(E(x)) , where S is a nonempty convex open set in Rn.

We generalize the above concept to Riemannian manifolds and study some of their properties.

Definition 4.2 A differentiable function φ : M → R is said to be geodesic E -pseudoconvex on a set S ⊆ M

if S is GEC set and for each x, y ∈ S with ⟨∇φ
(
E(y)

)
, γ′

E(x),E(y)(0)⟩ ⩾ 0 , we have φ(E(x)) ⩾ φ(E(y)) .

Every differentiable GEC function is a geodesic E -pseudoconvex but the converse is not necessarily true as
shown in the following example.

Example 4.3 Let M = R× S1 . Define φ : M → R and E : M → M by

φ(x, s) = x3 and E(x, s) = (x2, s2).

The geodesic joining two points (x, s1) and (y, s2) is a part of the helix of the form γ(µ) =
(
µx + (1 −

µ)y, ei[µθ1+(1−µ)θ2]
)
, for µ ∈ [0, 1] , where eiθ1 = s1 and eiθ2 = s2 for some θ1, θ2 ∈ [0, 2π] . Then φ is not a

GEC function. Assume that for any two points (x, s1) and (y, s2) in M , we have

⟨∇φ
(
E(y, s2)

)
, γ′

E(x,s1),E(y,s2)
(0)⟩ ⩾ 0.
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Then
⟨(6y2, 0)

(
x2 − y2, i(θ1 − θ2)e

iθ2
)T ⟩ ⩾ 0,

which implies that 6x2y2 − 6y4 ⩾ 0 . Hence x2 ⩾ y2 . So, we get

φ
(
E(x, s1)

)
= x6 ⩾ y6 = φ(E(y, s2)).

This shows that φ is a geodesic E -pseudoconvex function.

Theorem 4.4 Assume that φ : M → R is a differentiable function on an open set S ⊆ M and E(S) is a
geodesic convex set such that E(S) ⊆ S . If φ is a geodesic E -quasiconvex function on S , then for each x, y ∈ S

with φ(E(x)) ≤ φ(E(y)), we have ⟨∇φ
(
E(y)

)
, γ′

E(x),E(y)(0)⟩ ≤ 0 .

Proof. Let x, y ∈ S and φ(E(x)) ≤ φ(E(y)) . Since S is an open set and GEC set, by geodesic E -
quasiconvexity, we have

φ(γE(x),E(y)(µ))− φ(E(y)) ≤ 0

for each µ ∈ (0, 1) . This implies that

lim
µ→0

φ(γE(x),E(y)(µ))− φ(E(y))

µ
= ⟨∇φ

(
E(y)

)
, γ′

E(x),E(y)(0)⟩ ≤ 0.

which completes the proof.

Theorem 4.5 Assume that φ : M → R is a lower semicontinuous function on an open set S ⊆ M and E(S)

is geodesic convex set. If φ is a strictly geodesic E-quasiconvex function on S then φ is geodesic E-quasiconvex
function.

Proof. Let x, y ∈ S . If φ(E(x)) ̸= φ(E(y)) . Then the proof is obvious. If φ(E(x)) = φ(E(y)) , we claim

φ(γE(x),E(y)(µ)) ⩽ max{φ(E(x), E(y))} ⩽ φ(E(x))

for each µ ∈ (0, 1) . On contrary, let
φ(γE(x),E(y)(µ)) > φ(E(x))

for some µ ∈ (0, 1) . By setting x0 = γE(x),E(y)(µ) and by the convexity of E(S) , there exists an x ∈ S such
that

E(x) = x0 = γE(x),E(y)(µ) and φ(E(x)) > φ(E(x)) .

Since φ is a lower semicontinuous function and E(S) is a convex set, we have

φ
(
E(x)

)
> φ

(
γE(x),E(y)(δ)

)
= φ

(
E(x̂)

)
> φ

(
E(x)

)
= φ

(
E(y)

)
(4.1)

for some δ ∈ (0, 1) and x̂ ∈ S . Therefore, E(x) ∈ γE(x̂),E(y)(δ) . Hence, by the strict geodesic E-quasiconvexity
of φ , we have

φ
(
E(x)

)
< max{φ

(
E(x̂), E(y)

)
} = φ

(
γE(x),E(y)(δ)

)
. (4.2)

By (4.1) and (4.2), we obtain
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φ
(
E(x)

)
> φ

(
γE(x),E(y)(δ)

)
> φ

(
E(x)

)
,

which contradicts our assumption, hence the theorem.

In the following theorems, we discuss some relationships between geodesic E -quasiconvex function and
geodesic E -pseudoconvex function.

Theorem 4.6 Assume that φ : M → R is a differentiable function on an open set S ⊆ M and E(S) is a
geodesic convex set. If φ is a geodesic E-pseudoconvex function on S then φ is a strictly geodesic E-quasiconvex
function on S .

Proof. On contrary, if φ is not a strictly geodesic E-quasiconvex on S , then there exist x, y ∈ M and µ ∈ (0, 1) ,
such that

φ
(
E(x)

)
< φ

(
E(y)

)
and

φ
(
γE(x),E(y)(µ)

)
⩾ φ

(
E(y)

)
.

By fixing x0 = γE(x),E(y)(µ) and by geodesic convexity of E(S) , there exists an x ∈ S such that

E(x) = x0 = γE(x),E(y)(µ),

which implies that φ
(
E(x)

)
⩾ φ

(
E(y)

)
> φ

(
E(x)

)
. From geodesic E-pseudoconvexity of φ , we have

⟨∇φ
(
E(x)

)
, γ′

E(x),E(x)(0)⟩ < 0,

which implies that
⟨∇φ

(
E(x)

)
, γ′

E(y),E(x)(0)⟩ > 0.

