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Abstract: In this paper, we present a category theory library developed in the proof assistant Coq. We discuss the
design principles of the library in comparison with those existing out there. To explicitly demonstrate the utility of the
library, we conclude with a case study in which a Coq formalized soundness proof of the intuitionistic propositional logic
within a category theoretical settings is examined.
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1. Introduction
Category theory proposes structural foundations to do mathematics. A category is simply a structure or
collection of objects and arrows such that for every single object there is the identity arrow, the composition
operation has been defined over arrows which must be associative and identities cancel within the composition.
Therefore, it may be viewed as an alternative especially to axiomatic set theories.

Among other capabilities, category theory serves as a domain language of interpretation for various sorts
of computational calculi [8]. For instance, the category induced by any cartesian closed preorder speaks the
same formal language with intuitionistic propositional logic (IPL). Similarly, simply typed lambda calculi can
be viewed as the internal language of cartesian closed categories [11, 13, 14]. Monads [15] thus adjunctions have
been benefited by and large when it comes to capturing computational side effects, and implemented in Haskell
language [21]. Besides, the structural nature of category theory makes it very suitable to be formalized in proof
assistants such as Coq [10, 19, 20, 22], Agda [2, 12, 16, 17] and in Mizar [1].

Outline. In Section 2.1, we briefly present the Coq proof assistant as it is the formalization environment for
the category theory library introduced in Sections 2.2 and 2.3. The library [6] is centered around objects that
help modeling programming language constructs, and can be viewed as the first step towards providing some
formal recipe to study programming language semantics in a mechanized fashion. We conclude, in Section 3,
with a case study where we discuss a Coq formalized proof of soundness for the intuitionistic propositional logic
within the scope of a category induced by any cartesian closed preorder.

2. Categorical structures in Coq

In this section, we give a brief overview of the proof assistant Coq before diving into the design principles of
the category theory library we develop therein.
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2.1. Coq: an interactive theorem prover

Coq [3] is a formal proof management system (so called proof assistant) which embodies a functional pro-
gramming language (as known as Gallina) alongside a specification language. Gallina allows for developing
recursive functions while the specification language permits one to state properties of such functions and give
them proofs. The language Gallina is not Turing complete as it rejects any sort of nonterminating function or
type construction. This is simply because the nontermination effect in such kind of proof systems would result
in proofs of “false”, making the entire system inconsistent.

The philosophical and mathematical foundations on which the proof management system Coq has been
based is motivated by the Curry–Howard isomorphism (CHI).

Logic ∼ Type theory
Proposition Type
Proof Program
A ∧B A×B
A ∨B A+B
A =⇒ B A→ B
∀x ∈ A,P x Πx : A, P x
∃x ∈ A,P x Σx : A, P x
=A IdA

As demonstrated in the above table, the CHI highlights the direct relation, equivalence or correspondence
in between constructive logic and type theory. One could simply think of type theory as an alternative to set
theory proposing foundations to do constructive mathematics. According to CHI, a proposition or assertion
by the side of constructive logic could be viewed as a type (naively, a collection of things or inhabitants) by
type theory side. Similarly, any valid proof that makes the proposition hold can be taken as a program of the
corresponding type. Having these said, we could now state the CHI slogan: “under certain type settings, proofs
can be programmed.” Otherwise put, instead of writing proofs down on paper, one could mechanize proofs by
formalizing them within a proof assistant like Coq. This process is beneficial in the sense that mechanized proofs
would be “more trustworthy” provided that the Coq kernel (the part responsible for performing proof-checking
steps) is trusted. Namely, a proof might be much less error prone when it gets checked by a mechanical kernel
as opposed to being checked by a pair of human eyes.

The type theory (or the formal logic) backing the Coq proof assistant is called the calculus of inductive
constructions (CIC). The logic in fact extends simply typed lambda calculus with a few structures such
as dependent types, type operators, type polymorphism, a restricted form of inductive types and primitive
recursion. The restriction is to ensure that every single inductive construction and recursive function terminates.
As this is a form of the Halting Problem which is provably undecidable, the Coq termination checker is naturally
restricted, and suffices to check whether recursive calls are performed on “structurally decreasing” arguments.
This means that a function which terminates in practice but not implemented embarking on the structurally
decreasing arguments method could very well be rejected by Coq’s termination checker. In such a case, one
needs to provide additional information on the function definition usually employing well founded relations [9].
To ensure that inductive constructions halt, the strict positivity [4] is the criteria to be met.

The CIC is a constructive logic, namely it does not assume any classical axiom such as law of excluded
middle (LEM) or any kind of equivalent like double negation elimination (DNE). However, it is provably safe
to introduce classical axioms into CIC when it comes to doing classical mathematics. This means that CIC +
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classical axioms does not yield in proofs of false.
In CIC, everything, even types themselves, has a type. The design of types of types (so called universes) is

also a crucial point to be mentioned at a certain degree. There are there sorts of universes in Coq: Prop, Set and
Type. Prop is indeed the impredicative universe of propositions in which computational abilities are restricted.
This is due to the fact that one could prove false in an impredicative universe enriched with classical axioms
and computational abilities. Set is the predicative universe of computations in which any form of classical
axioms could safely be assumed. In general, to avoid inconsistencies, the computational abilities in Prop and
the impredicativity property in Set are sacrificed. Type is in fact the universe of both Set and Prop presented
in an hierarchy (or a stratification) to elude Girard-like paradoxes. In the below box, we further detail universe
organization in CIC:

