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Abstract: Let ¢; and 12 be analytic functions on the open unit disk D and ¢ an analytic self map on D. Let My, C,
and D denote the multiplication, composition and differentiation operators. We consider operators My, Cyp, My,CpD
and the Stevié-Sharma operator Ty, yo,0(f) = My, Co(f)+ My, CoD(f) on a-Besov space B, o and weak vector valued
a-Besov space wBp,«(X) for complex Banach space X and find some equivalent statements for boundedness of these

operators. Also, boundedness and compactness of composition operator Cy, on By (D) and wiB, (D) are given.

Key words: Product of composition multiplication and differentiation, a-Besov spaces, Carleson measure, weak vector

valued «-Besov spaces, boundedness

1. Introduction

Let X be a complex Banach space and D be the open unit disc in the complex plane C. The Lebesgue
area measure on I is defined by dA(z) = rdrdf = dzxdy. Denote by H(X) the class of all analytic functions
f:D— X. For p > 1, the vector valued weighted Bergman space AP, (X) consists of all functions f € H(X)

for which

17115 ) = / 1P (1~ |22)*dA(z) < oo,

Note that AP (X) is Banach space for p > 1, see [2, 3, 11] for the theory of these spaces.
Let 1 < p < oo, —1 < a < 00, the vector valued a-Besov space B, o(X) is the space of all functions
f € H(X) such that

I£115, ) = / 17 (B~ [2)*dA() < oo.

Note that for X = D, we have the a-Besov space By (D) and for X =D, p = 2 and o = 0 we have the
classic Dirichlet space D.

The weak vector valued a-Besov space whB, o(X) consists of all analytic functions f : D — X, for which

[ fllwB,.ox) = sup |[lz% o fllB, .
[lz*]|<1

is finite. Here x* € X*, the dual space of X. In fact, such kind of weak version spaces wFE(X) can be intro-

duced under more general conditions on any Banach spaces F consists of analytic functions f : D — X, see
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[13]. Some strong and weak version spaces are completely different such as Hardy spaces H?(X) and wH?(X).
Also, Dirichlet spaces wD,(X) and D,(X) are different for any infinite dimensional complex Banach space X,
[20]. Some others are the same such as Bloch spaces B(X) and wB(X) (refer to [1]).

Given analytic functions ¢ and ¢ in the unit disc D such that (D) C D, the weighted composition
operator ¥C, on H(D) is defined by Wy, . f(2) = ¥(2)f(p(z)), for z € D. If ¢p = 1, it becomes the composition
operator C,, and if ¢(z) = z, it becomes the multiplication operator M. Since Wy, , = MyC,,, it is a product-
type operator.

When studying an operator on a space, the first question is about the properties of the operator such as
boundedness, compactness, adjoint, normality and so on. For composition and the other operators on spaces
of analytic functions we used here, the question is the relation between operator-theoretic properties of the
operator with the function and geometric properties of the inducing functions 1) and ¢. For example, the well
known Littlewood Subordination Theorem in the excellent book by Cowen and Maccluer [5] computed the norm
of the operator and related the results to the boundedness. Beside this, Shapiro in [18] studied the compact
composition operators widely in many aspects. For example, he proved that if ||¢||o < 1 the C, is a compact
operator on Hilbert Hardy space H?.

Weighted composition operators as well as the operators studied here are all generalization of well known
composition operators which paly an important role in operator theory. Some applications of (weighted)
composition operators are for example isometries of HP, Hardy space, p # 2 and p > 1 are weighted
composition operators [7]. Also, backward shifts of all multiplicities can be represented as composition operators.
Composition operators have arisen in the study of commutates of multiplication operators and more general
operators, Cowen and Maccluer [5], and play a role in theory of dynamical systems. De Branges’ proof of the
Bieberbach conjecture depended on composition operators on a spaces of analytic functions [4].

The action of composition operators and weighted composition operators on analytic function spaces
such as Bergman, Hardy, Dirichlet and Dirichlet type spaces has been studied by many authors, see for example
[8-10, 12, 21, 22].

