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Abstract: In this article, we define Clairaut semi-invariant Riemannian maps (CSIR Maps, In short) from almost
Hermitian manifolds onto Riemannian manifolds and investigate fundamental results on such maps. We also obtain
conditions for totally geodesicness on distributions defined in the introduced notion. Moreover, we provide an explicit
example of CSIR map.
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1. Introduction
In the study of the geodesic upon a surface of revolution, a well known Clairaut’s theorem [5] tells that for
any geodesic c(c : I1 ⊂ R → M on M ) on the revolution surface M the product rsinφ is constant with
along c , where φ(s) be the angle between c(s) and the meridian curve through c(s), s ∈ I1 . It means, it
is independent of s . Bishop introduced and studied Riemannian submersions which satisfy a generalization
of Clairaut’s theorem. He showed the concept of Clairaut submersion in the following way: a submersion
π : M → N is said to be a Clairaut submersion if there is a function r : M → R+ such that for every geodesic,
making an angle φ with the horizontal subspaces, rsinφ is constant [5]. Moreover, he gave a characterization
of Clairaut submersion, studied the behaviour of geodesic, and further obtain a generalization of Clairaut’s
theorem. This notion has been studied in Lorentzian spaces, timelike and spacelike spaces [8] (see also [19],
[20], [21], [22]). In [1], Allison has shown that such submersions have their applications in static spacetimes. In
[7], the author also showed that the notion of Clairaut submersion is a useful tool for obtaining decomposition
theorems on Riemannian manifolds. Moreover, Clairaut submersions have been further generalized in [2]. Lee
et al. [8] investigated new conditions for anti-invariant Riemannian submersions [14] to be Clairaut when the
total manifolds are Kahlerian.

On the other hand, Fischer [6] introduced the notion of Riemannian map between Riemannian manifolds,
which generalizes and unifies the notions of an isometric immersion, a Riemannian submersion and an isometry.
Fischer defined the concept of Riemannian map in the following way: Let π : (N1, g1) → (N2, g2) be a
differentiable map between Riemannian manifolds such that 0 < rank π∗ < min{m,n} . If we denote the
kernel space of π∗ by kerπ∗ and the orthogonal complementary space of kerπ∗ by (kerπ∗ )⊥ in TN1 , then
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the TN1 has the following orthogonal decomposition:

TN1 = kerπ∗ ⊕ (kerπ∗ )⊥. (1.1)

Here, if we denote the range of π∗ by rangeπ∗ and for a point q ∈ N1 the orthogonal complemen-
tary space of rangeπ∗π(q) by (rangeπ∗π(q))

⊥ in Tπ(q)N2. Then the tangent space Tπ(q)N2 has the following
orthogonal decomposition:

Tπ(q)N2 = (rangeπ∗π(q))⊕ (rangeπ∗π(q))
⊥.

A differentiable map π : (N1, g1) → (N2, g2) is called a Riemannian map at q ∈ N1 if the hor-
izontal restriction πh

∗q : (kerπ∗q)
⊥ → (rangeπ∗π(q)) is linear isometry between the inner product space

((kerπ∗q)
⊥, (g1)(q)|(kerπ∗q)⊥) and (rangeπ∗π(q)

, (g2)(π(q))|(rangeπ∗q)). Fischer showed a conspicuous property

of this map is that it satisfies the generalized eikonal equation ∥ π∗ ∥2= rankπ. The eikonal equation is a
bridge between geometric optics and physical optics. In [6], the author also proposed an approach to build a
quantum model and he pointed out the success of such a program of building a quantum model of nature using
Riemannian maps that would provide an interesting relationship between Riemannian maps, harmonic maps,
and Lagrangian field theory. Further, the notion of Riemannian map is being studied continuously from differ-
ent perspectives, as semi-invariant Riemannian maps [15], slant Riemannian maps [16], semi-slant Riemannian
maps [10] , hemi-slant Riemannian maps [18] (see also [11], [12] etc).

In [17], Sahin introduced Clairaut Riemannian maps, in which he obtained necessary and sufficient
conditions for Riemannian maps to be Clairaut Riemannian maps. In this paper, we are interested in studying
the above idea in the setting of CSIR maps. The article is organized as follows. Section 2, we gather some
concepts, which are needed in the following parts. In section 3, we define CSIR map from almost Hermitian
manifold onto Riemannian manifold and study the geometry of leaves of distributions. In section 4, we present
an example of the CSIR map.

2. Preliminaries
Let N1 be an even-dimensional differentiable manifold. Let J be a (1, 1) tensor field on N1 such that

J2 = −I, (2.1)

where I is identity operator . Then J is called an almost complex structure on N1 . The manifold N1 with an
almost complex structure J is called an almost complex manifold [14]. It is well known that an almost complex
manifold is necessarily orientable. Nijenhuis tensor N of an almost complex structure is defined as:

N(V1, V2) = [JV1, JV2]− [V1, V2]− J [JV1, V2]− J [V1, JV2], (2.2)

for all V1, V2 ∈ Γ(TN1).

If Nijenhuis tensor field N vanishes on an almost complex manifold N1 , then the almost complex manifold
N1 is called a complex manifold.