S := Set, Prop, Typei s.t. i ∈ N
CIC A := (Set : Type0), (Prop : Type0), (Typei : Typei+1) s.t. i ∈ N

R := (Prop, Prop), (Set, Prop), (Typei, Prop), (Prop, Set), (Set, Set),
(Typei, Set), (Typei, Typej, Typemax(i,j)), s.t. i, j ∈ N

There, S is the set of universes while A ⊆ S × S being the set of axioms clarifying the typing relations between
universes: the universes Set and Prop live in Type0 while the universe Typei lives in Typei+1 for each natural
number i. And, R ⊆ S × S × S is the set of object level rules which determine what kind of (dependent)
function types can be formed, and in which universe they live. For instance, the second rule in the first column
could be read as it is possible in CiC to form function types from any instance of universe Set to any instance
of Prop , and the newly formed function types live in the universe Prop . In addition, CIC has:

• universe cumulativity: Prop ⊆ Type0, Set ⊆ Type0, Typei ⊆ Typei+1 s.t. i ∈ N .

• typical ambiguity: no explicit mention of universe levels. From the users’ viewpoint, it is Type : Type but
not in practice. This would allow for a proof of Girard’s paradox leading to an inconsistency.

2.2. Design principles

In order to computerize a mathematical framework or theory, the first thing that needs to be done is formalizing
mathematical objects in the provided programming language. In these lines, this section is devoted to briefly
discuss the design principles of the category theory library we have been developing in the language of Coq.
For the entire formalization, please refer to the link below:

https://github.com/ekiciburak/CatTheo

In developing category theoretical objects, we employ Coq type classes along with the use of dependent types.
For instance, below given is indeed the formalization of categorical functors.
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Class Functor (C D: Category): Type ≜
{

fobj : @obj C → @obj D;
fmap : ∀ {a b: @obj C} (f: arrow b a), arrow (fobj b) (fobj a);
preserve_id : ∀ {a: @obj C}, fmap (@identity C a) = (@identity D (fobj a));
preserve_comp : ∀ {a b c: @obj C} (g : @arrow C c b) (f: @arrow C b a),

fmap (g o f) = (fmap g) o (fmap f)
}.

As a side note, a functor is simply a map of categories mapping objects and arrows preserving the identities
and composition. Therefore, the field named fobj maps objects while the one called fmap is responsible for
transportation of arrows. The last two fields, namely preserve_id and preserve_comp, are in fact the proof
obligations making sure that the identities and composition are preserved by fmap.

The use of dependent types becomes much more clear in the context of the fmap field. Suppose we have
an arbitrarily given pair of categories C and D together with a functor F : C → D . Then, the functor F maps
every single arrow from a → b in the category C into an arrow fobj F a → fobj F b in the category D . As
clearly demonstrated here, the type of fobj totally depends on the functor instance F . This is not surprising
at all. Indeed, this is a prize that we want to obtain in the end. On the one hand, employing dependent types
when it comes to defining or declaring mathematical objects brings in a high level of flexibility and increases
the expressiveness score. However, on the other hand, it may be pretty cumbersome to prove properties of
dependently typed objects. To clarify this point further, we go through an example in what follows.

Suppose we are given a pair of categories C to D along with functors F and G defined from the category
C to D , and the task is to prove that F = G . The sameness measure “=” here is the Leibniz equality of type
theory which is solely constructed by the reflexivity property. To conclude that such an equality holds, under
the Coq implementation presented above, one simply needs to demonstrate as subgoals that functors F and G

maps objects and arrows in the same way. Namely,

(1) fobj F = fobj G
(2) fmap F = fmap G.

In order to compare instances with respect to the Leibniz equality, one first of all needs to ensure that
they are of the same type. Namely, they inhabit the same type. Equation (1) above could be stated in Coq
with no problem as the type of both sides are the same. This means that the expression is well-typed. Then,
the question of “whether the equality holds” of course depends on the definitions of F and G . Unlikely,
Equation (2) is ill-typed thus cannot be directly implemented in Coq. The type of the expression fmap F is
∀a b in C, (a→ b) ⇒ (fobjF a→ fobjF b) while that of fmap G is ∀a b in C, (a→ b) ⇒ (fobjGa→ fobjGb) .
The mentioned types are obviously different. In such a case, one needs to first convince the Coq type-checker
that these types unify, and only then is permitted to attempt at proving that F and G maps arrows in the
same manner. Indeed, this problem originates from the fact that the contextual equality of category theory
cannot be entirely represented by the constructive (Leibniz) equality of type theory. This mismatch could be
reduced to the problem of higher order unification which is undecidable in general [18]. However for particular
cases, we could come up with certain solutions working out (contextually) explicit substitutions as presented
in [5].
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{p: (Π a b : obj, arrow b a → arrow (fobj F b) (fobj F a)) =
(Π a b : obj, arrow b a → arrow (fobj G b) (fobj G a)) &

match p in (_ = y) return y with
| eq_refl ⇒ fmap F

end = fmap G}

Even when we manage to prove that fmap F and fmap G are instances of the same type, we are still
supposed to show that this proof is indeed the reflexivity proof. This is also due to the aforementioned mismatch.
In order to close this gap, at this stage we employ the uniqueness of identity proofs (UIP) axiom to be able to
state that any proof of equality is indeed the reflexivity itself.

