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Abstract: Let ψ1 and ψ2 be analytic functions on the open unit disk D and φ an analytic self map on D . Let Mψ , Cφ
and D denote the multiplication, composition and differentiation operators. We consider operators Mψ1Cφ , Mψ2CφD

and the Stević-Sharma operator Tψ1,ψ2,φ(f) =Mψ1Cφ(f)+Mψ2CφD(f) on α -Besov space Bp,α and weak vector valued
α -Besov space wBp,α(X) for complex Banach space X and find some equivalent statements for boundedness of these
operators. Also, boundedness and compactness of composition operator Cφ on Bp,α(D) and wBp,α(D) are given.
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1. Introduction
Let X be a complex Banach space and D be the open unit disc in the complex plane C . The Lebesgue
area measure on D is defined by dA(z) = rdrdθ = dxdy. Denote by H(X) the class of all analytic functions
f : D → X . For p ≥ 1 , the vector valued weighted Bergman space Apα(X) consists of all functions f ∈ H(X)

for which

||f ||p
Ap

α(X)
=

∫
D
||f(z)||p(1− |z|2)αdA(z) <∞.

Note that Apα(X) is Banach space for p ≥ 1 , see [2, 3, 11] for the theory of these spaces.
Let 1 ≤ p < ∞ , −1 ≤ α < ∞ , the vector valued α -Besov space Bp,α(X) is the space of all functions

f ∈ H(X) such that

||f ||pBp,α(X) =

∫
D
||f ′(z)||pX(1− |z|2)αdA(z) <∞.

Note that for X = D , we have the α -Besov space Bp,α(D) and for X = D , p = 2 and α = 0 we have the
classic Dirichlet space D .
The weak vector valued α -Besov space wBp,α(X) consists of all analytic functions f : D → X , for which

||f ||wBp,α(X) = sup
||x∗||≤1

||x∗ ◦ f ||Bp,α(D)

is finite. Here x∗ ∈ X∗ , the dual space of X . In fact, such kind of weak version spaces wE(X) can be intro-
duced under more general conditions on any Banach spaces E consists of analytic functions f : D → X , see
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[13]. Some strong and weak version spaces are completely different such as Hardy spaces H2(X) and wH2(X) .
Also, Dirichlet spaces wDα(X) and Dα(X) are different for any infinite dimensional complex Banach space X ,
[20]. Some others are the same such as Bloch spaces B(X) and wB(X) (refer to [1]).

Given analytic functions φ and ψ in the unit disc D such that φ(D) ⊂ D, the weighted composition
operator ψCφ on H(D) is defined by Wψ,φf(z) = ψ(z)f (φ(z)), for z ∈ D. If ψ = 1 , it becomes the composition
operator Cφ and if φ(z) = z , it becomes the multiplication operator Mφ . Since Wψ,φ =MψCφ , it is a product-
type operator.

When studying an operator on a space, the first question is about the properties of the operator such as
boundedness, compactness, adjoint, normality and so on. For composition and the other operators on spaces
of analytic functions we used here, the question is the relation between operator-theoretic properties of the
operator with the function and geometric properties of the inducing functions ψ and φ . For example, the well
known Littlewood Subordination Theorem in the excellent book by Cowen and Maccluer [5] computed the norm
of the operator and related the results to the boundedness. Beside this, Shapiro in [18] studied the compact
composition operators widely in many aspects. For example, he proved that if ||φ||∞ < 1 the Cφ is a compact
operator on Hilbert Hardy space H2 .

Weighted composition operators as well as the operators studied here are all generalization of well known
composition operators which paly an important role in operator theory. Some applications of (weighted)
composition operators are for example isometries of Hp , Hardy space, p ̸= 2 and p > 1 are weighted
composition operators [7]. Also, backward shifts of all multiplicities can be represented as composition operators.
Composition operators have arisen in the study of commutates of multiplication operators and more general
operators, Cowen and Maccluer [5], and play a role in theory of dynamical systems. De Branges’ proof of the
Bieberbach conjecture depended on composition operators on a spaces of analytic functions [4].

The action of composition operators and weighted composition operators on analytic function spaces
such as Bergman, Hardy, Dirichlet and Dirichlet type spaces has been studied by many authors, see for example
[8–10, 12, 21, 22].

(Weighted) composition operators can be generalized in some manners. One of the important general-
izations is the following so-called Stević-Sharma operator:

Tψ1,ψ2,φf(z) = ψ1f(φ(z)) + ψ2f
′(φ(z)), f ∈ H(D), (1.1)

which includes many operators. Other operators related to the weighted composition operators are

MψDCφ(f) = ψ(f ◦ φ)′ = ψφ′(f ′ ◦ φ), (1.2)

MψCφD(f) = ψ(f ′ ◦ φ),

where D is differentiation operator on H(D) and defined by

Df = f ′.

In this paper, we characterize boundedness of weighted composition operators Wψ,φ =MψCφ and the product-
type operators of (1.2) on α -Besov space Bp,α(D) and weak vector valued α -Besov space wBp,α(X) . Then we
find equivalent statements for boundedness of the Stević-Sharma operator on these spaces. Also, boundedness
and compactness of composition operator Cφ on Bp,α(D) and wBp,α(X) are given. The most interesting point
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of the results is that for all operators mentioned above, the boundednes and compactness on the arbitrary
Banach space X is equivalent to the study on the unit ball D . As the applications of our main results, readers
can obtain some characterization for the boundedness of all operators contained in Stević-Sharma operator and
also the differences of those operators on wBp,α(X) and Bp,α(D) .

