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Abstract: The weight Ricci curvature plays an important role in studying global Finsler geometry. In this paper, we
study a class of Finsler measure spaces of constant weighted Ricci curvature. We explicitly construct new families of such
complete Finsler measure spaces. In particular, we find an eigenfunction and its eigenvalue for such spaces, generalizing a
result previously only known in the case of Gaussian shrinking soliton. Finally, we give necessary and sufficient conditions
on the coordinate functions for these spaces to be Euclidean measure spaces.
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1. Introduction
Finsler geometry is just the Riemannian geometry without the quadratic restriction. In Riemannian geometry,
the volume of geodesic balls can be controlled by the lower bounds of the Ricci curvature. However the situation
is much more complicated for Finsler metrics. In 1996, Z. Shen introduced the notion of the S -curvature (mean
covariation in an alternation terminology in [13]) and proved that S -curvature and the Ricci curvature determine
the local behavior of the Busemann–Hausdorff measure of small metric balls around a point [14]. In [10], Ohta
introduced the weighted Ricci curvature RicN with N ∈ [dimM,+∞] which is the combination of the Ricci
curvature and the S -curvature. The weighted Ricci curvature not only can control the volume of geodesic
balls but also establish some interesting global results on a Finsler measure space [11, 12, 18], such as Bochner
inequality and Poinca ŕe-Lichnerowicz inequality. Note that RicN ≥ k > 0 for some N ∈ [dimM,+∞) implies
the compactness of M by Bonnet–Myers Theorem [10]. In the Riemannian measure space case Ric∞ reduces the
Bakry-Émery Ricci curvature Ricf where f is the potential function. Very recently, Yin-Mo obtain a logarithmic
Sobolev inequality and a Lichnerowicz type theorem in complete Finsler measure spaces with Ric∞ ≥ k > 0

[18]. Hence Finsler measure spaces of special weighted ∞ Ricci curvature properties deserve further study.
In this paper, we construct and study complete noncompact Finsler measure spaces with constant weighted
Ricci curvature Ric∞ . Let F (x, y) = φ(y) be a Minkowski norm on Rn and σBH be its Busemann–Hausdorff
measure function. We prove the following (see Section 3):
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Theorem 1.1 For arbitrary real number ρ , (Rn, F, e−
ρ
2φ(x)2σBHdx) is a complete Finsler measure spaces of

constant weighted Ricci curvature Ric∞ = ρ .

We have the following three interesting cases.
(a) When F (x, y) = |y|, ρ = 1

2 , then

(Rn, F, dV ) = (Rn, gcan, e
|x|2
4 dx)

is the Gaussian shrinking soliton [2, 3].
(b) When F (x, y) = |y|, ρ = − ln(2π)

n
2 , then

(Rn, F, dV ) = (Rn, gcan, (2π)
−n

2 e−
|x|2
2 dx)

is the Gaussian probability space [5, 8].
(c) When F (x, y) = |y|, ρ = − 1

2 , then

(Rn, F, dV ) = (Rn, gcan, e
− |x|2

4 dx)

is the Gaussian expanding soliton [2].
It is worth mentioning that the Gaussian shrinking soliton, the Gaussian probability space and the

Gaussian expanding soliton are important examples in the theory of Riemannian measure space. In [3], Cao
and Zhou have proved that for any fixed point p ∈ M

1

4
(r(x)− c)2 ≤ f(x) ≤ 1

4
(r(x) + c)2

on a nontrivial, noncompact, shrinking gradient Ricci soliton (M, g, e−fdV ) , where r(x) = d(p, x) is the distance
function from some fixed point p ∈ M . In view of the Gaussian shrinking soliton, the leading term 1

4r(x)
2

for the lower and upper bounds on f in Cao-Zhou’s result is optimal. The isoperimetric inequality and the
Brann–Minkowski inequality in the Gaussian probability space have obtained by Eskenazis and Moschidis etc.
[6, 9].