Suppose we managed to show that the functors F and G maps objects and arrows in the same way.
Would that suffice to state that F = G? Not really; as we are still supposed to demonstrate that the proof
obligations, preserve_id and preserve_comp, for F and G are the same. To conclude this, we make use of
the proof irrelevance axiom to obtain that different proofs of a proposition are equal.

Almost all existing libraries out there embark on similar design principles with small differences lying
underneath the formalization of contextual equality of category theory. To do so, we employ the constructive
equality of Coq similar to that of [19]. In [22], this task has been accomplished by Setoid equivalences. This
approach makes things simpler when it comes to performing sameness proofs but introduces an overhead:
requires to get the statement of “every function send equivalent elements to equivalent elements” proven every
time.

Alternatively, [10] and [20] benefit from homotopy type theory proposals: there, the sameness measure is
the constructive equality enriched by the univalence axiom (UA) of Voevodsky. The UIP is avoided to prevent
contradictions simply because UA + UIP is inconsistent. This way, one could reshape the constructive equality
into a certain form of equivalences and get the related proofs done accordingly.

2.3. Coverage and novelties

We managed to formalize, in Coq, many categorical structures ranging from categories themselves to monad
algebras and Eilenberg–Moore structures together with lots of related property proofs. Below itemization clearly
lists the coverage of the library.

• Categories, functors, Cat, natural transformations, functor categories, monads, adjunctions

• Preorder, monoid and poset formed/induced categories, intuitionistic propositional logic (IPL) ∼= Category
induced by a cartesian closed preorder

• Simply typed lambda calculus: syntax, rules

• Initials, terminals, (co)products, exponentials

• Yoneda lemma

• Kleisli structures, comparison theorem for the Kleisli construction

• Monad algebras, Eilenberg–Moore sructures
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The contribution that this paper makes lies on the formalization of some categorical structures and related
property proofs that are not included in the existing libraries out there, to the best knowledge of the author.
In these lines, novel implementations are in fact a few folded as motivated below:

1. We have formalized adjunctions with and without the use of Hom-functors, and proven the fact that they
are equivalent. In a certain context, this may be crucial as for some proofs, the definition with Hom-
functors might better work while some other proofs are better benefit from the definition with no use of
Hom-functors. This way, it is possible to customize and switch between definitions in formalizing proofs.
We also have universal property (UP) of adjunctions formalized. The UP provides sufficient conditions for
an arbitrarily given functor in having a left or a right adjoint, and plays a role in interpreting dependent
products in a categorical setting.

2. We have implemented a soundness proof of the IPL in the category induced by any cartesian closed
preorder. We detail a few corner cases of the formalization in Section 3 as the case study of the paper.
Provided that IPL is one of the simplest models of computation, its categorical interpretation along with a
soundness proof could be taken as a very first step towards having Coq mechanized soundness guarantees
for computational theories.

3. The formal proof of Mac Lane’s comparison theorem for the Kleisli construction is another novel component
of the library, and detailed in [7]. The theorem states that there is a unique functor that bridges an
arbitrary adjunction and the adjunction induced by the Kleisli category of the monad handled out of the
starting arbitrary adjunction. It is used by Duval and Jacobs in their categorical settings to interpret the
state effect in impure programming languages. The proof is based on showing functor equalities for which
we detailed a few challenges in Section 2.2. Currently, we are struggling with a version of the theorem
involving Eilenberg–Moore structures and monad algebras replacing Kleisli constructions. This version
also necessitates proving functor equalities. We did get the relevant challenges handled. The rest is all
about having the category theoretical mathematics properly implemented, and reserved for future work.

3. Case study

This section is devoted to an interpretation of a fragment of intuitionistic preorder logic (IPL) within the scope
of the category induced by any cartesian closed preorder. To get there, we first recall the domain and codomain
of the interpretation; namely basics of (cartesian closed) preorders followed by the syntax and rules of the IPL
fragment in Sections 3.1 and 3.2, form the interpretation function, in Section 3.3, and only then construct the
soundness proof accordingly in Section 3.4. We put the Coq formalization up alongside the structures presented
in the pen-and-paper style.

3.1. Cartesian closed preorders in Coq

A preorder (P,⩽) is a collection P of members enriched by a binary relation ⩽ which is reflexive and transitive.
We formalize preorders in Coq again by exploiting Coq type classes as follows:
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Class PreOrder: Type ≜
{

pos : Set;
pohrel : pos → pos → bool;
porefl : ∀ x: pos, pohrel x x = true;
potrans: ∀ x y z: pos, pohrel x y = true ∧ pohrel y z = true → pohrel x z = true

}.

Obviously, the field pos denotes the collection P , and is declared to be an instance of the Set universe
of Coq. Simlarly, the pohrel field represents the underlying binary (Boolean valued) relation ⩽ . For instance,
the term pohrel x y = true formalizes the fact that x ⩽ y = true in P . The remaining fields are in fact
proof obligations ensuring that the underlying relation is reflexive and transitive.