Let µ be a finite positive Borel measure on D. Then µ is said to be Carleson if there exists a constant
C such that µ(S(ξ, h) ≤ Ch2 for all ξ and h , when |ξ| = 1 and 0 < h < 2 . The measure is said to be compact

Carleson if limh→0 sup|ξ|=1
µ(S(ξ,h))

h2 = 0. Carleson measures have been useful in the study of composition
operators in several settings (see for example [12, 14–17, 22]). For w ∈ D, let N2(φ,w) denote the number of
zeros (counting multiplicities) of φ(z) − w. For 1 ≤ p < ∞ and w ∈ D and analytic map ψ on D, we define
modified counting function

Np,α,ψ(φ,w) =
∑ (1− |z|2)α|ψ(z)|p

|φ′(z)|2−p

where the sum extends over the zeros of φ − w , repeated by multiplicity. In particular, Np,α,ψ(φ,w) = 0 for
w /∈ φ(D). Clearly with ψ = 1 , α = 0 and p = 2 we have N2(φ,w).

Let µp,α,ψ be the measure defined on D by dµp,α,ψ(w) = Np,α,ψ(φ,w)dA(w), 1 ≤ p <∞.

A nonnegative measure µ on D is called a Carleson measure for Bp,α(X) if there is a constant C > 0 such that∫
D
||f(z)||pXdµ(z) ≤ C||f ||pBp,α(X),

for all f ∈ Bp,α(X). That is, the inclusion operator i from Bp,α(X) into Lp(X,µ) is bounded. We call the
Carleson measure µ , a compact Carleson measure for Bp,α(X) if the inclusion operator i from Bp,α(X) into
Lp(X,µ) is compact.
Through these facts, one can have the following theorem (as a definition) that characterizes Carleson measure
for Apα(X).

Definition 1.1 Take 1 ≤ p <∞ . Let µ be a positive Borel measure on D. Then
(a) µ is said to be a Carleson measure for Apα(X) if and only if Apα(X) ⊂ Lp(µ,X) and the inclusion operator

I : Apα(X) → Lp(µ,X)

is a bounded operator.
(b) µ is said to be a compact Carleson measure for Apα(X) if and only if Apα(X) ⊂ Lp(µ,X) and the inclusion
operator I from Apα(X) into Lp(µ,X) is compact.

Remark 1.2 Part (a) of the above definition is equivalent with the following statement:
There exists a constant C such that ∫

D
||f(z)||pXdµ(z) ≤ C||f ||p

Ap
α(X)

,

for allf ∈ Apα(X).

Throughout this paper, constants are denoted by C, they are positive and not necessarily the same as
each occurrence.
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2. Product-type operators on weak vector valued α-Besov spaces

The following lemma from [11] will help us prove our next results.

Lemma 2.1 For any α > −1 and p > 0 , there exists a constant C > 0 such that∫
D
|f(z)|p(1− |z|2)αdA(z) ≤ C

[
|f(0)|p +

∫
D
|g(z)|p(1− |z|2)αdA(z)

]
and

|f(0)|p +
∫
D
|g(z)|p(1− |z|2)αdA(z) ≤ C

∫
D
|f(z)|p(1− |z|2)αdA(z)

for all analytic functions f ∈ H(D) , where

g(z) = (1− |z|2)f ′(z) z ∈ D.

Notation 2.2 As a result of the above lemma, we can see that f ∈ Apα(D) if and only if f ′ ∈ Apα+p(D) .

Lemma 2.3 Suppose that −1 < α and 2 + α < p <∞ . Then for any f ∈ Bp,α(D) , there exists a constant M
such that ||f ||∞ ≤M ||f ||Bp,α(D) .

Proof Let f ∈ Bp,α(D) , then ||f ||Bp,α(D) = ||f ′||Ap
α(D) + |f(0)| <∞ . So f ′ ∈ Apα(D) and according to [11], we

have that |f ′(z)| ≤
||f ′||Ap

α

(1−|z|2)
2+α
p

. However, 2 + α < p, ; therefore;

|f(z)− f(0)| = |
∫ z

0

f ′(w)dw| = |
∫ 1

0

zf ′(az)da| ≤
∫ 1

0

|z||f ′(az)|da ≤
∫ 1

0

||f ′||Ap
α
|z|

(1− |az|2)
2+α
p

da

≤ ||f ′||Ap
α

∫ 1

0

|z|
(1− |az|)

2+α
p

da ≤M ||f ′||Ap
α(D),

for a constant M . Hence, for any z ∈ D ,

|f(z)| ≤M ||f ′||Ap
α(D) + |f(0)| ≤M ||f ||Bp,α(D).

It follows that
sup
z∈D

|f(z)| = ||f ||∞ ≤M ||f ||Bp,α(D).