(Weighted) composition operators can be generalized in some manners. One of the important general-

izations is the following so-called Stevié-Sharma operator:

T pnno f(2) = 01 f(0(2)) + 02 f (0(2)), [ € H(D), (1.1)
which includes many operators. Other operators related to the weighted composition operators are
MyDCy(f) = ¢(fop) = v (f o p), (1.2)
MyC,D(f) =¢(f o),

where D is differentiation operator on H (D) and defined by
Df=f.

In this paper, we characterize boundedness of weighted composition operators Wy, , = My C, and the product-
type operators of (1.2) on «-Besov space B, (D) and weak vector valued a-Besov space wB, o(X). Then we
find equivalent statements for boundedness of the Stevié-Sharma operator on these spaces. Also, boundedness

and compactness of composition operator C, on By, (D) and wBy (X) are given. The most interesting point
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of the results is that for all operators mentioned above, the boundednes and compactness on the arbitrary
Banach space X is equivalent to the study on the unit ball ID. As the applications of our main results, readers
can obtain some characterization for the boundedness of all operators contained in Stevi¢-Sharma operator and
also the differences of those operators on wB, o(X) and B, (D).

Let p be a finite positive Borel measure on ID. Then p is said to be Carleson if there exists a constant
C such that p(S(€,h) < Ch? for all € and h, when |¢| =1 and 0 < h < 2. The measure is said to be compact

% = 0. Carleson measures have been useful in the study of composition

Carleson if limy_.q SUp|¢|—1
operators in several settings (see for example [12, 14-17, 22]). For w € D, let N2(p,w) denote the number of
zeros (counting multiplicities) of ¢(z) —w. For 1 < p < co and w € D and analytic map 1 on D, we define

modified counting function

1 — 2|2 (2)|P
et = T S

where the sum extends over the zeros of ¢ — w, repeated by multiplicity. In particular, Np o (¢, w) =0 for
w ¢ o(D). Clearly with ¢ =1, a =0 and p =2 we have Ny(p,w).
Let fip.o,p be the measure defined on D by dup o ¢ (W) = Np o p(p, w)dA(w), 1 <p < oco.

A nonnegative measure £ on I is called a Carleson measure for By, o(X) if there is a constant C' > 0 such that

[ IS GBedutz) < CIIAIG, v

for all f € B, o(X). That is, the inclusion operator ¢ from B, ,(X) into LP(X,p) is bounded. We call the
Carleson measure p, a compact Carleson measure for B, o(X) if the inclusion operator i from B, o(X) into
LP(X, u) is compact.

Through these facts, one can have the following theorem (as a definition) that characterizes Carleson measure
for AP (X).

Definition 1.1 Take 1 < p < oco. Let u be a positive Borel measure on . Then
(a) 1 is said to be a Carleson measure for AP (X) if and only if AL (X) C LP(u, X) and the inclusion operator

I:AP(X) — LP(u, X)

is a bounded operator.
(b) p is said to be a compact Carleson measure for AR(X) if and only if ARL(X) C LP(u, X) and the inclusion
operator I from AP(X) into LP(u,X) is compact.

Remark 1.2 Part (a) of the above definition is equivalent with the following statement:

There exists a constant C' such that

JIFGBedntz) < Il

for allf € AP (X).

Throughout this paper, constants are denoted by C, they are positive and not necessarily the same as

each occurrence.
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2. Product-type operators on weak vector valued a-Besov spaces

The following lemma from [11] will help us prove our next results.

Lemma 2.1 For any a > —1 and p > 0, there exists a constant C > 0 such that

[1Gra - zpraae) <clror + [ loEpa - 2 dae)
D D
and
|f(0)\p+/Dlg(z)|”(1— 2]7)%dA(2) < C/DIf(Z)I”(l— |27)*dA(2)
for all analytic functions f € H(D), where
9(z) =1 - z")f'(z)  zeD,

Notation 2.2 As a result of the above lemma, we can see that f € AP (D) if and only if f' € A},

(D).