Preorders and preorder maps form a category as well as every single preorder induces a category. We
are interested in the latter fact in terms of the case study of the paper. The category induced by a preorder
(P,⩽) contains members of P as objects while arrows are specified with the following definition: for every pair
of members x, y of P , the induced category has a unique map from x to y if and only if x ⩽ y = true holds in
P . Implied by this definition, the identity arrows and arrow compositions are uniquely determined just because
it is only possible to define at most one single arrow between every pair of objects. This could be reflected in a
Coq implementation as follows:

Definition PreOrderICMap (P: PreOrder) (x y: @pos P): Type ≜
if (@pohrel P x y) then unit else Empty_set.

Definition PreOrderDetCat (P: PreOrder): Category.
Proof. unshelve econstructor.

- exact (@pos P).
- intros x y. exact (PreOrderICMap P y x).
- intro x. exact (PreOrderICid P x).
- intros z y x g f. exact (PreOrderICcomp P x y z f g).
- ...

Defined.

In the definition of PreOrderDetCat, we benefit from the use of Coq tactics which are indeed simple
code pieces that could manipulate proof states. For instance, the tactic unshelve econstructor allows for a
construction of the intended category field by field as opposed to have it done in one go. The objects of the
induced category are set to be the underlying collection @pos P of the provided preorder P, thanks to the exact
tactic. Similarly, the arrows are exactly stated by the above given PreOrderICMap function parameterized
by any pair of @pos P members x and y. The tactic intro (with intros being the pluralized version) is
indeed the introduction rule for (dependent) function types. Simply put, it separates the hypotheses from the
goal statement. The sign ‘@’ makes all parameters explicitly provided. The entire formalization including the
definitions PreOrderICid and PreOrderICcomp could be found in the source file Preorder.v.

A preorder (P,⩽) is called cartesian closed if it has

1. the greatest element ⊤ such that

• ∀p ∈ P, p ⩽ ⊤ = true.

2. Binary meets “p 3 q” for every pair of members p and q if and only if
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• (p 3 q) ⩽ p = true and (p 3 q) ⩽ q = true;

• ∀r ∈ P, r ⩽ (p 3 q) = true ⇐⇒ r ⩽ p = true ∧ r ⩽ q = true.

3. Heyting implications “p ⊸ q” for every pair of members p and q if and only if

• (p ⊸ q) 3 p ⩽ q = true;

• ∀r ∈ P, r ⩽ (p ⊸ q) = true ⇐⇒ (r 3 p) ⩽ q = true.

As a matter of this fact, we get additional structures popping up in the induced category by a cartesian
closed preorder such that (1) the greatest element constructs the terminal object, (2) binary meets form
categorical binary products and (3) Heyting implications build categorical exponentials. This could simply
be reflected in a Coq implementation, in the given order, as follows:

Class top (P: PreOrder): Type ≜
{

ptop : @pos P;
potob: ∀ (x: @pos P), (@pohrel P x ptop) = true

}.

Lemma tPreOrderDetCat: ∀ (P: PreOrder) (t: top P),
Terminal (PreOrderDetCat P) (@ptop P t).

Class POBM (P: PreOrder) (p q: @pos P): Type ≜
{

pobm : @pos P;
pobmpi1: @pohrel P pobm p = true;
pobmpi2: @pohrel P pobm q = true;
pobmuni: ∀ r, @pohrel P r pobm = true ⇐⇒

@pohrel P r p = true ∧ @pohrel P r q = true
}.

Class hasPOBM (P: PreOrder): Type ≜
{

hpobm: ∀ p q, POBM P p q
}.

Lemma binarymeet: ∀ (P: PreOrder)
(p q: @obj (PreOrderDetCat P)) (h: POBM P p q),
Product (PreOrderDetCat P) p q (@pobm P p q h).

Class POHI (P: PreOrder) (h: hasPOBM P)
(p q: @pos P): Type ≜

{
hi : @pos P;
hiapp: @pohrel P (@pobm P hi p (@hpobm P h hi p)) q = true;
hiob : ∀ r, @pohrel P r hi = true ⇐⇒

@pohrel P (@pobm P r p (@hpobm P h r p)) q = true
}.

Lemma heyting: ∀ (P: PreOrder)
(p q: @obj (PreOrderDetCat P))
(h1: hasPOBM P) (h2: hasPOHI P h1),
@Exponential (PreOrderDetCat P)

(hasProductsPreOrderDetCat P h1) p q
(@hi P h1 p q (@hhi P h1 h2 p q)).

Here, we only state definitions on the left, alongside the propositions that state the corresponding
categorical structures as briefly explained above. For the whole definitions and proof formalizations please
refer to the source codes contained in the files Terminal.v (for the lemma tPreOrderDetCat), Product.v (for
that of binarymeet) and Exponential.v (for details of heyting). Note also that in order to make the paper

1545



EKİCİ/Turk J Math

self-contained, we provide a summary of related categorical structures accompanied by Coq implementations in
Appendix 4. On a last note, provided that a category with the terminal object, binary products and exponentials
is said to be cartesian closed, the category induced by any cartesian closed preorder is of course cartesian closed.