Let g1 be a Riemannian metric on N1 such that

g1(JZ1, JZ2) = g1(Z1, Z2), for all Z1, Z2 ∈ Γ(TN1). (2.3)
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This metric g1 is called a Hermitian metric on N1 and manifold N1 with Hermitian metric g1 is called
an almost Hermitian manifold. The Riemannian connection ∇ of an almost Hermitian manifold N1 can be
extended to the whole tensor algebra on N1. Tensor fields (∇Y1J) areis defined as

(∇Y1J)Y2 = ∇Y1JY2 − J∇Y1Y2, (2.4)

for all Y1, Y2 ∈ Γ(TN1).

An almost Hermitian manifold (N1, g1, J) is called a Kähler manifold [4] if

(∇Y1
J)Y2 = 0, (2.5)

for all Y1, Y2 ∈ Γ(TN1) .
Define O’Neill’s tensors [9] T and A by

AE1E2 = H∇HE1VE2 + V∇HE1HE2, (2.6)

TE1
E2 = H∇VE1

VE2 + V∇VE1
HE2, (2.7)

for any vector fields E1, E2 on N1, where ∇ is the Levi-Civita connection of g1. It is easy to see that TE1

and AE1
are skew-symmetric operators on the tangent bundle of N1 reversing the vertical and the horizontal

distributions.
From equations (2.6) and (2.7), we have

∇Z1
Z2 = TZ1

Z2 + V∇Z1
Z2, (2.8)

∇Z1V1 = TZ1V1 +H∇Z1V1, (2.9)

∇V1
Z1 = AV1

Z1 + V∇V1
Z1, (2.10)

∇V1
V2 = H∇V1

V2 +AV1
V2, (2.11)

for all Z1, Z2 ∈ Γ(kerπ∗) and V1, V2 ∈ Γ(kerπ∗)
⊥, where H∇Z1

V1 = AV1
Z1, if V1 is basic. It is not difficult to

observe that T acts on the fibers as the second fundamental form, while A acts on the horizontal distribution
and measures the obstruction to the integrability of this distribution .

It is seen that for q ∈ N1, Y1 ∈ Vq and V1 ∈ Hq the linear operators

AV1 , TY1 : TqN1 → TqN1,

are skew-symmetric, i.e.

g1(AV1E1, E2) = −g1(E1,AV1E2) and g1(TY1E1, E2) = −g1(E1, TY1E2), (2.12)

for each E1, E2 ∈ TqN1. Since TY1
is skew-symmetric, we observe that π has totally geodesic fibres if and only

if T ≡ 0 .
The differentiable map π between two Riemannian manifolds is totally geodesic if

(∇π∗)(Z1, Z2) = 0, for all Z1, Z2 ∈ Γ(TN1).

1195



KUMAR et al./Turk J Math

A totally geodesic map is that it maps every geodesic in the total space into a geodesic in the base space
in proportion to arc lengths. A Riemannian map is a Riemannian map with totally umbilical fibers if [15]

TX1
X2 = g1(X1, X2)H, (2.13)

for all X1, X2 ∈ Γ(kerπ∗), where H is the mean curvature vector field of fibers.
Let π : (N1, g1) → (N2, g2) is a smooth map between Riemannian manifolds. Then the differential map

π∗ of π can be observed a section of the bundle Hom(TN1, π
−1TN2) → N1, where π−1TN2 is the bundle

which has fibers (π−1TN2)x = Tπ(x)N2 and has a connection ∇ induced from the Riemannian connection ∇N1

and the pullback connection. Then the second fundamental form of π is given by

(∇π∗)(Z1, Z2) = ∇π
Z1
π∗(Z2)− π∗(∇N1

Z1
Z2), (2.14)

for vector field Z1, Z2 ∈ Γ(TN1), where ∇π is the pullback connection. We know that the second fundamental
form is symmetric.

Now we have the following [13]:

Lemma 2.1 Let π : (N1, g1) → (N2, g2) be a Riemannian map between Riemannian manifolds. Then

g2((∇π∗)(V1, V2), π∗(V3)) = 0, for all V1, V2, V3 ∈ Γ(kerπ∗)
⊥. (2.15)

As a result of above Lemma, we get

(∇π∗)(V1, V2) ∈ (Γ(rangeπ∗)
⊥), for all V1, V2 ∈ Γ(kerπ∗)

⊥. (2.16)

Lemma 2.2 [3] Let (N1, g1) and (N2, g2) are two Riemannian manifolds. If π : N1 → N2 Riemannian map
between Riemannian manifolds, then for any horizontal vector fields X1, X2 and vertical vector fields Y1, Y2,

we have

(i) (∇π∗)(X1, X2) = 0,

(ii) (∇π∗)(Y1, Y2) = −π∗(TY1Y2) = −π∗(∇N1

Y1
Y2),

(iii) (∇π∗)(X1, Y1) = −π∗(∇N1
X1

Y1) = −π∗((AX1Y1).

Now, we recall following definitions for later use:

Definition 2.3 [14] Let π be a Riemannian map from an almost Hermitian manifold (N1, g1, J) onto a
Riemannian manifold (N2, g2). Then, we say that π is an invariant Riemannian map if the vertical distribution
is invariant with respect to the complex structure J, i.e.,

J(kerπ∗) = kerπ∗.

Definition 2.4 [14] Let N1 be an almost Hermitian manifold with Hermitian metric g1 and almost complex
structure J and N2 be a Riemannian manifold with Riemannian metric g2. Suppose that there exists a
Riemannian map π : (N1, g1, J) → (N2, g2) such that J(kerπ∗) ⊆ (kerπ∗)

⊥. Then we say that π is an
anti-invariant Riemannian map.