Lemma 2.3 Suppose that —1 < o and 2+ a < p < co. Then for any f € By (D), there exists a constant M
such that || f||c < M||f||B,,.@®)-

Proof Let f € By (D), then ||f||5, . = lf'llazm) +[f(0)] <oo. So f" € A5 (D) and according to [11], we

have that |f'(z)| < L“é’ga However, 2 + « < p,; therefore;
(1-122) 7

1@ =501 = | [ Fytul =1 [ =Faadal < [ el @ada< [ (”'md

1—laz|?)»

1
z
S\If’llAz/O (||Mda§M||f’||Ag<D>7

1—|az])»
for a constant M. Hence, for any z € D,
[f () < M1 f' | az oy +1£0)] < M|£l|5, .m)-

It follows that
Slelglf(Z)\ =||fllec < M|[fllB,.m):-

O
Now our first plan is to obtain conditions for boundedness of the operator MyCy, : wBp o(X) — wB(X).
Since (MyCy(f)) = My Cy(f) + MyDCy(f), in the next two theorems, we characterize boundedness of the
operators M, C, and MyDC, from wB,,(X) into wA?(X).

Theorem 2.4 Let a > —1, p > a+ 2 and ¢ be an analytic self map on D. Then the following statements
are equivalent:

a) Operator MyCy, : wBp o(X) = wAE(X) is bounded.

b) Operator MyCy, : By (D) — AL (D) is bounded.

c) ¥ e AP (D).
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Proof (a) = (b). Suppose that M,C,, : wB, (X) — wA?(X) is bounded and f € B, (D). If € X with
[|z|| =1 and consider the function g : D — X, ¢g(z) = zf(z) for z € D then we have

a*(zf(w)) — =" (2 f(2))

(a*0g) (2) = (¢"oxf) () = lim

= lim f(w)x*(xlz : i(z)z*(z) = f'(z)a"(z).

It follows that

ol .00 = mup<1||x*og||’zgp,am>= sup / (I(2*09) (=) P(1 — [22)*dA(2) + | (2" 0g) (O)])

[ x« [lz*[|x+ <1

WP(L = |2[2)~dA () (0
||a:*||x*<1/|f 2)P(1 = |2[*)*dA(2) + |z* (x) F(0)])

- / PP = 2 dA) + FO)] = IFI5, ) < oo
So g € wB, o(X) and we have

[|MyCogllwar x) < Cllgllws,..x) = CllflB,..m))> (2.1)

for some constant C'. On the other hand,

IMCotll gy = s ([ 16" 0CLa) (P = |2P)dA)

[lz*[lx=<1

= s ([ 1@ 0O EPa - |Praae)

[lz*[lx=<1

~ sw / 2" (@) (WC ) (2)P(1 — |2[2)*dA(2)

[lz*]|x=<1
= [ 1GCAEP (L~ 1s) A = [MaCo oy 22)
Hence, from (2.1) and (2.2) we obtain

[|[MyCyfllarmy < CllfllB,.. o)

This implies boundedness of MyC,, : By (D) — A2(D).
(b)= (c). If MyC, is a bounded operator from By, o(D) to AE (D), then by choosing f =1, we get that

Y]] a2 @) < Cl[1|8, .m) < o0,

for a constant C'. Thus, ¢ € AP (D).
(c)= (a). Suppose that 1) € A? (D). Then by Lemma 2.3 , for f € B, (D), we have

1My Co fll az.m) < [1f]loo /D [W()P(1 = [2*)*dA(2) < ClIfl]5,.0m), (2.3)
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for a constant C'. On the other hand, for any f € wB,o(X) and z* € X* such that ||z*|| < 1, we have that
z*of € By o(D). So (2.3) gives us

[|MyCyp(z o f)|| army < Cllz"of |8, @) < Cllfllws,. .(x);
for constant C'. Hence,

My Cop fllwaz x) = ! Sl?lp<1 |2 0(MyCop (f)l| a2 m) = ! Sl‘l‘l’q [[MyCop(z 0 f)|| az, ) < CllfllwB,.q(x)s
x*||< z*||<

for constant C'. This completes the proof. O

Theorem 2.5 Let 1 < p < oo and ¢ be an analytic self map on D. Then the following statements are
equivalent:

a) Operator MyDCy, : wB) o(X) = wAP (X) is bounded.

b) Operator MyDC, : B, o (D) — A2(D) is bounded.