A Finsler Gaussian soliton (Rn, F, e−
ρ
2φ(x)2dVBH) is a Minkowski space (Rn, F ) together with a volume

form e−
ρ
2φ(x)2dVBH on Rn , where F (x, y) = φ(y) , dVBH denotes the Busemann–Hausdorff volume form of F

and ρ is a nonzero constant. Theorem 1.1 tells us that all Finsler Gaussian solitons have constant weighted
Ricci curvature Ric∞ . Moreover we have the following

Theorem 1.2 Let (Rn, F, e−
ρ
2φ(x)2dVBH) be a Finsler Gaussian soliton. Then r2 − n

ρ is an eigenfunction

corresponding eigenvalues λ = 2ρ in (Rn, F, e−
ρ
2φ(x)2dVBH) where r is the distance function from origin.

Let us take a look at the special case: when φ(y) = |y|, ρ = 1
2 ,

r2 − n

ρ
= |x|2 − 2n =

n∑
k=1

[
(xk)2 − 2

]
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is the eigenfunction of λ2(Rn) = 1 in (Rn, gcan, e
|x|2
4 dx) (see (25) and Example 1 in [4]). By a direct

computation we can obtain that (xk)2 − 2 are also eigenfunctions of λ2(Rn) = 1 for k = 1, · · · , n . Thus
it is a natural problem to study whether 2ρ is also the second eigenvalue of Finsler Laplacian on a Finsler
Gaussian soliton (Rn, F, e−

ρ
2φ(x)2dVBH) which φ is of non-Euclidean type (see Theorem 1.3 below).

We know that, in the Gaussian shrinking soliton (Rn, F, e
|x|2
4 dx) , all coordinate functions are eigen-

functions of λ1(Rn) = 1
2 [4]. A nature task for us is to determine all Finsler Gaussian solitons such that their

coordinate functions are eigenfunctions of ρ . We show the following.

Theorem 1.3 Let (Rn, F, e−
ρ
2φ(x)2dVBH) be a Finsler Gaussian soliton. Then, the following assertions are

equivalent:
(i) one of the coordinate functions is the eigenfunction of ρ ;
(ii) all coordinate functions are the eigenfunctions of ρ ;
(iii) φ is a Euclidean norm.

Theorem 1.3 tells us that on the Gaussian shrinking soliton (Rn, F, e−
ρ
2φ(x)2dVBH) each coordinate

function is not the eigenfunction of ρ unless φ is Euclidean norm. This contrasts sharply with the situation in
the Gaussian shrinking soliton.

2. Preliminaries
Let M be an n -dimensional manifold and π : TM → M be the natural projection from the tangent bundle
TM . Let (x, y) be a point of TM with x ∈ M , y ∈ TxM , and let (xi, yi) be the local coordinates on TM

with y = yi∂/∂xi . A Finsler metric on M is a function F : TM → [0,+∞) satisfying the following properties:
(i) Regularity: F (x, y) is smooth in TM \ {0} ;
(ii) Positive homogeneity: F (x, λy) = λF (x, y) for λ > 0 ;
(iii) Strong convexity: The fundamental tensor

gy := gij(x, y)dx
i ⊗ dxj , gij :=

1

2

∂2F 2

∂yi∂yj

is positively definite. A C∞ manifold M with its Finsler metric F is said a Finsler manifold. A typical example
of Finsler manifolds is defined on Rn :

gij = gij(y).

The pair (Rn, F ) is called a Minkowski space.
Let F be a Finsler metric on an n -dimensional manifold M . Given two linearly independent vectors

v, w ∈ TxM\{0} , the flag curvature is defined by

K(v, w) :=
gv(R

v(v, w)w, v)

gv(v, v)gv(w,w)− gv(v, w)2
,

where Rv is the Chern curvature [17]. Then the Ricci curvature for (M,F ) is defined by

Ric(x, v) =
n−1∑
α=1

K(v, eα),
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where e1, · · · , en−1,
v

F (v) form an orthonormal basis of TxM with respect to gv .