1196



KUMAR et al./Turk J Math

Definition 2.5 [15] Let π be a Riemannian map from an almost Hermitian manifold (N1, g1, J) to a Rie-
mannian manifold (N2, g2). Then we say that π is a semi-invariant Riemannian map if there is a distribution
D1 ⊆ kerπ∗ such that

kerπ∗ = D1 ⊕D2, JD1 = D1, JD2 ⊆ (kerπ∗)
⊥,

where D2 is orthogonal complementary to D1 in kerπ∗.

Let µ denotes the complementary orthogonal subbundle to J(kerπ∗) in (kerπ∗)
⊥. Then, we have

(kerπ∗)
⊥ = JD2 ⊕ µ.

Obviously µ is an invariant subbundle of (kerπ∗)
⊥ with respect to the complex structure J .

3. CSIR maps

The notion of Clairaut Riemannian map was defined by Sahin in [17]. According to the definition, a Riemannian
map π : (N1, g1) → (N2, g2) is called a Clairaut Riemannian map if there exists a positive function r on N1,

such that for any geodesic α on N1, the function (r ◦ α) sin θ is constant, where for any t, θ(t) is the angle
between .

α(t) and the horizontal space at α(t). He also gave the following necessary and sufficient condition for
a Riemannian map to be a Clairaut Riemannian map as follows:

Theorem 3.1 [17] Let π : (N1, g1) → (N2, g2) be a Riemannian map with connected fibers. Then, π is a
Clairaut Riemannian map with r = ef if each fiber is totally umbilical and has the mean curvature vector field
H = −∇f is the gradient of the function f with respect to g1.

We now present the notion of Clairaut semi-invariant Riemannian maps (CSIR map) as follows:

Definition 3.2 A semi-invariant Riemannian map from a Kähler manifold (N1, g1, J) to a Riemannian
manifold (N2, g2) is called Clairaut semi-invariant Riemannian map if it satisfies the condition of Clairaut
Riemannian map.

We denote the complementary distribution to JD2 in (kerπ∗)
⊥ by µ. Then for X1 ∈ (kerπ∗), we get

JX1 = φX1 + ωX1, (3.1)

where φX1 ∈ Γ(D1) and ωX1 ∈ Γ(JD2). Also for X2 ∈ Γ(kerπ∗)
⊥, we have

JX2 = BX2 + CX2, (3.2)

where BX2 ∈ Γ(D2) and CX2 ∈ Γ(µ).

Lemma 3.3 Let π be a semi-invariant Riemannian map from a Kähler manifold (N1, g1, J) to a Riemannian
manifold (N2, g2) . If α : I2 ⊂ R → M is a regular curve and X1(t) and X2(t) are the vertical and horizontal
components of the tangent vector field .

α = E of α(t), respectively, then α is a geodesic if and only if along α

the following equations hold:

V∇ .
αBX2 + V∇ .

αφX1 + (TX1
+AX2

)CX2 + (TX1
+AX2

)ωX1 = 0, (3.3)

H∇ .
αCX2 +H∇ .

αωX1 + (TX1
+AX2

)BX2 + (AX2
+ TX1

)φX1 = 0. (3.4)

1197



KUMAR et al./Turk J Math

Proof Let α : I2 → N1 be a regular curve on N1. Since X1(t) and X2(t) are the vertical and horizontal parts of
the tangent vector field .

α(t), i.e., .
α(t) = X1(t)+X2(t). From equations (2.1), (2.3), (2.8), (2.9), (2.10), (2.11), (3.1)

and (3.2), we get

∇ .
α

.
α = −J(∇ .

αJ
.
α),

= −J(∇X1
φX1 +∇X1

ωX1 +∇X2
φX1 +∇X2

ωX1 +

∇X1
BX2 +∇X1

CX2 +∇X2
BX2 +∇X2

CX2),

= −J(V∇ .
αBX2 + V∇ .

αφX1 + (TX1
+AX2

)CX2 + (TX1
+AX2

)ωX1 +

H∇ .
αCX2 +H∇ .

αωX1 + (TX1
+AX2

)BX2 + (AX2
+ TX1

)φX1).

Taking the vertical and horizontal components in above equation, we have

VJ∇ .
α

.
α = V∇ .

αBX2 + V∇ .
αφX1 + (TX1 +AX2)CX2 + (TX1 +AX2)ωX1,

HJ∇ .
α

.
α = H∇ .

αCX2 +H∇ .
αωX1 + (TX1 +AX2)BX2 + (AX2 + TX1)φX1,

Now, α is a geodesic on N1 if and only if VJ∇ .
α

.
α = 0 and HJ∇ .

α

.
α = 0, which completes the proof. 2

Theorem 3.4 Let π be a semi-invariant Riemannian map from a Kähler manifold (N1, g1, J) to a Riemannian
manifold (N2, g2). Then π is a CSIR map with r = ef if and only if

g1(V∇ .
αφX1 + (TX1 +AX2)CX2 + (TX1 +AX2)ωX1, BX2) +

g1(H∇ .
αωX1 + (TX1

+AX2
)BX2 + (AX2

+ TX1
)φX1, CX2) + g1(X1, X1)

df

dt
= 0

where α : I2 → N1 is a geodesic on N1 and X1, X2 are vertical and horizontal components of .
α(t).