2

Now our first plan is to obtain conditions for boundedness of the operator MψCφ : wBp,α(X) → wBpα(X) .
Since (MψCφ(f))

′ = Mψ′Cφ(f) +MψDCφ(f) , in the next two theorems, we characterize boundedness of the
operators MψCφ and MψDCφ from wBp,α(X) into wApα(X) .

Theorem 2.4 Let α ≥ −1 , p > α + 2 and φ be an analytic self map on D . Then the following statements
are equivalent:
a) Operator MψCφ : wBp,α(X) → wApα(X) is bounded.
b) Operator MψCφ : Bp,α(D) → Apα(D) is bounded.
c) ψ ∈ Apα(D) .
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Proof (a) ⇒ (b). Suppose that MψCφ : wBp,α(X) → wApα(X) is bounded and f ∈ Bp,α(D) . If x ∈ X with
||x|| = 1 and consider the function g : D → X , g(z) = xf(z) for z ∈ D then we have

(x∗og)′(z) = (x∗oxf)′(z) = lim
w→z

x∗(xf(w))− x∗(xf(z))

w − z

= lim
w→z

f(w)x∗(x)− f(z)x∗(x)

w − z
= f ′(z)x∗(x).

It follows that

||g||pwBp,α(X) = sup
||x∗||X∗≤1

||x∗og||pBp,α(D) = sup
||x∗||X∗≤1

∫
D
(|(x∗og)′(z)|p(1− |z|2)αdA(z) + |(x∗og)(0)|)

= sup
||x∗||X∗≤1

(

∫
D
|f ′(z)x∗(x)|p(1− |z|2)αdA(z) + |x∗(x)f(0)|)

=

∫
D
|f ′(z)|p(1− |z|2)αdA(z) + |f(0)| = ||f ||pBp,α(D) <∞.

So g ∈ wBp,α(X) and we have

||MψCφg||wAp
α(X) ≤ C||g||wBp,α(X) = C||f ||Bp,α(D), (2.1)

for some constant C . On the other hand,

||MψCφg||pwAp
α(X)

= sup
||x∗||X∗≤1

(

∫
D
|(x∗ψCφg)(z)|p(1− |z|2)αdA(z))

= sup
||x∗||X∗≤1

(

∫
D
|(x∗ψCφ(xf))(z)|p(1− |z|2)αdA(z)

= sup
||x∗||X∗≤1

(

∫
D
|x∗(x)(ψCφf)(z)|p(1− |z|2)αdA(z)

=

∫
D
|(ψCφf)(z)|p(1− |z|2)αdA(z) = ||MψCφf ||pAp

α(D). (2.2)

Hence, from (2.1) and (2.2) we obtain

||MψCφf ||Ap
α(D) ≤ C||f ||Bp,α(D).

This implies boundedness of MψCφ : Bp,α(D) → Apα(D) .
(b)⇒ (c). If MψCφ is a bounded operator from Bp,α(D) to Apα(D) , then by choosing f = 1 , we get that

||ψ||Ap
α(D) ≤ C||1||Bp,α(D) <∞,

for a constant C . Thus, ψ ∈ Apα(D) .
(c)⇒ (a). Suppose that ψ ∈ Apα(D) . Then by Lemma 2.3 , for f ∈ Bp,α(D) , we have

||MψCφf ||Ap
α(D) ≤ ||f ||∞

∫
D
|ψ(z)|p(1− |z|2)αdA(z) ≤ C||f ||Bp,α(D), (2.3)
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for a constant C . On the other hand, for any f ∈ wBp,α(X) and x∗ ∈ X∗ such that ||x∗|| ≤ 1 , we have that
x∗of ∈ Bp,α(D) . So (2.3) gives us

||MψCφ(x
∗of)||Ap

α(D) ≤ C||x∗of ||Bp,α(D) ≤ C||f ||wBp,α(X),

for constant C . Hence,

||MψCφf ||wAp
α(X) = sup

||x∗||≤1

||x∗o(MψCφ(f)||Ap
α(D) = sup

||x∗||≤1

||MψCφ(x
∗of)||Ap

α(D) ≤ C||f ||wBp,α(X),

for constant C . This completes the proof. 2

Theorem 2.5 Let 1 ≤ p < ∞ and φ be an analytic self map on D . Then the following statements are
equivalent:
a) Operator MψDCφ : wBp,α(X) → wApα(X) is bounded.
b) Operator MψDCφ : Bp,α(D) → Apα(D) is bounded.
c) µp,α,ψ is a Carleson measure on Apα(D) .