¢) tp,a,p i a Carleson measure on AP (D).

Proof (a) = (b). Suppose that My DCy, : wBp o(X) = wAL(X) is bounded. Then for any f € B, (D) and
x € X with ||z|| = 1, we consider the function g : D — X such that g(z) = zf(z) for z € D. Then similar to
the proof of Theorem 2.4, we have that g € wB) o(X) and ||g||ws, . (x) = [|f||5,.. () - So from the boundedness

of MyDCy : wBp o(X) = wAL(X),
[[MyDCpgllwarx) < Cllgllws, .x) = Cllfll5,..m); (2.4)

for some constant C'. Also,

1My DCogIly, 4r () = S [|z" 0¥ (g00) [|%4n () = S /|¢ )IP|2* (z fop)'[P(1 — [2]*)*dA(2)
= s [ 0Pl @)(Fop)IP(1 ~ o) dA() = 1My DC |y oy (2.5)
[lz*]]<1

Therefore, inequalities (2.4) and (2.5) imply the boundedness of M, DC,, form B, (D) to AZ(D).
(b)= (c). Suppose that M, DC, is bounded on Bj, (D). Then for f € B, (D) with the property f(0) =0,
there exists a constant C' such that |[¢)(fop)||azm) < C||fl|B,.. (o). So

/ BIPIF (9 ()Pl ()P (1 = |2[*)*dA(2) < C(/ [/ (2)[P(1 = |2[*)*dA(2)). (2.6)
D D
By the usual change of variable formula, if w = ¢(z) then dA(w) = |¢'(2)|?dA(z), then

L WP GNP P = 122)AG) = [ 17 @) Ny (e w)dd@) = [ 17 @) dastw). (27)

Let g € AR(D) and define f(z) = [ g(t)dt. Then f'(z) € A%(D), and f(0) = 0. By using (2.6) and (2.7), we
get

/ 19(2) Pdbtpap(z) < C / 9(2)P (L~ [22)°dA(2),
D D
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and by Remark 1, pp, o is a Carleson measure.

(c)= (a). Suppose that f, o is a Carleson measure. Then for g € A (D), we have

/ 19(2) Pdptp () < C / 9(2)P(1— |#2)*dA(2),
D D

for a Constant C'. However, for f € B, (D), we have ' € A2 (D) and by using (2.7), we get

16(Fop) Iy ) = / WPI(fop) ()P (1~ [2P)PdA(= / £ ()P dpty 0.0(a0)

<c / P @)~ [w]?)*dA@w) < ClIflls, .o, (2.8)

for some constant C'. However, for any f € wB,o(X) and z* € X* such that ||z*|| < 1, we have that

z*of € By o(D). So (2.8) gives us
[[MyDCy,(z*0f)|| ar, ) < Cllz*ofl|B,..) < Cllfllwb,..(x);

for constant C'. Hence,

|MyDCy fllwaz x) = Hsyll|p<1|I$*0(M¢Dcw(f)llAg<D> e 1My DCy(z"0f )| az. ) < ClIflwB, .0 (x),

for constant C'. This completes the proof. a

Theorem 2.6 If a+2 < p and ¢ be an analytic self-map on . Then the following statements are equivalent:
a) Operator MyCy : wBp o(X) = wBp o(X) is bounded.

b) Operator MyCy : By (D) = By o(D) is bounded.

c) ¥ € Bpa(D) and pipa.y is a Carleson measure on AP (D).

d) Operator MyCy, : wBp o(X) = Bpo(X) is bounded.

Proof (a) = (b). It is similar to the proof of Theorem 2.4.

(b) = (c). Suppose that MyC, : By (D) — B, o(D) is bounded. By choosing f = 1, we get that
918, .y < co. Also, for any f € B, (D), with the boundedness of M,C, on B, (D), we have that
l[vf o¢lls, o) < CllflB,.. () However, we show that ¢ € B), o(D) and then ' € A% (D). Now Lemma 2.3,

gives us
[ foe) [z my < [ fop) | ar ) + &' (fo)ll az m)
<@ for)lls,..m) + 19U az.m) | flle < ClIfllB,.0m)s

for a constant C'. Thus, MyDC, : By (D) — AP(D) is bounded and according to part (c) of Theorem 2.5,
Up.ayp is a Carleson measure on AF (D).