3.2. A fragment of IPL in Coq

The intuitionistic propositional logic (IPL) is one of the very primitive computational models consisting of a set
of terms (a.k.a. propositions or formulae) alongside a set of rules governing the terms. The IPL is constructive.
Namely, it lacks classical axioms such as LEM and any kind of equivalent like DNE. We present below, a
fragment of IPL in which terms constructors are ground propositions, the truth value, the logical conjunction
and implication.

Terms of IPL φ,ψ, θ, . . . :=
| p, q, r, . . . (ground) propositional identifiers
| true truth
| φ&ψ conjunction
| φ ⇒ ψ implication

Sequents of IPL Γ :=
| [ ] empty
| φ,Γ nonempty

Notice that there is no falsity listed, as a term constructor, simply because the logic is constructive and does
not speak of “false” propositions. Note also that every single valid IPL term is stated under a context which
could be viewed as a (potentially empty or nil) finite list or sequent of propositions.

We formalize the above syntax in the proof assistant Coq employing an inductive type IPL such that for
every term constructor there is an IPL constructor listed in the exact same order.

Inductive IPL: Type ≜
| pi : IPL
| truth: IPL
| conju: IPL → IPL → IPL
| impli: IPL → IPL → IPL.

Definition ctx ≜ list (IPL)%type.
Definition extend (c: ctx) (x: IPL) ≜ x :: c.

Also, we benefit from Coq polymorphic lists to implement contexts (ctx) of formulae. Then, the context
extension is simply the cons (denoted “::”) operator.

Abovestated IPL syntax is governed by the recursively defined “entailment ⊢” relation, and presented
below.

(ax)
φ,Γ ⊢ φ

Γ ⊢ φ
(wk)

ψ,Γ ⊢ φ
Γ ⊢ φ φ,Γ ⊢ ψ

(cut)
Γ ⊢ ψ

(true)
Γ ⊢ true

Γ ⊢ φ Γ ⊢ ψ
(&I)

Γ ⊢ φ & ψ

φ,Γ ⊢ ψ
(⇒I)

Γ ⊢ φ⇒ ψ

Γ ⊢ φ & ψ
(&E1)

Γ ⊢ φ
Γ ⊢ φ & ψ

(&E2)
Γ ⊢ ψ

Γ ⊢ φ⇒ ψ Γ ⊢ φ
(⇒E)

Γ ⊢ ψ
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There, the expression Γ ⊢ φ denotes that the proposition φ is entailed by the list of propositions
contained in the context Γ . Remark also that the context extensions are demonstrated with the use of comma
sign. E.g., “φ,Γ” denotes the new context obtained by extending Γ with the proposition φ .

Semantically, the rules indeed ensure “how to introduce and eliminate” IPL terms. In these lines, the
rule named “&I” clearly describes how to form or introduce the conjunction of an arbitrarily given pair of
propositions φ and ψ ; while the ones called “&E1 ” and “&E2 ” clarify how to eliminate or destruct a given
term conjunction into left and right components under some context Γ . The rule with the name “⇒E” is the
eliminator for implication which is known as the modus-ponens, and allows for deduction of some proposition
ψ , provided φ⇒ ψ and φ at the same time, under some context Γ .

Similar to that of terms, we make use of a Coq inductive type IPLE to get the rules formalized. The type
IPLE lands in Coq’s Prop and is parameterized by a context and an IPL term.

Inductive IPLE: ctx → IPL → Prop ≜
| ax1: ∀ (c: ctx) (phi: IPL), IPLE (phi :: c) phi
| ax2: ∀ (c: ctx) (phi psi: IPL), IPLE c phi → IPLE (psi :: c) phi
| ax3: ∀ (c: ctx) (phi psi: IPL), IPLE c phi → IPLE (phi :: c) psi → IPLE c psi
| ax4: ∀ (c: ctx), IPLE c truth
| ax5: ∀ (c: ctx) (phi psi: IPL), IPLE c phi → IPLE c psi → IPLE c (conju phi psi)
| ax6: ∀ (c: ctx) (phi psi: IPL), IPLE (phi :: c) psi → IPLE c (impli phi psi)
| ax7: ∀ (c: ctx) (phi psi: IPL), IPLE c (conju phi psi) → IPLE c phi
| ax8: ∀ (c: ctx) (phi psi: IPL), IPLE c (conju phi psi) → IPLE c psi
| ax9: ∀ (c: ctx) (phi psi: IPL), IPLE c (impli phi psi) → IPLE c phi → IPLE c psi.

Each rule is developed as an IPLE constructor with a single difference in rule and proposition renamings:
we number the rules from the left-top to the bottom-right. For instance, the rule “ax” is named ax1 while the
one “&I” is called ax4 in the implementation. We use the letter c to denote contexts Γ .

In order to sort things out, we present in the example below, the step by step derivation of the proposition
φ⇒ θ under the context φ⇒ ψ,ψ ⇒ θ, [ ] =: Γ alongside a Coq formalized proof which holds rule applications
in the exact same order.

(ax)
ψ ⇒ θ, [ ] ⊢ ψ ⇒ θ

(wk)
Γ ⊢ ψ ⇒ θ

(wk)
φ,Γ ⊢ ψ ⇒ θ

(ax)
Γ ⊢ φ⇒ ψ

(wk)
φ,Γ ⊢ φ⇒ ψ

(ax)
φ,Γ ⊢ φ

(⇒E)
φ,Γ ⊢ ψ

(⇒E)
φ,Γ ⊢ θ

(⇒ I)
Γ ⊢ φ⇒ θ

Example IPLExample:
∀ (phi psi theta: IPL),
IPLE ((impli phi psi) :: (impli psi

theta) :: nil)
(impli phi theta).