Proof Let α : I2 → N1 be a geodesic on N1 with X1(t) = V .
α(t) and X2(t) = H .

α(t) . Let θ(t) denote the
angle in [0, π] between .

α(t) and X2(t). Assuming υ = || .α(t)||,2 then we get

g1(X1(t), X1(t)) = υ sin2 θ(t), (3.5)

g1(X2(t), X2(t)) = υ cos2 θ(t). (3.6)

Now, differentiating (3.6), we get

d

dt
g1(X2(t), X2(t)) = −2υ cos θ(t) sin θ(t)

dθ

dt
. (3.7)

On the other hand, using equation (2.3), we get

d

dt
g1(X2, X2) =

d

dt
g1(JX2, JX2). (3.8)

Since π is a semi-invariant Riemannian map and using equation (3.2) in (3.8), we have

d

dt
g1(X2, X2) = 2g1(∇ .

αBX2, BX2) + 2g2(π∗(∇N1
.
α

CX2), π∗(CX2)). (3.9)
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By using equation (2.14) in (3.9), we obtain

d

dt
g1(X2, X2) = 2g1(∇ .

αBX2, BX2)− 2g2((∇π∗)(
.
α,CX2), π∗(CX2)) +

g2(
π

∇ .
απ∗(CX2), (CX2)).

Since second fundamental form of π is linear, therefore from above equation, we get

d

dt
g1(X2, X2) (3.10)

= 2g1(∇ .
αBX2, BX2)− 2g2((∇π∗)(X1, CX2), π∗(CX2))−

2g2((∇π∗)(X2, CX2), π∗(CX2)) + g2(
π

∇ .
απ∗(CX2), (CX2)).

Now, using equations (2.14), (2.15) and (3.10), we have

d

dt
g1(X2, X2) (3.11)

= 2g1(∇ .
αBX2, BX2)− 2g2(

π

∇X1
π∗(CX2), π∗(CX2)) +

2g2(π∗(∇N1

X1
CX2), π∗(CX2)) + g2(

π

∇X1
π∗(CX2), (CX2)) +

g2(
π

∇X2
π∗(CX2), (CX2)).

From equation (2.14) , we get

d

dt
g1(X2, X2) = 2g1(V∇ .

αBX2, BX2) + 2g1(H∇ .
αCX2, CX2). (3.12)

From (3.7) and (3.12), we have

g1(V∇ .
αBX2, BX2) + g1( H∇ .

αCX2, CX2) = −υ cos θ(t) sin θ(t)
dθ

dt
. (3.13)

Also, using equations (3.3) and (3.4) in (3.13), we get

g1(V∇ .
αφX1 + (TX1 +AX2)CX2 + (TX1 +AX2)ωX1, BX2) + (3.14)

g1(H∇ .
αωX1 + (TX1

+AX2
)BX2 + (AX2

+ TX1
)φX1, CX2)

= υ cos θ(t) sin θ(t)
dθ

dt
.

Moreover, π is a CSIR map with r = ef if and only if d
dt (e

f◦α sin θ) = 0, i.e., ef◦α(cos θ dθ
dt +sin θ df

dt ) = 0.

By multiplying this with nonzero factor υ sin θ, we have

−υ cos θ sin θ
dθ

dt
= υ sin2 θ

df

dt
. (3.15)
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Thus, from equations (3.6), (3.14) , and (3.15), we have

g1(V∇ .
αφX1 + (TX1 +AX2)CX2 + (TX1 +AX2)ωX1, BX2) +

g1(H∇ .
αωX1 + (TX1

+AX2
)BX2 + (AX2

+ TX1
)φX1, CX2)

= −g1(X1, X1)
df

dt
.

Hence the theorem 3.4 is proved. 2

Theorem 3.5 Let π be a CSIR map from a Kähler manifold (N1, g1, J) to a Riemannian manifold (N2, g2)

with r = ef , then at least one of the following statement is true:

(i) f is constant on J(D2),

(ii) the fibers are one-dimensional,

(iii)
π

∇JX1π∗(Z1) = −Z1(f)π∗(JX1), for all X1 ∈ Γ(D2) and Z1 ∈ Γ(µ).

Proof Let π be CSIR map from a Kähler manifold to a Riemannian manifold. For Y1, Y2 ∈ Γ(D2), using
equation (2.13) and Theorem 3.1, we get

TY1
Y2 = −g1(Y1, Y2)gradf. (3.16)

Taking inner product in equation (3.16) with JX1, we have

g1(TY1
Y2, JX1) = −g1(Y1, Y2)g1(gradf, JX1), (3.17)

for all X1 ∈ Γ(D2).

From equations (2.3), (2.8) , and (3.17), we obtain

g1(∇Y1
JY2, X1) = g1(Y1, Y2)g1(gradf, JX1).