Let (M,F, dµ) be an n -dimensional Finsler measure manifold. Let Gi be the geodesic coefficients of F

and dµ := σ(x)dx1 ∧ · · · ∧ dxn . The S -curvature of (F, dµ) is given by

S :=
∂Gi

∂yi
− yi

∂ log σ

∂xi
.

It is a globally defined scalar function on TM\{0} . In the Riemannian measure space case (M, F, dµ) ,
the S -curvature is just the differential of the potential function f , where F =

√
gij(x)yiyj and dµ =

e−f
√
det(gij(x))dx

1 ∧ · · · ∧ dxn . Give a vector y ∈ TxM , let γ : (−ε, ε) → M be a geodesic with γ(0) = x ,
γ̇(0) = y . Define

Ṡ(x, y) := F−2 d

dt
[S(γ(t), γ̇(t))]t=0.

Given a vector y ∈ TxM , The weighted Ricci curvature Ric∞ of (M,F, dµ) at y is defined by (see [10])

Ric∞(x, y) := Ric(x, y) + Ṡ(x, y).

This is the Bakry-Émery Ricci curvature Ricf in the Riemannian measure space case where f is the potential
function. For definitions of other weighted Ricci curvatures see [10].

We mention that Ric∞ is different from the weighted Ricci curvature WPRic0 introduced by Tabatabei-
far et al. [16]. However, both Ric∞ and WPRic0 are (a, b) -weighted Ricci curvature (defined by Z. Shen at
2020 Conference on Riemannian-Finsler geometry at Ningbo, China).

For a smooth function u , the gradient vector of u at x is defined by

∇u(x) := L−1(du), (2.1)

where L : TxM → T ∗
xM is the Legendre transformation. Let v = vi ∂

∂xi be a smooth vector field on M . The
divergence of v with respect to an arbitrary volume form dµ := σ(x)dx1 ∧ · · · ∧ dxn is defined by

divv :=

n∑
i=1

(
∂vi

∂xi
+ vi

∂ log σ(x)

∂xi

)
.

Then the Finsler–Laplacian of u can be defined by [7]

∆u := div(∇u),

where the equality is in the weak W 1,2(M) sense (see [14], p.209). It is a nonlinear elliptic differential operator.
Finsler–Laplacian is just the drift Laplacian if F is a Riemannian metric.

Let λ ∈ R and f ∈ H1
0 (M,F, dµ) . Recall that λ and f are called an eigenvalue and an eigenfunction of

(M,F, dµ) respectively if [14]
∆f = −λf.

In particular, the smallest positive eigenvalue on Finsler Laplacian is called the first eigenvalue.

1556



YIN et al./Turk J Math

3. Proofs of Theorems 1.1 and 1.2
Let F be a Finsler metric on an n -dimensional manifold M . We say Ric∞ = ρ for some ρ ∈ R if, for any
y ∈ TxM [15]

Ric∞(x, y) = ρF (x, y)2.

Let (Rn, F, e−
ρ
2φ(x)2σBHdx) be a Finsler measure space where F (x, y) = φ(y) is a Minkowski norm on

Rn , σBH is the Busemann–Hausdorff measure function of F and ρ is a constant.
Note that (Rn, F ) is a Minkowski space. Hence F is a projectively flat Finsler metric [1]. Let γ(t) = vt

be the geodesic passing through origin o . Then

r(x) = d(o, x)

=

∫ s

0

F (γ(t), γ̇(t))dt

=

∫ s

0

φ(v)dt

= φ(v)s = φ(x), (3.1)

where r(x) is the distance function from origin o and x = γ(s) . Since the geodesic coefficient Gi = 0 for
i ∈ {1, · · · , n} , F has vanishing Ricci curvature. Put

y = γ̇(s) =
d

dt
(vt) |t=s= v, u := t− s.

Then
γ(t) = (u+ s)v = uv + x := σ(u).

It follows that
σ(0) = x, σ̇(0) = v = y.