By the geodesic E-pseudoconvexity of φ , we have

φ
(
E(x)

)
⩽ φ

(
E(y)

)
.

Therefore, φ
(
E(x)

)
= φ

(
E(y)

)
. On the other hand, since S is an open and GEC set, there exists an open

neighbourhood around the geodesic γE(x),E(y) , which is contained in S . Therefore,

lim
µ→0

φ
(
γE(y),E(x)(µ)

)
− φ

(
E(x)

)
µ

= ⟨∇φ
(
E(x)

)
, γ′

E(y),E(x)(0)⟩ > 0.

This implies that there exists an E(x̂) ∈ S and a λ ∈ (0, 1), such that

E(x̂) = γE(y),E(x)(λ)

and
φ
(
E(x̂)

)
> φ

(
E(x)

)
= φ

(
E(y)

)
.

Using the geodesic E-pseudoconvexity of φ , we get

⟨∇φ
(
E(x̂)

)
, γ′

E(y),E(x̂)(0)⟩ < 0
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and
⟨∇φ

(
E(x̂)

)
, γ′

E(x),E(x̂)(0)⟩ < 0.

But

0 > ⟨∇φ
(
E(x̂)

)
, γ′

E(x),E(x̂)(0)⟩ =
−λ

1− λ
⟨∇φ

(
E(x̂)

)
, γ′

E(y),E(x̂)(0)⟩ > 0

which is a contradiction and hence the result.

Theorem 4.7 Assume that φ : M → R is a differentiable function on an open set S ⊆ M and E(S) is a
geodesic convex set. If φ is a geodesic E-pseudoconvex function on S , then φ is a geodesic E-quasiconvex
function on S .

Proof. Since φ is a differentiable function, by Theorem 4.6, φ is a strictly geodesic E-quasiconvex function on
S . Hence, by Theorem 4.5, φ is a geodesic E-quasiconvex function on S .

5. Application to a nonlinear programming problem

Consider the following nonlinear constrained problem:

(NP) Minimize φ(x) , such that x ∈
{
x ∈ E(S) : gi(x) ≤ 0, i = 1, 2, ...,m

}
,

where φ : S → R and gi : S → R, i = 1, 2, ...,m are real valued functions on S . We assume that gi, i = 1, 2, ...,m

are geodesic E -quasiconvex functions and that E(S) is a geodesic convex subset of M .
We denote the feasible set by Ω , where

Ω =

m∩
i=1

Ωi =

m∩
i=1

{
x ∈ E(S) : gi(x) ≤ 0

}
.

The set
{
x ∈ E(S) : gi(x) ≤ 0

}
is a geodesic convex set for each i = 1, 2, ...,m . It is to be noted that

the set Ω is the lower level set of the restriction of gi : S → R to E(S) for each i = 1, 2, ...,m. As
gi : S → R, i = 1, 2, ...,m, are geodesic E -quasiconvex functions on a geodesic convex set E(S) , it follows
from Theorem 2.8 that

{
x ∈ E(S) : gi(x) ≤ 0

}
, i = 1, 2, ...,m, are geodesic convex sets. It is clear that the

intersection of nonempty geodesic convex sets is also geodesic convex set, we have the following obvious result:

Lemma 5.1 Ω is geodesic convex subset of E(S)

Using Lemma 5.1 and Theorem 2.8, we have the following:

Theorem 5.2 Assume that φ : S → R is a geodesic E -quasiconvex function, then the set of solutions of (NP)
is a geodesic convex set.

Theorem 5.3 Assume that

(i) φ : S → R is a geodesic E -quasiconvex function defined on a geodesic convex set S.

(ii) x∗ is a strict local optimal solution of (NP).
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Then x∗ is also a strict global optimal solution of (NP).

Proof. Since x∗ is a strict local optimal solution of (NP), then there exists a neighbourhood, say Nx∗(ϵ) of x∗

for which
φ
(
E(x∗)

)
< φ

(
E(x)

)
, for each x ∈ Nx∗(ϵ). (5.1)

Now, let x∗ be not a strict global optimal solution of (NP). Then there exists x′ ∈ E(S) such that φ
(
E(x′)

)
<

φ
(
E(x∗)

)
.

The geodesic E -quasiconvexity of φ gives

φ
{
γE(x′),E(x∗)(µ)} ≤ Max

{
φ
(
E(x′)

)
, φ

(
E(x∗)

)}
= φ

(
E(x∗)

)
,

for every x′, x∗ ∈ E(S) , which is a contradiction of (5.1). Hence our assumption that x∗ is not a strict global
optimal solution of (NP) is wrong, and hence the proof.

Theorem 5.4 Assume that φ : S → R is a geodesic E -quasiconvex function.

(i) If x∗ is a local optimal solution of (NP), then it is also a global optimal solution of (NP).

(ii) φ attains its minimum over Ω at no more than one point.

Proof. The proof is obvious from Lemma 5.1, Theorem 2.8 and strict geodesic quasiconvexity property.

6. Conclusion
In this paper, we have introduced the concept of slack 2 -geodesic convex set on Riemannian manifolds which
is the generalization of slack 2 -convex set defined by Lupsa et al. [[7], [14]]. The notion of geodesic E -
pseudoconvex function on Riemannian manifold is introduced and some of its properties are studied. By the
suitable example, it has been shown that every differentiable GEC function is a geodesic E -pseudoconvex but
the converse is not necessarily true. Application to a nonlinear programming problem with constraints has been
discussed.
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