Proof. intros phi psi theta.
apply ax6.
apply ax9 with (p ≜ psi).
- apply ax2.

apply ax2.
apply ax1.

- apply ax9 with (p ≜ phi).
+ apply ax2.

apply ax1.
+ apply ax1.

Qed.

To conclude that some proposition ψ holds, provided some hypothesis H of the form φ ⇒ ψ , the Coq
tactic apply H transforms the goal into the shape of φ , performing backwards reasoning. The tactic can
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definitely do forwards reasoning. For instance, given a pair of hypotheses H1 : φ and H2 : φ ⇒ ψ , apply H2

in H1 results in H1 taking the shape of ψ . Also, the dash ‘-’ and plus ‘+’ signs are used to focus on the
subgoals generated by the application of the rule ax9, namely the “⇒E”.

3.3. Interpretation: IPL in a category induced by cartesian closed preorder

We interpret the logic IPL into the category CP induced by any cartesian closed preorder (P,⩽). The
interpretation function

q
·
y
: IPL → CP is recursively defined as follows:

IPL CPq
φ
y

:= x some x in obj CPq
true

y
:= 1 terminal objectq

φ & ψ
y

:=
q
φ
y
×

q
ψ

y
product objectq

φ⇒ ψ
y

:=
q
ψ

yq
φ
y

exponential objectq
[ ]

y
:= 1 terminal objectq

φ,Γ
y

:=
q
φ
y
×

q
Γ
y

product object

In brief, any ground proposition has been modeled by a distinguished object of the category CP . The truth
value has been interpreted by the terminal object. The conjunction is handled by categorical products while
the implication is mapped to exponential objects. The empty context has been modeled by the terminal object
while the nonempty context is represented by the binary products of individual interpretations of contained
propositions.

Class interp (P: PreOrder) (h1: top P) (h2: hasPOBM P) (h3: hasPOHI P h2): Type ≜
{

M : IPL → (@obj (@uc (PreOrderDetCatisCCC P h1 h2 h3)));
i1: { p: (@obj (@uc (PreOrderDetCatisCCC P h1 h2 h3))) | M pi = p };
i2: M truth = @tobj (@uc (PreOrderDetCatisCCC P h1 h2 h3))

(@hasT (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@uobs (PreOrderDetCatisCCC P h1 h2 h3)));

i3: ∀ p q, M (conju p q) = @pobj (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@hasP (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@uobs (PreOrderDetCatisCCC P h1 h2 h3))) (M p) (M q);

i4: ∀ p q, M (impli p q) = @eobj (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@hasP (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@uobs (PreOrderDetCatisCCC P h1 h2 h3)))
(@hasE (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@uobs (PreOrderDetCatisCCC P h1 h2 h3)))
(M p) (M q);

ML: ctx → (@obj (@uc (PreOrderDetCatisCCC P h1 h2 h3)));
i5: ∀ (l: ctx), ML l = recI P h1 h2 h3 l M

}.

As shown above, the entire model has been developed as a Coq class named interp which embodies
the interpretation function

q
·
y
: IPL → CP under the name M. It is defined from the IPL into the category

determined by the preorder P which has the greatest element (h1), binary meets (h2) and Heyting implications
(h3) given as parameters to the interp class. The function M is constructed by cases not based on the definitional
equality of Coq but on the propositional Leibniz equality ranging from the fields i1 to i4.

The field i1 implements the ground propositions as objects of the category while i2 maps the truth value
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into the terminal object. Conjunctions and implications are respectively modeled by products and exponentials
as part of the fields i3 and i4.

The interpretation of contexts has been implemented in a similar fashion to that of terms. For which, we
employ a function called ML defined from the IPL contexts to the objects of the underlying category. It performs
along the same lines with the recursive function recI (modulo Leibniz equality of Coq given by the field i5)
which is shown below.

Fixpoint recI (P: PreOrder) (h1: top P) (h2: hasPOBM P) (h3: hasPOHI P h2) (l: list IPL)
(M: IPL → (@obj (@uc (PreOrderDetCatisCCC P h1 h2 h3)))):
(@obj (@uc (PreOrderDetCatisCCC P h1 h2 h3))) ≜
match l with

| nil ⇒ @tobj (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@hasT (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@uobs (PreOrderDetCatisCCC P h1 h2 h3)))

| x :: xs ⇒ @pobj (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@hasP (@uc (PreOrderDetCatisCCC P h1 h2 h3))
(@uobs (PreOrderDetCatisCCC P h1 h2 h3)))
(M x) (recI P h1 h2 h3 xs M)

end.

The function recI maps the empty context into the terminal object, and the nonempty context into the
binary products of individual interpretations, by the function M, of the contained propositions. In order to zoom
into the details of the entire interpretation, please refer to the IPL.v file in the library.

3.4. Soundness proof: a sketch
Now, we state a helper lemma first and then the soundness theorem for the IPL within the scope of the category
induced by any cartesian closed preorder.

Lemma 3.1 (helper) For all (P,⩽) , we have x ⩽ y = true in (P,⩽) =⇒ x→ y in CP .