Proof (a) ⇒ (b). Suppose that MψDCφ : wBp,α(X) → wApα(X) is bounded. Then for any f ∈ Bp,α(D) and
x ∈ X with ||x|| = 1 , we consider the function g : D → X such that g(z) = xf(z) for z ∈ D . Then similar to
the proof of Theorem 2.4, we have that g ∈ wBp,α(X) and ||g||wBp,α(X) = ||f ||Bp,α(D) . So from the boundedness
of MψDCφ : wBp,α(X) → wApα(X) ,

||MψDCφg||wAp
α(X) ≤ C||g||wBp,α(X) = C||f ||Bp,α(D), (2.4)

for some constant C . Also,

||MψDCφg||pwAp
α(X)

= sup
||x∗||≤1

||x∗oψ(goφ)′||p
Ap

α(D) = sup
||x∗||≤1

∫
|ψ(z)|p|x∗(xfoφ)′|p(1− |z|2)αdA(z)

= sup
||x∗||≤1

∫
|ψ(z)|p|x∗(x)(foφ)′|p(1− |z|2)αdA(z) = ||MψDCφf ||pAp

α(D). (2.5)

Therefore, inequalities (2.4) and (2.5) imply the boundedness of MψDCφ form Bp,α(D) to Apα(D) .
(b)⇒ (c). Suppose that MψDCφ is bounded on Bp,α(D) . Then for f ∈ Bp,α(D) with the property f(0) = 0 ,
there exists a constant C such that ||ψ(foφ)′||Ap

α(D) ≤ C||f ||Bp,α(D). So∫
D
|ψ|p|f ′(φ(z)|p|φ′(z)|p(1− |z|2)αdA(z) ≤ C(

∫
D
|f ′(z)|p(1− |z|2)αdA(z)). (2.6)

By the usual change of variable formula, if w = φ(z) then dA(w) = |φ′(z)|2dA(z), then∫
D
|ψ|p|f ′(φ(z))||p|φ′(z)|p(1− |z|2)αdA(z) =

∫
D
|f ′(w)|pNp,α,ψ(φ,w)dA(w) =

∫
D
|f ′(w)|pdµp,α,ψ(w). (2.7)

Let g ∈ Apα(D) and define f(z) =
∫ z
0
g(t)dt . Then f ′(z) ∈ Apα(D) , and f(0) = 0 . By using (2.6) and (2.7), we

get ∫
D
|g(z)|pdµp,α,ψ(z) ≤ C

∫
D
|g(z)|p(1− |z|2)αdA(z),
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and by Remark 1, µp,α,ψ is a Carleson measure.
(c)⇒ (a). Suppose that µp,α,ψ is a Carleson measure. Then for g ∈ Apα(D) , we have∫

D
|g(z)|pdµp,α,ψ(z) ≤ C

∫
D
|g(z)|p(1− |z|2)αdA(z),

for a Constant C . However, for f ∈ Bp,α(D) , we have f ′ ∈ Apα(D) and by using (2.7), we get

||ψ(foφ)′||p
Ap

α(D) =

∫
D
|ψ|p|(foφ)′(z)|p(1− |z|2)pdA(z) =

∫
D
|f ′(w)|pdµp,α,ψ(w)

≤ C

∫
D
|f ′(w)|p(1− |w|2)αdA(w) ≤ C||f ||Bp,α(D), (2.8)

for some constant C . However, for any f ∈ wBp,α(X) and x∗ ∈ X∗ such that ||x∗|| ≤ 1 , we have that
x∗of ∈ Bp,α(D) . So (2.8) gives us

||MψDCφ(x
∗of)||Ap

α(D) ≤ C||x∗of ||Bp,α(D) ≤ C||f ||wBp,α(X),

for constant C . Hence,

||MψDCφf ||wAp
α(X) = sup

||x∗||≤1

||x∗o(MψDCφ(f)||Ap
α(D) = sup

||x∗||≤1

||MψDCφ(x
∗of)||Ap

α(D) ≤ C||f ||wBp,α(X),

for constant C . This completes the proof. 2

Theorem 2.6 If α+2 < p and φ be an analytic self-map on D . Then the following statements are equivalent:
a) Operator MψCφ : wBp,α(X) → wBp,α(X) is bounded.
b) Operator MψCφ : Bp,α(D) → Bp,α(D) is bounded.
c) ψ ∈ Bp,α(D) and µp,α,ψ is a Carleson measure on Apα(D) .
d) Operator MψCφ : wBp,α(X) → Bp,α(X) is bounded.

Proof (a) ⇒ (b). It is similar to the proof of Theorem 2.4.
(b) ⇒ (c). Suppose that MψCφ : Bp,α(D) → Bp,α(D) is bounded. By choosing f = 1 , we get that
||ψ||Bp,α(D) < ∞. Also, for any f ∈ Bp,α(D) , with the boundedness of MψCφ on Bp,α(D) , we have that
||ψf ◦ φ||Bp,α(D) ≤ C||f ||Bp,α(D). However, we show that ψ ∈ Bp,α(D) and then ψ′ ∈ Apα(D) . Now Lemma 2.3,
gives us

||ψ(foφ)′||Ap
α(D) ≤ ||(ψfoφ)′||Ap

α(D) + ||ψ′(foφ)||Ap
α(D)