Since ∇ is metric connection, using equations (2.9) and (3.16) in above equation, we get

g1(Y1, X1)g1(gradf, JY2) = g1(Y1, Y2)g1(gradf, JX1). (3.18)

Taking X1 = Y2 and interchanging the role of Y1 and Y2, we obtain

g1(Y2, Y2)g1(gradf, JY1) = g1(Y1, Y2)g1(gradf, JY2). (3.19)

Using equation (3.18) with X1 = Y1 in (3.19), we have

g1(gradf, JY1) =
(g1(Y1, Y2))

2

||Y1||2||Y2||2
g1(gradf, JY1). (3.20)

If gradf ∈ Γ(J(D2)), then equation (3.20) and the condition of equality in the Schwarz inequality
implyies that either f is constant on J(D2) or the fibers are one dimensional. This implies the proof of (i)

and (ii) .
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Now, from equations (2.8) and (3.16) , we get

g1(∇Y1X1, Z1) = −g1(Y1, X1)g1(gradf, Z1), (3.21)

for all Z1 ∈ Γ(µ). Using equations (2.3) and (3.21), we have

g1(∇Y1
JX1, JZ1) = −g1(Y1, X1)g1(gradf, Z1),

which implies
g1(∇JX1Y1, JZ1) = −g1(Y1, X1)g1(gradf, Z1). (3.22)

Since ∇ is metric connection and using equations (3.18) and (3.22), we have

g1(H∇JX1
Z1, JY1) = −g1(JY1, JX1)g1( gradf, Z1).

Also, for Riemannian map π, we have

g2(π∗(∇N1

JX1
Z1), π∗(JY1)) = −g2(π∗(JY1), π∗(JX1))g1(gradf, Z1). (3.23)

Again, using equations (2.14), (2.16) , and (3.23), we obtain

g2(
π

∇JX1π∗(Z1), π∗(JY1)) = −g2(π∗(JY1), π∗(JX1))g1(gradf, Z1),

which implies.
π

∇JX1
π∗(Z1) = −Z1(f)π∗(JX1). (3.24)

If gradf ∈ Γ(µ), then (3.24) implies (iii). This completes the proof. 2

Lemma 3.6 Let π be a CSIR map from a Kähler manifold (N1, g1, J) to a Riemannian manifold (N2, g2) with

r = ef and dim(υ) > 1. Then
π

∇V1
π∗(JY1) = V1(f)π∗(JY1), for all Y1 ∈ Γ(D2) and V1 ∈ Γ(kerπ∗)

⊥.

Proof Let π be a CSIR map from a Kähler manifold to a Riemannian manifold. From Theorem 3.1, fibers
are totally umbilical with mean curvature vector field H = −gradf, then we have

−g1(∇Y1V1, Y2) = g1(∇Y1Y2, V1),

−g1(∇Y1
V1, Y2) = −g1(Y1, Y2)g1(gradf, V1),

for all Y1, Y2 ∈ Γ(D2) and V1 ∈ Γ(kerπ∗)
⊥.

Using equation (2.3) in above equation, we get

g1(∇V1
JY1, JY2) = g1(JY1, JY2)g1(gradf, V1). (3.25)

Since π is semi-invariant Riemannian map and using equation (3.25), we have

g2(∇π
V1
π∗(JY1), π∗(JY2)) = g2(π∗(JY1), π∗(JY2))g1(gradf, V1). (3.26)

From (2.14) in (3.26), we obtain

g2(
π

∇V1
π∗(JY1), π∗(JY2)) = g2(π∗(JY1), π∗(JY2))g1(gradf, V1), (3.27)

which implies
π

∇V1
π∗(JY1) = V1(f)π∗(JY1), for all Y1 ∈ Γ(D2) and V1 ∈ Γ(kerπ∗)

⊥. 2
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Theorem 3.7 Let π be a CSIR map with r = ef from a Kähler manifold (N1, g1, J) to a Riemannian manifold
(N2, g2). If T is not equal to zero identically, then the invariant distribution D1 cannot defined a totally geodesic
foliation on N1.

Proof For X1, X2 ∈ Γ(D1) , and Y1 ∈ Γ(D2) , using equations (2.3), (2.8) , and (2.13), we get

g1(∇X1X2, Y1) = g1(∇X1JX2, JY1),

= g1(TX1JX2, JY1),

= −g1(X1, JX2)g1(gradf, JY1).

Thus, the assertion can be seen from the above equation and the fact that gradf ∈ J(D2). 2

Theorem 3.8 Let π be a CSIR map with r = ef from a Kähler manifold (N1, g1, J) to a Riemannian manifold
(N2, g2). Then, the fibers of π are totally geodesic or the anti-invariant distribution D2 one-dimensional.

Proof If the fibers of π are totally geodesic, it is obvious. For second one, since π is a Clairaut proper
semi-invariant Riemannian map, then either dim(D2) = 1 or dim(D2) > 1. If dim(D2) > 1, then we can
choose Z1, Z2 ∈ Γ(D2) such that {Z1, Z2} is orthonormal. From equations (2.9), (3.1) , and (3.2), we get

TZ1
JZ2 +H∇Z1

JZ2 = ∇Z1
JZ2,

TZ1JZ2 +H∇Z1JZ2 = BTZ1Z2 + CTZ1Z2 + φV∇Z1Z2 + ωV∇Z1Z2.

Taking inner product above equation with Z1, we obtain

g1(TZ1JZ2, Z1) = g1(BTZ1Z2, Z1) + g1(φV∇Z1Z2, Z1). (3.28)

From equation (2.5), we have

g1(TZ1Z1, JZ2) = −g1(TZ1JZ2, Z1) = g1(TZ1Z2, JZ1). (3.29)

Now, using equations (2.13) and (3.29), we get

g1(TZ1Z1, JZ2) = g1(gradf, JZ2). (3.30)

From equations (2.13), (3.29) , and (3.30), we obtain

g1(gradf, JZ2) = g1(TZ1Z1, JZ2) = −g1( T Z1JZ2, Z1) = g1(TZ1Z2, JZ1). (3.31)

From above equation, we get

g1(gradf, JZ2) = g1(TZ1
Z2, JZ1),

g1(gradf, JZ2) = g1(Z1, Z2)g1(gradf, JZ1),

g1(gradf, JZ2) = 0.