According to [14], the Hessian of the function f = ρ
2φ

2 is

Hessf(y) =
d2

du2
(f ◦ σ) |u=0

=
∂2f

∂xi∂xj
(x)σ̇i(0)σ̇j(0) +

∂f

∂xi
σ̈i(0)

=
∂2f

∂xi∂xj
(x)σ̇i(0)σ̇j(0)− 2

∂f

∂xi
Gi(v)

= ρ

(
1

2
φ2(x)

)
xixj

vivj

= ρgij(v)v
ivj = ρφ2(v) = ρF (x, y)2.

It follows that

Ric∞(x, y) = Ric(x, y) +Hessf(y) = ρF (x, y)2.

Hence (Rn, F, e−
ρ
2φ(x)2σBHdx) has constant weighted Ricci curvature Ric∞ = ρ . Therefore we complete the

proof of Theorem 1.1.
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Now we are going to show Theorem 1.2. Let r be the distance functions from origin. By (14.7) and (3.7)
in [14], we have

∆r =
1

σ(x)

∂

∂xi

[
σ(x)g∗ij(dr)

∂r

∂xj

]
, (3.2)

where

σ(x) = σBHe−
ρ
2φ

2(x) = σBHe−
ρ
2 r

2(x) (3.3)

and

g∗ij(dr) = g∗ij(L(∇r)) = gij(∇r). (3.4)

Note that

σBH =
Vol(Bn)

Vol {y ∈ Rn|F (y) < 1}
= constant (3.5)

for a Minkowski space (Rn, F ) . It follows that

∆r =
1

e−
ρ
2 r

2
σBH

∂

∂xi

[
σBHe−

ρ
2 r

2

gij(∇r)
∂r

∂xj

]
= gij(∇r)

∂r

∂xj

∂

∂xi

(
−ρ

2
r2
)
+

∂

∂xi

[
gij(∇r)

∂r

∂xj

]

= −ρr
∂r

∂xi

∂r

∂xj
g∗ij(dr) +

∂r

∂xj

∂

∂xi

[
gij(∇r)

]
+ gij(∇r)

∂2φ

∂xi∂xj
(3.6)

where we have used (3.2), (3.3), (3.4) and (3.5). We know ∇r is a unit vector field [14]. Thus we have

∂r

∂xi

∂r

∂xj
g∗ij(dr) =

∂r

∂xi

∂r

∂xj
g∗dr(dx

i, dxj)

= g∗dr(dr, dr)

= [F ∗(dr)]
2

= [F (∇r)]
2
= 1. (3.7)

For each x ∈ Rn , identify TxRn with Rn . Combining this with (2.1) we have

∇r = (∇ir)
∂

∂xi
= (∇1r,∇2r, · · ·,∇nr),

where

∇ir =
∂r

∂xj
gji(∇r), (3.8)

where

(gij) = (g
ij
)−1, gij :=

1

2

∂2φ2

∂xi∂xj
.
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It follows that

∂gjk(∇r)

∂xi
=

∂

∂xi

[
gjk(∇1r,∇2r, · · ·,∇nr)

]
= 2Cjkl(∇r)

∂(∇lr)

∂xi
, (3.9)

where Cjkl :=
1
2
∂gkl

∂xj . From (3.9) we have

∂gil(∇r)

∂xi
= −gij(∇r)

∂gjk(∇r)

∂xi
gkl(∇r)

= −2gij(∇r)Cjks(∇r)
∂(∇sr)

∂xi
gkl(∇r) (3.10)

where we have used the following formula

gij(∇r)gjk(∇r) = δik.

Note that

(∇kr)Clks(∇r) = 0.

Together with (3.10) and (3.8), we obtain

∂r

∂xj

∂

∂xi

[
gij(∇r)

]
= −2

∂r

∂xj
gil(∇r)Clks(∇r)

∂(∇sr)

∂xi
gkj(∇r)

= −2gil(∇r)
∂(∇sr)

∂xi
(∇kr)Clks(∇r) = 0. (3.11)

It follows from (3.1) that

dr = dφ =
∂φ

∂xj
dxj . (3.12)

For each x ∈ Rn , identify TxRn with Rn . Together this with (3.12) and Proposition 14.8.1 in [1] we get

L(x) = L
(
xi ∂

∂xi

)
= φ

∂φ

∂xj
dxj = rdr (3.13)

for x ∈ Rn . This gives

x = L−1(rdr) = r∇r.