(c)= (d). For any f € wB,o(X) and z* € X*, we have that z*of € B, (D). By the pointwise estimate of
the derivative of Bergman space functions, we get

'@ = sup |2"(f'(2)IP = sup [(z"of)'(2)]". (2.9)

[lz=[|<1 [lz=[]<1
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On the other hand, evaluation at ¢(0) is a bounded linear operator on B, (D). So the hypothesis, (2.9) and

application of Theorems 2.4 and 2.5, give us
IMuCoaflls, oo = [ 1@Foe) B (1 = |=P)dA() + [[(5500) 0|

< sup /I z* o fop)'[P(1 = [2]*)*dA(2) + ||(¥ for) (0)l|x

IIJL’*H<1

sup / ' (2)a" o fop(2)P(1 — |2[2)*dA(2)

IIHC*H<1

+ sup /WJ(Z)(17*0f0</9)’(2)|”(1—IZ\Z)”'dA(Z)ﬂL sup [¢(0)[|z"0f (#(0))]

[lz*]I<1 llz=]]<1

= s |IMyCo(a"of)llagm + sup ||[MyDCy (2" Of)IIAPaD)JrC Sup |[z%0f(¢(0))]

[lz[|<1 [lz*]< z*|[<1

<Cll|Slhp l|z*0f||5, . (D) +02HSUHP |z 0 f||5,.. (D) +C‘ SUHP ||2* 0f||BMD) < M| fllwB,.(x),
x*||<1 x* z

for constants C1,C5,C and M.
(d) = (a). For any f € B, (D) and =z € X with ||z|| = 1, let g(2) = xf(2). Then similar to the proof
of Theorem 2.4, we have that ||g[ws,.x) = [Iflls,.m) and [[¥Cuglls,.x) = |[WCufllB, . ). So the
boundedness of MyC, : wBpo(X) — Bpo(X) gives us the boundedness of MyC, : Bpo(D) — By (D).
However, for any f € wB, (X) and z* € X*, we have that z*of € B, (D). So,

[[Cy fllws,. o (x) = ”:*lllllll 2" Co fllB, .(0) = ||:*1|1|p<1 [[vCpxof||B, . (D)

<C sup |[z%0fl|s, . m) = Cllfllws,..(x),
[Jlz*]]<1

for a constant C'. This completes the proof. O

The following lemma gives us a characterization for the boundedness of operator M, DC, on weighted

Bergman space AP (D).

Lemma 2.7 Let 1 < p < 0o, ¢ be an analytic self map on D. Then the operator MyDC,, : AP (D) — AP (D)

is bounded if and only if pp.ayw 95 a Carleson measure on Aaﬂ)(ID))

Proof Suppose that MyDC,, : AP (D) — A% (D) is bounded. Let f € AL, (D) and take g(z fo

Then ¢'(z) € AY

a+p(D) and g(0) = 0. However, according to Notation 2.2, g € A5 (D). So

L WPy = [ 10500 (1= 2104 = 1My DCll
< Cllglly ) < CllgOF + 1161 )= Cllg oo
The argument above shows that for any f € A, +p( ),

[ 1Pdug < €Il o
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for a constant C' and it follows that s, 4 is a Carleson measure on A?

a+p(]D)) .

For the converse, suppose that fi, 4, is a Carleson measure on A? (D). For any f € AP (D) according to

a+p
Notation 2.2, f' € AP

t+p(D). So with an application of second part of Lemma 2.1, we have

IMDC, M0y = [ 16000l (1 = =704 = [ 17/ Ny o, w)dA(w)
= [1F @Pdnasw) <€ [ 170 P dAw)
D D
<G [ 1P~ 2) A w) = Cillf g o
D

for constants C' and C;. This completes the proof. O

The next lemma gives us a characterization for boundedness of operator MyC, on A? (D).