Proof Trivially follows from unfolding the definition of arrows in CP . 2

Theorem 3.2 (IPL soundness) Given

• Γ, φ , for all category CP induced by cartesian closed pre-orders (P,⩽)

• all interpretations
q
·
y

of the propositional identifiers as members of CP (or P ).

If Γ ⊢ φ is provable in IPL then the map
q
Γ
y
→

q
φ
y

can be defined in CP .

Proof We first apply Lemma 3.1, and turn the goal into the following shape:
q
Γ
y
⩽

q
φ
y
= true in (P,⩽) . We

then argue by induction on the structure of the entailment relation Γ ⊢ φ . Therefore, there are nine subgoals to
close. As the rest is folklore, we suffice to focus on the case where the proposition φ is a conjunction of a pair
of propositions p and q just for demonstration and reinforcement purposes for the corresponding Coq proof.

subgoal:
q
Γ
y
⩽

q
p & q

y
= true (φ := p & q, IH:

q
Γ
y
⩽

q
p
y
= true ∧

q
Γ
y
⩽

q
q
y
= true)q

Γ
y
⩽

q
p
y
= true ∧

q
Γ
y
⩽

q
q
y
= true (by the IH)q

Γ
y
⩽

q
p
y
3

q
q
y
= true (by the uniqueness of binary meets)q

Γ
y
⩽

q
p & q

y
= true (by definition of the

q
·
y
)

2
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We carry on with the reflection of above given lemma and theorem statements and the corresponding
portion of the soundness proof in Coq.

Lemma PO_POIC_l: ∀ (P: PreOrder) (x y: @pos P) (C ≜ PreOrderDetCat P),
@pohrel P x y = true → @arrow C y x.

Proof. intros (P, R, r, t) x y C H.
unfold PreOrderDetCat in C.
...
unfold PreOrderICMap.
...

Qed.

In the lemma statement, @arrow C y x denotes the type (or simply collection) of maps defined from the
object x into y in the category C induced by the preorder P. The proof proceeds with unfolding the definition
of C and the arrows therein.

Lemma soundnessIPL_CCP: ∀ (x: IPL) (c: ctx) (P: PreOrder)
(h1: top P) (h2: hasPOBM P) (h3: hasPOHI P h2)
(i: interp P h1 h2 h3)
(C ≜ PreOrderDetCat P),
IPLE c x →
@arrow C ((@M P h1 h2 h3 i) x) ((@ML P h1 h2 h3 i) c).

Proof. intros x c P h1 h2 h3 i C H.
apply PO_POIC_l.
...
induction H.
...
- (* case 5 *)

...
destruct i as (M, i1, i2, i3, i4, ML, i5).
...
rewrite i3.
...
rewrite pobmuni.
apply (conj IHIPLE1 IHIPLE2).

...
Qed.

The Coq proof of the main theorem statement starts with the application of the helper lemma PO_POIC_l.
The goal at this stage looks like pohrel (ML c) (M x) = true. We then apply induction over the structure of
IPLE c x introduced as an hypothesis under the name H into the proof context. As noted earlier, we have nine
cases to show. For the sake of brevity, we focus on the case number five in which the propositional formula is an
IPL conjunction. The corresponding subgoal in this state is pohrel (ML c) (M (conju p q)) = true for some
propositional terms p and q. The tactic destruct i makes no change in the goal statement but projects the fields
of the interp class instance i into individual hypotheses just as they are named in the class declaration. The
tactic rewrite i3 replaces the subterm (M (conju p q)) with the binary meet of propositions p and q, that
is pobm, and turns the goal into pohrel (ML c) pobm = true. Employing rewrite pobmuni reshapes the goal
into pohrel (ML c) (M p) = true ∧ pohrel (ML c) (M q) = true by declaration (refer to the class POBM
in Section 3.1). The current state of the goal is simply the conjunction of the induction hypotheses IHIPLE1:
pohrel (ML c) (M p) = true and IHIPLE2: pohrel (ML c) (M q) = true, and closed by the tactic apply
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(conj IHIPLE1 IHIPLE2). The constructor conj here refers to propositional conjunction operator of Coq, and
should not be confused with that of IPL. Note lastly that the intermediate tactic applications skipped by triple
dots in the above demonstration are auxiliary, and employed to get the hypotheses or the goal into the correct
shape so that the “main” tactic applications could be performed with no issue. For the entire formalization of
the proof, please look into the IPL.v file.

4. Conclusion and future directions
We briefly exhibited a category theory library developed in the Coq proof assistant. The design principles of
the library have been stated in a comparative fashion with the existing libraries out there. We concluded with
a case study, in which the IPL soundness has been proven with respect to a certain category theoretical setting,
to demonstrate the utility of the library.