≤ ||(ψfoφ)||Bp,α(D) + ||ψ′||Ap
α(D)||f ||∞ ≤ C||f ||Bp,α(D),

for a constant C . Thus, MψDCφ : Bp,α(D) → Apα(D) is bounded and according to part (c) of Theorem 2.5,
µp,α,ψ is a Carleson measure on Apα(D) .
(c)⇒ (d). For any f ∈ wBp,α(X) and x∗ ∈ X∗ , we have that x∗of ∈ Bp,α(D) . By the pointwise estimate of
the derivative of Bergman space functions, we get

||f ′(z)||pX = sup
||x∗||≤1

|x∗(f ′(z))|p = sup
||x∗||≤1

|(x∗of)′(z)|p. (2.9)
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On the other hand, evaluation at φ(0) is a bounded linear operator on Bp,α(D) . So the hypothesis, (2.9) and
application of Theorems 2.4 and 2.5, give us

||MψCφf ||Bp,α(X) =

∫
||(ψfoφ)′||pX(1− |z|2)αdA(z) + ||(ψfoφ)(0)||X

≤ sup
||x∗||≤1

∫
|(x∗ ◦ ψfoφ)′|p(1− |z|2)αdA(z) + ||(ψfoφ)(0)||X

≤ sup
||x∗||≤1

∫
|ψ′(z)x∗ofoφ(z)|p(1− |z|2)αdA(z)

+ sup
||x∗||≤1

∫
|ψ(z)(x∗ofoφ)′(z)|p(1− |z|2)αdA(z) + sup

||x∗||≤1

|ψ(0)||x∗of(φ(0))|

= sup
||x∗||≤1

||Mψ′Cφ(x
∗of)||Ap

α(D) + sup
||x∗||≤1

||MψDCφ(x
∗of)||Ap

α(D) + C sup
||x∗||≤1

|x∗of(φ(0))|

≤ C1 sup
||x∗||≤1

||x∗of ||Bp,α(D) + C2 sup
||x∗||≤1

||x∗of ||Bp,α(D) + C sup
||x∗||≤1

||x∗of ||Bp,α(D) ≤M ||f ||wBp,α(X),

for constants C1, C2, C and M .
(d) ⇒ (a). For any f ∈ Bp,α(D) and x ∈ X with ||x|| = 1 , let g(z) = xf(z) . Then similar to the proof
of Theorem 2.4, we have that ||g||wBp,α(X) = ||f ||Bp,α(D) and ||ψCφg||Bp,α(X) = ||ψCφf ||Bp,α(D) . So the
boundedness of MψCφ : wBp,α(X) → Bp,α(X) gives us the boundedness of MψCφ : Bp,α(D) → Bp,α(D) .
However, for any f ∈ wBp,α(X) and x∗ ∈ X∗ , we have that x∗of ∈ Bp,α(D) . So,

||ψCφf ||wBp,α(X) = sup
||x∗||≤1

||x∗ψCφf ||Bp,α(D) = sup
||x∗||≤1

||ψCφx∗of ||Bp,α(D)

≤ C sup
||x∗||≤1

||x∗of ||Bp,α(D) = C||f ||wBp,α(X),

for a constant C . This completes the proof. 2

The following lemma gives us a characterization for the boundedness of operator MψDCφ on weighted
Bergman space Apα(D) .

Lemma 2.7 Let 1 ≤ p < ∞ , φ be an analytic self map on D . Then the operator MψDCφ : Apα(D) → Apα(D)
is bounded if and only if µp,α,ψ is a Carleson measure on Apα+p(D) .

Proof Suppose that MψDCφ : Apα(D) → Apα(D) is bounded. Let f ∈ Apα+p(D) and take g(z) =
∫ z
0
f(w)dw .

Then g′(z) ∈ Apα+p(D) and g(0) = 0 . However, according to Notation 2.2, g ∈ Apα(D) . So∫
D
|g′(w)|pdµp,α,ψ =

∫
D
|ψφ′g′oφ|p(1− |z|2)αdA(z) = ||MψDCφg||pAp

α(D)

≤ C||g||p
Ap

α(D) ≤ C[|g(0)|p + ||g′||p
Ap

α+p(D)
] = C||g′||p

Ap
α+p(D)

.

The argument above shows that for any f ∈ APα+p(D) ,∫
D
|f |pdµp,α,ψ ≤ C||f ||Ap

α+p(D),
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for a constant C and it follows that µp,α,ψ is a Carleson measure on Apα+p(D) .
For the converse, suppose that µp,α,ψ is a Carleson measure on Apα+p(D) . For any f ∈ Apα(D) according to
Notation 2.2, f ′ ∈ Apα+p(D) . So with an application of second part of Lemma 2.1, we have

||MψDCφf ||pAp
α(D) =

∫
D
|ψφ′f ′oφ|p(1− |z|2)αdA(z) =

∫
|f ′(w)|pNp,α,ψ(φ,w)dA(w)

=

∫
D
|f ′(w)|pdµp,α,ψ(w) ≤ C

∫
D
|f ′(w)|p(1− |z|2)α+pdA(w)

≤ C1

∫
D
|f(w)|p(1− |z|2)αdA(w) = C1||f ||pAp

α(D),

for constants C and C1 . This completes the proof. 2

The next lemma gives us a characterization for boundedness of operator MψCφ on Apα(D) .

Lemma 2.8 [6] Let φ be an analytic self map of D and ψ ∈ H(D) . If 0 < p < ∞ , then the weighted
composition operator MψCφ on Apα(D) is bounded if and only if:

sup
a∈D

∫
D

( 1− |a|2

|1− aφ(w)|2
)α+2|ψ(w)|p(1− |w|2)αdA(w) <∞.

In the next theorem, we have some equivalence conditions for boundedness of operators on MψCφD on
wBp,α(X) .