Lemma 2.8 [6] Let ¢ be an analytic self map of D and v € HD). If 0 < p < oo, then the weighted
composition operator MyC,, on AP (D) is bounded if and only if:

71_‘6”2 ot2 w)P(1 = |w|?)® w 00
sup [ ()™ )l (1= ) dA(w) < .

In the next theorem, we have some equivalence conditions for boundedness of operators on M,C,D on
whBp o(X).

Theorem 2.9 Let 1 <p < oo, ¢ be an analytic self map on D and iy o, is a Carleson measure on Af,, (D).

Then the following statements are equivalent:

a) Operator MyC,D : wBy o(X) = wBp.o(X) is bounded.

b) Operator MyCyD : By o(D) = By (D) is bounded.

¢) Operator MyCy : AR (D) — By, o(D) is bounded.

d) Operator My Cy, : AR (D) — AE (D) is bounded and 1 € By o (D).

—lal? a+2 -

¢) sWpyen Jy (rmnioye) ™ 10 (w)[P(1 = [w[?)*dA(w) < 0o and ¢ € By o (D).

Proof (a)= (b). It is similar to the proof of part (a) to (b) of Theorem 2.4.

(b)= (c). Let g € B, (D) with ¢g(0) =0 with the boundedness of MyCy,D on B, o(D), we have that
g’ 0¢ll5,..0) < Cllglls,..o) = Cllg'l| azm)-

Let f € A2(D) define g(z) = foz f(w)dw. Then the argument above gives us

[14Cy flB, @) < ClIfllazm)-

(c) = (d). If MyC, : AL(D) — By (D) is bounded, then by choosing f = 1, we get that |||z, ) < 00

and so ¢ € B, o(D). On the other hand, by the hypothesis, s, o is a Carleson measure on A, (D), so by

a+p
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Lemma 2.7, we have that My,DC, : AL (D) — AP (D) is bounded. However, for any f € AZ (D), boundedness
of MyC, from AL (D) to By (D), gives us

|My Coo fllaz ) < [[MypCoflls, @) + 1My DOy fllazm) < ClIf|l a2 m),

for a constant C'. So My C, : AL (D) — AP (D) is bounded.
(d)= (e). According to Lemma 2.8, it is clear.
(e)= (a). Suppose that (e) holds, then with Lemma 2.8, we have (d). Since we also assume that pp, . is a

Carleson measure on A2, (D), so Lemma 2.7 gives us the boundedness of M, DC, on AF (D). However, the

a+p
evaluation at ¢(0) is bounded on AZ (D), so for any f € AP (D) we have

1My Co (I8, 0) = I(MypCo ()| az.m) + [(0) f((0))]
<My Co ()l 4z, + [[Myp DCo ()l az, + [$0)]|F((0))] < CIIf]]a2,w),

for a constant C'. Therefore,

MyC, : AP.(D) = By.o(D) (2.10)

is bounded. Now suppose that f € B, (D), then Df = f' € AP(D). Hence, for any f € B, (D), (2.10)
gives us the boundedness of M, C,D : B}, o(D) — B, (D). However, for f € wB, o(X) and z* € X*, we have
z*of € Bpo(D). So

[[WCoDfllwb, . (x) = IISlTlp<1 l|z*pCo f'l|B, .oy = sup |[[YCoz*of'||5, .m)

[z~ |I<1
<C sup [[WC,D(z"0f)l|s, ) < sup |[lz"0fllB, . ) = Cllfllws,..x);
[Jz=||<1 llz=]]<1
for a constant C' and this completes the proof. O

Now we can characterize boundedness of the Stevié-Sharma operator Ty, y,,, = (My,Cy + My, C,D), on
whBp o(X).

Theorem 2.10 Let o +2 < p < 00, ¢ be an analytic self map on D and pip .« 5 a Carleson measure on
A,
a) Operator Ty, v, WBpo(X) = wBp o (X) is bounded.

b) Operator Ty, ys.o : Bp.o(D) = By o(D) is bounded.
—lal? a+2 -
&) 5bacp fy (TS 2 g (w)P(1 — fw]2)*dA(w) < 0 and vr € Bpa(D), vz € Bya(D).