We obtain gij(∇r) = gij(x) . Combining this with (3.1), (3.4) and (3.7) we get

gij(∇r)
∂2φ

∂xi∂xj
= gij(x)

(
φ

∂2φ

∂xi∂xj
+

∂φ

∂xi

∂φ

∂xj
− ∂φ

∂xi

∂φ

∂xj

)
/φ

=
1

φ

[
gijgij − gij(∇r)

∂r

∂xi

∂r

∂xj

]
=

n− 1

r
. (3.14)

Plugging (3.7), (3.11) and (3.14) into (3.6) yields

∆r = −ρr +
n− 1

r
. (3.15)

1559



YIN et al./Turk J Math

Without much difficulty, one can show that

∇r2 = L−1(dr2) = 2rL−1(dr) = 2r∇r.

This gives

∆

(
r2 − n

ρ

)
= ∆r2

= div(∇r2)

= 2rdiv(∇r) + 2dr(∇r)

= 2r∆r + 2 [F (∇r)]
2

= 2r

(
n− 1

r
− ρr

)
+ 2 = −2ρ

(
r2 − n

ρ

)

where we have used (3.7) and (3.15). Thus r2 − n
ρ is an eigenfunction corresponding eigenvalue λ = 2ρ in

(Rn, F, e−
ρ
4F (x)2σBHdx) .

4. A new characterization of Minkowski norm of Euclidean type

Now we are going to establish the Lemmas required in the proof of Theorem 1.3.

Lemma 4.1 Let (Rn, F ) be a Minkowski space. Then the gradient of xk is a constant vector, that is

∇xk = constant (4.1)

for k = 1, · · · , n . Therefore,
(
gij(∇xk)

)
is a constant matrix.

Proof Note that (Rn, F ) is a Minkowski space. Hence we get g∗ij are independent of x , where g∗ij =[
1
2F

∗2(x, p)
]
pipj

. For each x ∈ Rn , identity TxRn and Tx (Rn)
∗ with Rn . Then

∇xk = L−1(dxk) = g∗lk(ek)
∂

∂xl
= (g∗1k(ek), g

∗2k(ek) · · · , g∗nk(ek))

where ek is the k-th standard base of Rn . It follows that the section ∇xk is a constant section in TRn . We
obtain that (gij(∇xk)) is a constant matrix, where

(gij) := (gij)
−1, gij :=

1

2

∂2F 2

∂xi∂xj
.

2

Lemma 4.2 Let (Rn, F, e−
ρ
2φ(x)2dVBH) be a Finsler Gaussian soliton. Then for k ∈ {1, · · ·, n}

∆xk = −ρgik(∇xk)gil(x)x
l. (4.2)
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Proof By using Lemma 4.1, we have

∂g∗ik(dxk)

∂xi
=

∂gik(∇xk)

∂xi
= 0.

Together with (14.7) in [14], (3.3) and (3.5), we have

∆xk =
1

e−
ρ
2φ

2

∂

∂xi

[
e−

ρ
2φ

2

g∗ij(dxk)
∂xk

∂xj

]
(4.3)

=
1

e−
ρ
2φ

2

∂

∂xi

[
e−

ρ
2φ

2

g∗ik(dxk)
]

= g∗ik(dxk)
∂

∂xi

(
−ρ

2
φ2

)
+

∂

∂xi

[
g∗ik(dxk)

]
= −ρxjgik(∇xk)

∂2

∂xi∂xj

[φ(x)]2

2
= −ρgik(∇xk)gij(x)x

j .