Also, we stress out the mismatch in between contextual equality of category theory and the structural
Leibniz equality of type theory, and brought forward that the former cannot be represented by the latter entirely.
The problem implied by this mismatch is undecidable in general as it could be reduced to the problem of higher
order unification. However, it could be solved for particular cases. So far, we managed to solve a case in
formalizing a proof of the comparison theorem for the Kleisli construction. Even though the proof has not yet
been entirely developed, we did overcome the mismatch in proving the same theorem for the Eilenberg–Moore
construction. Completing this proof is in fact the next practical goal to be achieved which could be chased by
a formalization of Beck’s monadicity theorem. These proofs and related constructions could be viewed as some
certain recipe when it comes to performing formal reasoning over imperative and impure programs. As for pure
programs, we are planning to make an attempt at formalizing semantics of dependent products in a categorical
setting for which many essentials have already been implemented such as the UP of adjunctions.
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Appendices
A. Terminals, products and exponentials
If exists, an object is said to be terminal in a category C if and only if there is a unique incoming arrow from
every single C -object. We develop terminal objects in Coq as follows:

Class Terminal (C: Category) (tobj: @obj C): Type ≜
{

tmorph : ∀ X, @arrow C tobj X;
tmorphu: ∀ X (f g: @arrow C tobj X), f = g

}.

This is simply read as: we have a terminal object tobj in an arbitrarily given category C, if there is an
incoming arrow tmorph from every object X of C such that any alternative to such arrow is indeed itself ensuring
the unicity. The proof obligation is stated by the field tmorphu.

In any category C , if exists, binary product of a pair of objects A,B is a quadruple (P, π1, π2, p) with

P := A×B (product object)
π1 : P → A (first projection)
π2 : P → A (second projection)
p : ∀(Z in C) (f : Z → A) (g : Z → B), Z → P (product map)

such that

pob1 : ∀(Z in C) (f : Z → A) (g : Z → B), π1 ◦ (pZ f g) = f
pob2 : ∀(Z in C) (f : Z → A) (g : Z → B), π2 ◦ (pZ f g) = g
pobu : ∀(Z in C) (f : Z → A) (g : Z → B) (q : Z → P ),

π1 ◦ q = f ∧ π2 ◦ q = g =⇒ (pZ f g) = q.

The product P is indeed the object of pairs handled by pairing up the members of A and B . It comes with
a couple of projections π1 and π2 along with product map p defined from any object Z into P provided the
arrows f : Z → A and g : Z → B . The unique map p gives the arrow f back out of the first projection and
g out of the second one as respectively implied by the obligations pobu , pob1 and pob2 . This construction is
reflected in a Coq implementation as follows:

Class Product (C: Category) (A B prod: @obj C): Type ≜
{

pi1 : @arrow C A prod;
pi2 : @arrow C B prod;
prod_f : ∀ (Z: @obj C) (f: @arrow C A Z) (g: @arrow C B Z), @arrow C prod Z;
prod_f_c1 : ∀ (Z: @obj C) (f: @arrow C A Z) (g: @arrow C B Z), f = pi1 o prod_f Z f g;
prod_f_c2 : ∀ (Z: @obj C) (f: @arrow C A Z) (g: @arrow C B Z), g = pi2 o prod_f Z f g;
prod_f_uni: ∀ (Z: @obj C) (f: @arrow C A Z) (g: @arrow C B Z) (q: @arrow C prod Z),

f = pi1 o q → g = pi2 o q → (prod_f Z f g) = q
}

The product object P , of arbitrarily given objects A and B , is named prod. The fields pi1 and pi2
implement the projections π1 and π2 respectively. The product map p is denoted by the field prod_f while
obligations pob1 and pob2 are developed by the fields called prod_f_c1 and prod_f_c2 . Obviously, the field
prod_f_uni represents the uniqueness of the product map formalizing the obligation pobu .
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In any category C with binary products, if exists, exponential of a pair of objects X and Y is a triple
(E, app, cur ) with

E := Y X (exponential object)
app : E ×X → Y (application)
cur : ∀(Z in C) (f : Z ×X → Y ), Z → E (currification)

such that

curcomm : ∀(Z in C) (f : Z ×X → Y ) , app ◦ (cur Z f × idX) = f
curuni : ∀(Z in C) (f : Z ×X → Y ) (e : Z → E),

app ◦ (cur Z f × idX) = e =⇒ (cur Z f) = e

The exponential E is in fact the object of maps defined from X to Y along with a pair of interface functions
app and cur . The former obviously applies a map f : X → Y in a member of X returning a member of Y .
The latter transforms a function of pairs into a function of functions. The proof obligation currcomm indicates
that first currifying a function f : Z ×X → Y and then applying it in a member of X , after arranging things
into the correct shape, gives the arrow f back as it is. While the obligation curuni definitely clears up the
fact that there must be a unique way of currifying arrows. One way to formalize this construction in the proof
assistant Coq is listed as follows:

Class Exponential (C: Category) {p: hasProducts C} (X Y exp: @obj C): Type ≜
{

app : @arrow C Y (@pobj C p exp X);
cur : ∀ (Z: @obj C) (f: @arrow C Y (@pobj C p Z X)), @arrow C exp Z;
curcomm: ∀ (Z: @obj C) (f: @arrow C Y (@pobj C p Z X)), app o (fprod (cur Z f) (@identity C X)) = f;
curuni : ∀ (Z: @obj C) (f: @arrow C Y (@pobj C p Z X)) (g: @arrow C exp Z),

app o (fprod g (@identity C X)) = f → (cur Z f) = g
}.

The exponential object E , of arbitrarily given objects X and Y , is called exp. The fields app and curr
implement interface functions app and curr . while those curcomm and curuni are respectively formalizing
proof obligations currcomm and curuni .
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