(D). Then the following statements are equivalent:

Proof (a) = (b). It is similar to the proof of Theorem 2.4.
(b) = (c). Suppose that Ty, v, : Bpa(D) = Bp.o (D) is bounded. Then for any f € B, (D),

T 2,0 (D18, (0) = [|My, Cop + My, Co D) ()|, 0 m) < 18, 0 m)- (2.11)

By choosing f =1, we get that
[¥1l]8,. . () < 0. (2.12)
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However, we have assumed that i, o, is a Carleson measure on A7,

on A? (D) and Theorem 2.6 gives us the boundedness of My, Cy : By o(D) = By o(D). Now with the triangle
inequality and (2.11), we obtain

(M, Co DY ()| B,.00) < N F11By.0m) + 1My, Co (B, 0 m) < I fll5,..m) + CllflB, .m0

(D), so pp a,p will be a Carleson measure

Therefore, operator My,C,D is bounded on B, (D) and part (e) of Theorem 2.9 completes the proof.

1_‘0"2 a+2 / P 2\«
(c) =(a). Suppose that sup,cp fp (W) [y (w)[P(1 — |w[*)*dA(w) < oo and 1 € B, (D) and

p

Vo € By o(D). We also assumed that p, .4 is a Carleson measure on A7,

(D) so it is a Carleson measure on
AP (D). Therefore, with application of Theorems 2.6 and 2.9, we have the boundedness of operators My, C,
and My, C,D on wB)y (X) and this completes the proof. O
n [19], boundedness of the Stevié-Sharma operator Ty, 4, on weighted Bergman space AE (D) has been

characterized as follows:

Theorem 2.11 Let 1 < p < 00, 91,92 € H(D), ¢ be an analytic self-map on D and sup,cp % < 00.

Then Ty, e is bounded on AP (D) if and only if sup,cp [; (%)aﬁwl(wﬂp(l — Jw|?)?dA(w) < oo

By using the above theorem and Theorem 2.10, we get the following corollary.

Corollary 2.12 Let 1 <p < oo, 9¥1,9%2 € H(D), ¢ be an analytic self-map on D and sup,cp % < 0.

Then the following statements are equivalent:
(a) Ty, oo is bounded on By (D).
(b) Tyy e is bounded on AL (D) and 41,45 € AR (D).

3. Boundedness and compactness of C, on weak vector valued a-Besov spaces

In this section, we investigate the boundedness and compactness of composition operator C', on weak vector

valued a-Besov space wBp,q(X).

Lemma 3.1 Let 1 < p < o0, ¢ be an analytic self map on D. Then the bounded composition operator
Cyp 2 Bpa(D) = By o(D) is compact if and only if || fnowl|s, .oy — 0 for any bounded sequence f, in By (D)
with f, = 0 uniformly on compact subsets of D. (In a similar way, we can define the weakly-compactness of
the bounded operator C, : wBp o(X) = wBpo(X). )

From Theorem 2.6, we deduce the necessary and sufficient conditions for the boundedness of composition

operator T o, = Cy, on why o(X).

Corollary 3.2 If a+2 < p and ¢ is an analytic self-map on D. Then the following statements are equivalent:
a) Operator Cy, : wBp o(X) = wBE(X) is bounded.

b) Operator Cy : By o (D) — BE(D) is bounded.

¢) tpa1 is a Carleson measure on AP (D).

d) Operator Cy, : wB) o(X) — B(X) is bounded.
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Theorem 2.9 gives us conditions for the boundedness of operator Ty 1., = C,D on wB, o(X).

Corollary 3.3 Let 1 <p < 00, ¢ be an analytic self map on D and py o1 is a Carleson measure on A? (D).

a+p
Then
a) Operator Cy,D : wBp o(X) = wBp o(X) is bounded.

b) Operator C,D : By (D) — By (D) is bounded.
¢) Operator Cy, : AL (D) — By o(D) is bounded.

Theorem 2.10 gives us conditions for the boundedness of operator Ty 4, = DCy, on wBp o(X).