2

Let (Rn, F ) be an n -dimensional Minkowski space and

Cijk :=
1

4
[F 2]yiyjyk(y)

be its Cartan torsion [14]. Suppose that there is an i0 such that Ci0jk = 0 . Without lose of generality we can
assume that i0 = 1 . It follows that

∂gij
∂y1

= 2Cij1 = 0,

where gij are the components of the fundamental tensor gy in the direction y [1]. Thus we obtain

gij = gij(y
2, · · ·, yn).

In particular, we have

gij(1, y
2, · · ·, yn) = gij(y

2, · · ·, yn).

Since gij is positively homogeneous of degree 0, we have, for y ̸= 0 ,

[F (y)]2 = gij(y)y
iyj

= gij(ty
1, ty2, · · ·, tyn)yiyj =gij(1, ty2, · · ·, tyn)yiyj ,

where t > 0 . Letting t go to zero, by smoothness on Rn \ {0} we obtain

F (y)2 = gij(1, 0, · · ·, 0)yiyj .

It is then easy to check that setting g̃ij(y) = gij(1, 0, · · ·, 0) one gets a Euclidean norm on Rn , whose associated
norm is exactly F . We have obtained the following:
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Lemma 4.3 Let (Rn, F ) be an n-dimensional Minkowski space and Cijk be its Cartan torsion. Assume that
there is an i0 such that Ci0jk = 0 . Then F comes from an Euclidean norm on Rn .

Proof of Theorem 1.3.
(i) ⇒ (iii) . Suppose that one of the coordinate functions xi0 is the eigenfunction corresponding the

eigenvalue ρ . Without lose of generality we can assume that i0 = 1 . Hence

∆x1 = −ρx1.

Combining this with (4.2) yields

x1 = gi1(∇x1)gil(x)x
l (4.4)

where we have used that ρ ̸= 0 . Differentiating (4.4) with respect to x1 , we obtain

1 = gi1(∇x1)
∂

∂x1

[
gil(x)x

l
]

= gi1(∇x1)

[
gi1(x) + xl ∂3φ2

∂x1∂xi∂xl

]
= gi1(∇x1)gi1(x) (4.5)

where we have used the fact ∂2φ2

∂x1∂xi is positively homogeneous of degree 0. Similarly differentiating (4.4) with
respect to xα , we have

gi1(∇x1)giα(x) = 0, α = 2, · · · , n. (4.6)

Let

A :=


g11(∇x1) g21(∇x1) · · · gn1(∇x1)
g12(x) g22(x) · · · gn2(x)

...
...

...
g1n(x) g2n(x) · · · gnn(x)

 , G := (gij(x)) . (4.7)

Using (4.5), (4.6) and the following fact

giα(x)gij(x) = δαj ,

we have

AG =

 1 · · · 0
... . . . ...
0 · · · 1

 .

It follows that

A = G−1 =
(
gij(x)

)
.

Taking this together with the first equation of (4.7) yields

g11(∇x1) = g11(x), · · · , gn1(∇x1) = gn1(x). (4.8)
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For each x ∈ Rn , we identify TxRn with Rn . Then

g∗ij(L(x)) = gij(x) (4.9)

and

(x1, · · · , xn) = L(x1, · · · , xn) = L(x),

where xk = xjgjk(x) . We take (x1, · · · , xn) as a coordinate system in (Rn)
∗ . Then

g∗ij(x1, · · · , xn) =
1

2

∂2

∂xi∂xj
(φ∗)2,

where φ∗ is the dual Minkowski norm of φ [14]. From (4.8), (4.9), (4.10) and Lemma 4.1 we have

g∗1j(x1, · · · , xn) = g1j(x) = g1j(∇x1) = constant.

It follows that the Cartan torsion C∗ijk of φ∗ satisfy

C∗1jk = 0.

By Lemma 4.3, φ∗ is a Euclidean norm on (Rn)∗ . Thus φ is a Euclidean norm on Rn .

(iii) ⇒ (ii) . Assume that F (x, y) =
√
aijyiyj , where (aij) is a constant matrix. By (4.2) we have

∆xk = −ρxk, k = 1, · · · , n.

(ii) ⇒ (i) . It is obvious.
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