Theorem 2.9 Let 1 ≤ p <∞ , φ be an analytic self map on D and µp,α,ψ is a Carleson measure on Apα+p(D) .
Then the following statements are equivalent:
a) Operator MψCφD : wBp,α(X) → wBp,α(X) is bounded.
b) Operator MψCφD : Bp,α(D) → Bp,α(D) is bounded.
c) Operator MψCφ : Apα(D) → Bp,α(D) is bounded.
d) Operator Mψ′Cφ : Apα(D) → Apα(D) is bounded and ψ ∈ Bp,α(D) .

e) supa∈D
∫
D
( 1−|a|2
|1−aφ(w)|2

)α+2|ψ′(w)|p(1− |w|2)αdA(w) <∞ and ψ ∈ Bp,α(D) .

Proof (a)⇒ (b). It is similar to the proof of part (a) to (b) of Theorem 2.4.
(b)⇒ (c). Let g ∈ Bp,α(D) with g(0) = 0 with the boundedness of MψCφD on Bp,α(D) , we have that

||ψg′oφ||Bp,α(D) ≤ C||g||Bp,α(D) = C||g′||Ap
α(D).

Let f ∈ Apα(D) define g(z) =
∫ z
0
f(w)dw . Then the argument above gives us

||ψCφf ||Bp,α(D) ≤ C||f ||Ap
α(D).

(c) ⇒ (d). If MψCφ : Apα(D) → Bp,α(D) is bounded, then by choosing f = 1 , we get that ||ψ||Bp,α(D) < ∞

and so ψ ∈ Bp,α(D) . On the other hand, by the hypothesis, µp,α,ψ is a Carleson measure on Apα+p(D) , so by

1218



NASRESFAHANI and ABBASI/Turk J Math

Lemma 2.7, we have that MψDCφ : Apα(D) → Apα(D) is bounded. However, for any f ∈ Apα(D) , boundedness
of MψCφ from Apα(D) to Bp,α(D) , gives us

||Mψ′Cφf ||Ap
α(D) ≤ ||MψCφf ||Bp,α(D) + ||MψDCφf ||Ap

α(D) ≤ C||f ||Ap
α(D),

for a constant C . So Mψ′Cφ : Apα(D) → Apα(D) is bounded.
(d)⇒ (e). According to Lemma 2.8, it is clear.
(e)⇒ (a). Suppose that (e) holds, then with Lemma 2.8, we have (d). Since we also assume that µp,α,ψ is a
Carleson measure on Apα+p(D) , so Lemma 2.7 gives us the boundedness of MψDCφ on Apα(D) . However, the
evaluation at φ(0) is bounded on Apα(D) , so for any f ∈ Apα(D) we have

||MψCφ(f)||Bp,α(D) = ||(MψCφ(f))
′||Ap

α(D) + |ψ(0)f(φ(0))|

≤ ||Mψ′Cφ(f)||Ap
α
+ ||MψDCφ(f)||Ap

α
+ |ψ(0)||f(φ(0))| ≤ C||f ||Ap

α(D),

for a constant C . Therefore,
MψCφ : Apα(D) → Bp,α(D) (2.10)

is bounded. Now suppose that f ∈ Bp,α(D) , then Df = f ′ ∈ Apα(D) . Hence, for any f ∈ Bp,α(D) , (2.10)
gives us the boundedness of MψCφD : Bp,α(D) → Bp,α(D) . However, for f ∈ wBp,α(X) and x∗ ∈ X∗ , we have
x∗of ∈ Bp,α(D) . So

||ψCφDf ||wBp,α(X) = sup
||x∗||≤1

||x∗ψCφf ′||Bp,α(D) = sup
||x∗||≤1

||ψCφx∗of ′||Bp,α(D)

≤ C sup
||x∗||≤1

||ψCφD(x∗of)||Bp,α(D) ≤ sup
||x∗||≤1

||x∗of ||Bp,α(D) = C||f ||wBp,α(X),

for a constant C and this completes the proof. 2

Now we can characterize boundedness of the Stević-Sharma operator Tψ1,ψ2,φ = (Mψ1
Cφ + Mψ2

CφD) , on
wBp,α(X) .

Theorem 2.10 Let α + 2 < p < ∞ , φ be an analytic self map on D and µp,α,ψ1
is a Carleson measure on

Apα+p(D) . Then the following statements are equivalent:
a) Operator Tψ1,ψ2,φ : wBp,α(X) → wBp,α(X) is bounded.
b) Operator Tψ1,ψ2,φ : Bp,α(D) → Bp,α(D) is bounded.

c) supa∈D
∫
D
( 1−|a|2
|1−aφ(w)|2

)α+2|ψ′
2(w)|p(1− |w|2)αdA(w) <∞ and ψ1 ∈ Bp,α(D) , ψ2 ∈ Bp,α(D) .