So, we get
gradf ⊥ J(D2).

Therefore, the dimension of D2 must be one. 2
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Theorem 3.9 Let π be a CSIR map from a Kähler manifold (N1, g1, J) to a Riemannian manifold (N2, g2)

with r = ef and dim(υ) > 1. Then, we get

ω∑
κ=1

g1(AZ1uκ,AZ1uκ) =

ω∑
κ=1

g2(∇π
Z1
π∗(Juκ),∇π

Z1
π∗(Juκ)), (3.32)

β+∫∑
i=1

g2((∇π∗)(Ei, Z1), (∇π∗)(Z1, Ei)) =

∫∑
l=1

g2((∇π∗)(µl, Z1), (∇π∗)(Z1, µl)), (3.33)

β∑
j=1

g1(AZ1
vj ,AZ1

vj) = (Z1(f))
2

β∑
j=1

g1(vj , vj), (3.34)

for all Z1 ∈ Γ(kerπ∗)
⊥, where {u1, u2, ...., uω}, {v1, v2, ...., vβ}, {E1, E2, ...., Eβ+∫} and {µ1, µ2, ....µ∫} are

orthonormal frames of D1, D2, J(D2)
⊥ ⊕ µ and µ , respectively.

Proof Let π : (N1, g1, J) → (N2, g2) be a CSIR map. For all Z1 ∈ Γ(kerπ∗)
⊥, we have

ω∑
κ=1

g1(AZ1
uκ,AZ1

uκ) =

ω∑
κ=1

g1(H∇Z1Juκ,H∇Z1
Juκ). (3.35)

Since π is a Riemannian map and using equation (2.14) in above equation (3.35), we have

ω∑
κ=1

g1(AZ1uκ,AZ1uκ) =

ω∑
κ=1

g2(π∗(∇N1

Z1
Juκ), π∗(∇N1

Z1
Juκ)),

=

ω∑
κ=1

g2(∇π
Z1
π∗(Juκ),∇π

Z1
π∗(Juκ)).

Now, for all Z1,∈ Γ(kerπ∗)
⊥, we get

β+∫∑
i=1

g2((∇π∗)(Ei, Z1), (∇π∗)(Z1, Ei))

=

β∑
j=1

∫∑
l=1

g2((∇π∗)(Jvj + µl, Z1), (∇π∗)(Z1, Jvj + µl)).

Since Jvj ∈ Γ(kerπ∗)
⊥ and (∇π∗) is linear then from above equation, we have
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β+∫∑
i=1

g2((∇π∗)(Ei, Z1), (∇π∗)(Ei, Z1)) (3.36)

=

β∑
j=1

g2((∇π∗)(Jvj , Z1), (∇π∗)(Z1, Jvj)) +

β∑
j=1

∫∑
l=1

g2((∇π∗)(µl, Z1), (∇π∗)(Z1, Jvj)) +

β∑
j=1

∫∑
l=1

g2((∇π∗)(Jvj , Z1), (∇π∗)(Z1, µl)) +

∫∑
l=1

g2((∇π∗)(µl, Z1), (∇π∗)(Z1, µl)).

Thus, (3.32) holds.
On the other hand, using (2.14) in first term of (3.36) in right hand side, we have

β∑
j=1

g2((∇π∗)(Jvj , Z1), (∇π∗)(Z1, Jvj))

=

β∑
j=1

g2((∇π∗)(Jvj , Z1),
π

∇Z1
π∗(Jvj)− π∗(∇N1

Z1
Jvj)).

Now, from equations (2.4), (2.5) , and (3.36), we get

β∑
j=1

g2((∇π∗)(Jvj , Z1), (∇π∗)(Z1, Jvj)) (3.37)

=

β∑
j=1

g2((∇π∗)(Jvj , Z1),
π

∇Z1
π∗(Jvj)).

Also, using Lemma 3.6 in equation (3.37), we obtain
∑β

j=1 g2((∇π∗)(Jvj , Z1), (∇π∗)(Z1, Jvj))

=
∑β

j=1 g2((∇π∗)(Jvj , Z1), Z1(f)π∗(Jvj)), which implies
∑β

j=1 g2((∇π∗)(Jvj , Z1), (∇π∗)(Z1, Jvj))

=
∑β

j=1 Z1(f)g2((∇π∗)(Jvj , Z1), π∗(Jvj)).

By using equation (2.15) in above equation, we have

β∑
j=1

g2((∇π∗)(Jvj , Z1), (∇π∗)(Z1, Jvj)) = 0, (3.38)

similarly
β∑

j=1

∫∑
l=1

g2((∇π∗)(µl, Z1), (∇π∗)(Z1, Jvj)) = 0, (3.39)
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β∑
j=1

∫∑
l=1

g2((∇π∗)(Jvj , Z1), (∇π∗)(Z1, µl)) = 0. (3.40)

Thus, by using equations (3.38), (3.39) , and (3.40) in equation (3.36), then we obtain (3.33) .
Now, for Z1 ∈ Γ(kerπ∗)

⊥, we get

β∑
j=1

g1(AZ1
vj ,AZ1

vj) =

β∑
j=1

g1(H∇Z1
vj ,H∇Z1

vj),

=

β∑
j=1

g1(H∇Z1
Jvj ,H∇Z1

Jvj).