Corollary 3.4 Let a4+ 2 < p < 00, ¢ be an analytic self map on D and pp a1 s a Carleson measure on
Acrp
a) Operator DCy : wBp o(X) = wBp o(X) is bounded.

b) Operator DCy, : By (D) = By o(D) is bounded.
d) ¢ € Byo(D) and sup,cp fi (i) 0" (w)lP(1 = |w]?)*dA(w) < oo.

1—ap(w)]?

(D). Then the following statements are equivalent:

Now for the compactness of the composition operator C,, on B, (D), we have the following theorem.

Theorem 3.5 Suppose that o+ 2 < p < 0o, ¢ be an analytic self map on D. Then the following statements
are equivalent:

(a) Cy,: wBp o(X) = wBp o(X) is weakly compact

(b) Cy : By o(D) = By o(D) is compact.

(¢c) tpan s a compact Carleson measure on AP (D).

(d) Cy : wBp o (X) = Bp.o(X) is compact.

Proof (a) = (b). Suppose that C, is compact on wBE(X). Let f, be a bounded sequence in B (D) with
frn. — 0 uniformly on compact subsets of D. If z € X with ||z|| = 1, define g,,(z) = 2 f,(z). Then as we showed

in the proof of previous theorems, g, € wBE(X) and g, — 0 uniformly on compact subsets of D. So we have
[[Cognllwnr (x) = llgn © ¢llwsr (x) = 0.
However, as we show in the proof of previous theorems,
llgnoellwsr(x) = |1 fa © ¢l D)-
So |[Coy fullgz @y — 0 and Cy, is compact on BE /(D).

(b) = (c). Suppose that C, is compact on B, (D). Let g, be a bounded sequence in A? (D) with
gn — 0 uniformly on compact subsets of D and g, (0) = 0. Then there exists f, such that f](z) = gn(2), for
z €D, fn, €Byo(D) and f,, — 0 uniformly on compact subsets of . So we have

1900151y o 0.) = / 90 () P dpip..1 (1) = / 190() [P Ny .1 (0, w)dA(w).
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By the usual change of variable formula, if w = ¢(z) then dA(w) = |¢'(2)|>dA(z). So
1901510 = [ N9n (P (L= 512)70AC)
/ 1 (e)IPle ()P (1 = [2]*)*dA(2)

/ 1fa((2))'IP(1 = |2[*)*dA(2)
=|1(fa0e) 145 ) < Cllfnoell, o)

for a constant C. However, ¢ is continuous on D, so || f,op]|

By.o () — 0 uniformly on compact subsets of D.
Hence, ||gnl|zr(uy.o0,p) — 0 and so I @ A8 (D) = LP(ip,a,1,D) is compact. It follows that ju, 4,1 is a compact

Carleson measure.

(c)= (a). Assume that p, o1 is a compact Carleson measure. Suppose that (f,) is a bounded sequence
in By (D) such that f, — 0 uniformly on compact subsets of D and f,(0) = 0. So f}, € AZ(D) and
[}, = 0 uniformly on compact subsets of D. Since I, : A2 (D) — LP(upa,1,X) is compact, it follows that

[ fllLe (uy. 0 p) — 0. However,
1/p
|Co fullB, o) = (fro@)(0)[| + [[(frno@)'[| a2 @) = I fn(2(0))]] + </|f DIIPQ (2 )p(1—|22)0‘dA(z))

O+ ([ 50PNy 0)dA >)

AN+ ([ 1720 P ))Up.

Hence, ||fno¢l|s, .oy — 0. Thus, C, is compact on Bj ,(D.) Let f, be a bounded sequence in wB) ,(DD)
with f,, — 0 uniformly on compact subsets of D. Then for each z* € X*, (z*of,) is a bounded sequence
in Bpo(D) and (z*of,) — 0 uniformly on compact subsets of D. Since C, is compact on B, (D), so

[|Cy(z*0fn)llB, vy — 0. However, we have

|z*0(fnop)ll, . (m) = lI(z"0fn)09)|B, . ) = 0.

Hence,

|Co fnllws, ox) = sup[fz"o(fnop)l|5, @) = 0,

[le*||x=<

and this completes the proof.
(¢) & (d). It is similar to the previous proof. O
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