Proof (a) ⇒ (b). It is similar to the proof of Theorem 2.4.
(b) ⇒ (c). Suppose that Tψ1,ψ2,φ : Bp,α(D) → Bp,α(D) is bounded. Then for any f ∈ Bp,α(D) ,

||Tψ1,ψ2,φ(f)||Bp,α(D) = ||Mψ1
Cφ +Mψ2

CφD)(f)||Bp,α(D) ≤ ||f ||Bp,α(D). (2.11)

By choosing f = 1 , we get that
||ψ1||Bp,α(D) <∞. (2.12)
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However, we have assumed that µp,α,ψ is a Carleson measure on Apα+p(D) , so µp,α,ψ will be a Carleson measure
on Apα(D) and Theorem 2.6 gives us the boundedness of Mψ1Cφ : Bp,α(D) → Bp,α(D) . Now with the triangle
inequality and (2.11), we obtain

||(Mψ2CφD)(f)||Bp,α(D) ≤ ||f ||Bp,α(D) + ||Mψ1Cφ(f)||Bp,α(D) ≤ ||f ||Bp,α(D) + C||f ||Bp,α(D).

Therefore, operator Mψ2
CφD is bounded on Bp,α(D) and part (e) of Theorem 2.9 completes the proof.

(c) ⇒(a). Suppose that supa∈D
∫
D
( 1−|a|2
|1−aφ(w)|2

)α+2|ψ′
2(w)|p(1 − |w|2)αdA(w) < ∞ and ψ1 ∈ Bp,α(D) and

ψ2 ∈ Bp,α(D) . We also assumed that µp,α,ψ is a Carleson measure on Apα+p(D) so it is a Carleson measure on
Apα(D) . Therefore, with application of Theorems 2.6 and 2.9, we have the boundedness of operators Mψ1

Cφ

and Mψ2
CφD on wBp,α(X) and this completes the proof. 2

In [19], boundedness of the Stević-Sharma operator Tψ1,ψ2,φ on weighted Bergman space Apα(D) has been
characterized as follows:

Theorem 2.11 Let 1 ≤ p < ∞ , ψ1, ψ2 ∈ H(D) , φ be an analytic self-map on D and supa∈D
|ψ2(a)|

1−|φ(a)|2 < ∞ .

Then Tψ1,ψ2,φ is bounded on Apα(D) if and only if supa∈D
∫
D
( 1−|a|2
|1−aφ(w)|2

)α+2|ψ1(w)|p(1− |w|2)αdA(w) <∞

By using the above theorem and Theorem 2.10, we get the following corollary.

Corollary 2.12 Let 1 ≤ p < ∞ , ψ1, ψ2 ∈ H(D), φ be an analytic self-map on D and supa∈D
|ψ2(a)|

1−|φ(a)|2 < ∞ .

Then the following statements are equivalent:
(a) Tψ1,ψ2,φ is bounded on Bp,α(D) .
(b) Tψ′

2,ψ2,φ is bounded on Apα(D) and ψ′
1, ψ

′
2 ∈ Apα(D) .

3. Boundedness and compactness of Cφ on weak vector valued α-Besov spaces

In this section, we investigate the boundedness and compactness of composition operator Cφ on weak vector
valued α -Besov space wBp,α(X) .

Lemma 3.1 Let 1 < p < ∞ , φ be an analytic self map on D . Then the bounded composition operator
Cφ : Bp,α(D) → Bp,α(D) is compact if and only if ||fnoφ||Bp,α(D) → 0 for any bounded sequence fn in Bp,α(D)
with fn → 0 uniformly on compact subsets of D . (In a similar way, we can define the weakly-compactness of
the bounded operator Cφ : wBp,α(X) → wBp,α(X) . )

From Theorem 2.6, we deduce the necessary and sufficient conditions for the boundedness of composition
operator T1,0,φ = Cφ on wBp,α(X) .

Corollary 3.2 If α+2 < p and φ is an analytic self-map on D . Then the following statements are equivalent:
a) Operator Cφ : wBp,α(X) → wBpα(X) is bounded.
b) Operator Cφ : Bp,α(D) → Bpα(D) is bounded.
c) µp,α,1 is a Carleson measure on Apα(D) .
d) Operator Cφ : wBp,α(X) → Bpα(X) is bounded.

1220



NASRESFAHANI and ABBASI/Turk J Math

Theorem 2.9 gives us conditions for the boundedness of operator T0,1,φ = CφD on wBp,α(X) .

Corollary 3.3 Let 1 ≤ p <∞ , φ be an analytic self map on D and µp,α,1 is a Carleson measure on Apα+p(D) .
Then
a) Operator CφD : wBp,α(X) → wBp,α(X) is bounded.
b) Operator CφD : Bp,α(D) → Bp,α(D) is bounded.
c) Operator Cφ : Apα(D) → Bp,α(D) is bounded.

Theorem 2.10 gives us conditions for the boundedness of operator T0,φ′,φ = DCφ on wBp,α(X) .

Corollary 3.4 Let α + 2 < p < ∞ , φ be an analytic self map on D and µp,α,1 is a Carleson measure on
Apα+p(D) . Then the following statements are equivalent:
a) Operator DCφ : wBp,α(X) → wBp,α(X) is bounded.
b) Operator DCφ : Bp,α(D) → Bp,α(D) is bounded.

d) φ′ ∈ Bp,α(D) and supa∈D
∫
D
( 1−|a|2
|1−aφ(w)|2

)2|φ′′(w)|p(1− |w|2)αdA(w) <∞ .

Now for the compactness of the composition operator Cφ on Bp,α(D) , we have the following theorem.