Since π is a Riemannian map and using equation (2.14) in above equation, we get

β∑
j=1

g1(AZ1vj ,AZ1vj) (3.41)

=

β∑
j=1

{g2((∇π∗)(Z1, Jvj), (∇π∗)(Z1, Jvj))− 2g2((∇π∗)(Z1, Jvj),
π

∇Z1π∗(jvj)) +

g2(
π

∇Z1
π∗(Jvj),

π

∇Z1
π∗(Jvj))}.

Using Lemma 3.6 and equations (2.16), (3.38) in (3.41), we get

β∑
j=1

g1(AZ1
vj ,AZ1

vj) =

β∑
j=1

g2(Z1(f)π∗(Jvj), Z1(f)π∗(Jvj)), (3.42)

= (Z1(f))
2

β∑
j=1

g2(π∗(Jvj), π∗(Jvj)).

Since Jvj ∈ Γ(kerπ∗)
⊥ and π is a Riemannian map then from (3.42), we obtain

β∑
j=1

g1(AZ1vj ,AZ1vj) = (Z1(f))
2

β∑
j=1

g1(vj , vj). (3.43)

From equations (2.3) and (3.43), we obtain (3.34), which completes the proof. 2

4. Example

Example 4.1 Let N1 be an Euclidean space given by N1 = {(x1, x2, x3,x4, x5, x6) ∈ R6 : (x1, x2, x3,x4, x5, x6) ̸=
(0, 0, 0, 0, 0, 0)}. We define the Riemannian metric g1 on N1 given by g1 = e2x6dx2

1 + e2x6dx2
2 + e2x6dx2

3 +

e2x6dx2
4 + e2x6dx2

5 + dx2
6 and the complex structure on J and N1 defined as
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J(x1, x2, x3, x4, x5, x6) = (−x2, x1,−x4, x3,−x6, x5).

Let N2 = {(v1, v2, v3, v4) ∈ R4} be a Riemannian manifold with Riemannian metric g2 on N2 given by
g2 = e2x6dv21 + e2x6dv22 + e2x6dv23 + dv24 .

Define a map π : R6 → R4 by

π(x1, x2, x3, x4, x5, x6) = (
x3 − x4√

2
, x5, x6, 0).

Then, we have
kerπ∗ = D1 ⊕D2,

where
D1 =< X1 = e1, X2 = e2 >,D2 =< X3 = e3 + e4 >,

and
(kerπ∗)

⊥ =< V1 = e3 − e4, V2 = e5, V3 = e6 >,

where {e1 = e−x6 ∂
∂x1

, e2 = e−x6 ∂
∂x2

, e3 = e−x6 ∂
∂x3

, e4 = e−x6 ∂
∂x4

, e5 = e−x6 ∂
∂x5

, e6 = ∂
∂x6

}, {e∗1 = ∂
∂v1

, e∗2 =

∂
∂v2

, e∗3 = ∂
∂v3

, e∗4 = ∂
∂v4

} are bases on TqN1 and Tπ(q)N2 , respectively, for all q ∈ N1. By direct computations,

we can see that π∗(V1) =
√
2e−x6e∗1, π∗(V2) = e−x6e∗2, π∗(V3) = e−x6e∗3 and g1(Vi, Vj) = g2(π∗Vi, π∗Vj) for all

Vi, Vj ∈ Γ(kerπ∗)
⊥ , i, j = 1, 2, 3 . Thus π is Riemannian map with (rangeπ∗)

⊥ =< e∗4 > . Moreover it is easy
to see that JX3 = V1. Therefore π is a semi-invariant Riemannian map.

Now, we will find smooth function f on N1 satisfying TXX = g1(X,X)∇f, for all X ∈ Γ(kerπ∗). Since
covariant derivative for vector fields E = Ei

∂
∂xi

, F = Fj
∂

∂xj
on N1 is defined as

∇EF = EiFj∇ ∂
∂xi

∂

∂xj
+ Ei

∂Fj

∂xi

∂

∂xj
, (4.1)

where the covariant derivative of basis vector fields ∂
∂xj

and ∂
∂xi

is defined by

∇ ∂
∂xi

∂

∂xj
= Γk

ij

∂

∂xk
, (4.2)

and Christoffel symbols are defined by

Γk
ij =

1

2
gkl(

∂g1jl
∂xi

+
∂g1il
∂xj

− ∂g1ij
∂xl

). (4.3)

Now, we get

g1ij =


e2x6 0 0 0 0 0
0 e2x6 0 0 0 0
0 0 e2x6 0 0 0
0 0 0 e2x6 0 0
0 0 0 0 e2x6 0
0 0 0 0 0 1

 , gij1 =


e−2x6 0 0 0 0 0
0 e−2x6 0 0 0 0
0 0 e−2x6 0 0 0
0 0 0 e−2x6 0 0
0 0 0 0 e−2x6 0
0 0 0 0 0 1

 (4.4)
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By using equations (4.3) and (4.4), we get

Γ1
11 = 0,Γ2

11 = 0,Γ3
11 = 0,Γ4

11 = 0,Γ5
11 = 0,Γ6

11 = −e2x6 , (4.5)

Γ1
22 = 0,Γ2

22 = 0,Γ3
22 = 0,Γ4

22 = 0,Γ5
22 = 0,Γ6

22 = −e2x6 ,

Γ1
33 = 0,Γ2

33 = 0,Γ3
33 = 0,Γ4

33 = 0,Γ5
33 = 0,Γ6

33 = −e2x6 ,

Γ1
44 = 0,Γ2

44 = 0,Γ3
44 = 0,Γ4

44 = 0,Γ5
44 = 0,Γ6

44 = −e2x6 ,

Γ1
12 = Γ2

12 = Γ3
12 = Γ4

12 = Γ5
12 = Γ4

12 = Γ5
12 = Γ6

12 = 0,

Γ1
21 = Γ2

21 = Γ3
21 = Γ4

21 = Γ5
21 = Γ4

21 = Γ5
21 = Γ6

21 = 0,

Γ1
13 = Γ2

13 = Γ3
13 = Γ4

13 = Γ5
13 = Γ4

13 = Γ5
13 = Γ6

13 = 0,

Γ1
31 = Γ2

31 = Γ3
31 = Γ4

31 = Γ5
31 = Γ4

31 = Γ5
31 = Γ6

31 = 0,

Γ1
14 = Γ2

14 = Γ3
14 = Γ4

14 = Γ5
14 = Γ4

14 = Γ5
14 = Γ6

14 = 0,

Γ1
41 = Γ2

41 = Γ3
41 = Γ4

41 = Γ5
41 = Γ4

41 = Γ5
41 = Γ6

41 = 0,

Γ1
23 = Γ2

23 = Γ3
23 = Γ4

23 = Γ5
23 = Γ4

23 = Γ5
23 = Γ6

23 = 0,

Γ1
32 = Γ2

32 = Γ3
32 = Γ4

32 = Γ5
32 = Γ4

32 = Γ5
32 = Γ6

32 = 0

Γ1
24 = Γ2

24 = Γ3
24 = Γ4

24 = Γ5
24 = Γ4

24 = Γ5
24 = Γ6

24 = 0,

Γ1
42 = Γ2

42 = Γ3
42 = Γ4

42 = Γ5
42 = Γ4

42 = Γ5
42 = Γ6

42 = 0,

Γ1
34 = Γ2

34 = Γ3
34 = Γ4

34 = Γ5
34 = Γ4

34 = Γ5
34 = Γ6

34 = 0,

Γ1
43 = Γ2

43 = Γ3
43 = Γ4

43 = Γ5
43 = Γ4

43 = Γ5
43 = Γ6

43 = 0.

Using equations (4.1), (4.2) , and (4.5), we obtain

∇e1e1 = ∇e2e2 = ∇e3e3 = ∇e4e4 = − ∂

∂x6
, (4.6)

∇e1e2 = ∇e1e3 = ∇e1e4 = ∇e2e1 = ∇e2e3 = ∇e2e4 = 0,

∇e3e1 = ∇e3e2 = ∇e3e4 = ∇e4e1 = ∇e4e2 = ∇e4e3 = 0.

Therefore,

∇X1X1 = ∇e1e1 = − ∂

∂x6
,∇X2X2 = ∇e2e2 = − ∂

∂x6
, (4.7)

∇X3X3 = ∇e3+e4e3 + e4 = −2
∂

∂x6
.

Now, we have

TXX = Tλ1X1+λ2X2+λ3X3
λ1X1 + λ2X2 + λ3X3, λ1, λ2, λ3 ∈ R,

TXX = λ2
1TX1X1 + λ2

2TX2X2 + λ2
3TX3X3 + 2λ1λ2TX1X2 + (4.8)

2λ1λ3TX1
X3 + 2λ2λ3TX2

X3.
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Using equations (2.8) and (4.7) , we obtain

TX1
X1 = − ∂

∂x6
, TX2

X2 = − ∂

∂x6
, TX3

X3 = −2
∂

∂x6
, (4.9)

TX1
X2 = 0, TX1

X3 = 0, TX2
X3 = 0.

Next, using equations (4.8) and (4.9), we get

TXX = −(λ2
1 + λ2

2 + 2λ2
3)

∂

∂x6
. (4.10)

Since X = λ1X1+λ2X2+λ3X3, so g1(λ1X1+λ2X2+λ3X3, λ1X1+λ2X2+λ3X3) = λ2
1+λ2

2+2λ2
3. For any

smooth function f on R6 , the gradient of f with respect to the metric g1 is given by ∇f =
∑6

i,j=1 g
ij
1

∂f
∂xi

∂
∂xj

.

Hence ∇f = e−2x6 ∂f
∂x1

∂
∂x1

+e−2x6 ∂f
∂x2

∂
∂x2

+e−2x6 ∂f
∂x3

∂
∂x3

+e−2x6 ∂f
∂x4

∂
∂x4

+e−2x6 ∂f
∂x5

∂
∂x5

+ ∂f
∂x6

∂
∂x6

. Hence ∇f = ∂
∂x6

for the function f = x6. Then it is easy to see that TXX = −g1(X,X)∇f , thus by Theorem (3.1), π is CSIR
map.
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