Theorem 3.5 Suppose that α + 2 < p < ∞ , φ be an analytic self map on D . Then the following statements
are equivalent:
(a) Cφ : wBp,α(X) → wBp,α(X) is weakly compact
(b) Cφ : Bp,α(D) → Bp,α(D) is compact.
(c) µp,α,1 is a compact Carleson measure on Apα(D) .
(d) Cφ : wBp,α(X) → Bp,α(X) is compact.

Proof (a) ⇒ (b). Suppose that Cφ is compact on wBpα(X) . Let fn be a bounded sequence in Bpα(D) with
fn → 0 uniformly on compact subsets of D. If x ∈ X with ||x|| = 1, define gn(z) = xfn(z) . Then as we showed
in the proof of previous theorems, gn ∈ wBpα(X) and gn → 0 uniformly on compact subsets of D. So we have

||Cφgn||wBp
α(X) = ||gn ◦ φ||wBp

α(X) → 0.

However, as we show in the proof of previous theorems,

||gnoφ||wBp
v(X) = ||fn ◦ φ||Bp

α(D).

So ||Cφfn||Bp
α(D) → 0 and Cφ is compact on Bpα(D) .

(b) ⇒ (c). Suppose that Cφ is compact on Bp,α(D) . Let gn be a bounded sequence in Apα(D) with
gn → 0 uniformly on compact subsets of D and gn(0) = 0 . Then there exists fn such that f ′n(z) = gn(z) , for
z ∈ D , fn ∈ Bp,α(D) and fn → 0 uniformly on compact subsets of D . So we have

||gn||pLp(µp,α,1,D) =

∫
D
||gn(w)||pdµp,α,1(w) =

∫
D
||gn(w)||pNp,α,1(φ,w)dA(w).
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By the usual change of variable formula, if w = φ(z) then dA(w) = |φ′(z)|2dA(z) . So

||gn||pLp(µp,α,1,D) =

∫
D
||gn(φ(z)||p|φ′(z)|p(1− |z|2)αdA(z)

=

∫
D
||f ′n(φ(z))||p|φ′(z)||p(1− |z|2)αdA(z)

=

∫
D
||fn(φ(z))′||p(1− |z|2)αdA(z)

=||(fnoφ)′||pAp
α(D) ≤ C||fnoφ||pBp,α(D),

for a constant C. However, φ is continuous on D , so ||fnoφ||Bp,α(D) → 0 uniformly on compact subsets of D .
Hence, ||gn||Lp(µp,α,1,D) → 0 and so Iα : Apα(D) → Lp(µp,α,1,D) is compact. It follows that µp,α,1 is a compact
Carleson measure.

(c)⇒ (a). Assume that µp,α,1 is a compact Carleson measure. Suppose that (fn) is a bounded sequence
in Bp,α(D) such that fn → 0 uniformly on compact subsets of D and fn(0) = 0 . So f ′n ∈ Apα(D) and
f ′n → 0 uniformly on compact subsets of D . Since Iα : Apα(D) → Lp(µp,α,1, X) is compact, it follows that
||f ′n||Lp(µp,α,1,D) → 0 . However,

||Cφfn||Bp,α(D) =||(fnoφ)(0)||+ ||(fnoφ)′||Ap
α(D) = ||fn(φ(0))||+

(∫
D
||f ′n(φ(z))||p|φ′(z)|p(1− |z|2)αdA(z)

)1/p

=||fn(φ(0))||+
(∫

D
||f ′n(w)||pNp,α,1(φ,w)dA(w)

)1/p

=||fn(φ(0))||+
(∫

D
||f ′n(w)||pdµp,α,1(w)

)1/p

.

Hence, ||fnoφ||Bp,α(D) → 0 . Thus, Cφ is compact on Bp,α(D.) Let fn be a bounded sequence in wBp,α(D)
with fn → 0 uniformly on compact subsets of D. Then for each x∗ ∈ X∗, (x∗ofn) is a bounded sequence
in Bp,α(D) and (x∗ofn) → 0 uniformly on compact subsets of D. Since Cφ is compact on Bp,α(D) , so
||Cφ(x∗ofn)||Bp,α(D) → 0 . However, we have

||x∗o(fnoφ)||Bp,α(D) = ||(x∗ofn)oφ)||Bp,α(D) → 0.

Hence,
||Cφfn||wBp,α(X) = sup

||x∗||X∗≤1

||x∗o(fnoφ)||Bp,α(D) → 0,

and this completes the proof.
(c) ⇔ (d). It is similar to the previous proof. 2

Acknowledgments
The authors are thankful to the referees and Dr. Mostafa Hassanlou for helpful suggestions for the improvement
of this article.

1222



NASRESFAHANI and ABBASI/Turk J Math

References

[1] Arregui J, Blasco O. Bergman and Bloch spaces of vector-valued functions. Mathematische Nachrichten 2003; 261:
3-22. doi:10.1002/mana.200310109

[2] Blasco O. Operators on weighted Bergman spaces and applications. Duke Mathematical Journal 1992; 66: 443-467.
doi: 10.1215/S0012-7094-92-06614-2

[3] Blasco O. Vector valued analytic functions of bounded mean oscillation and geometry of Banach spaces. Illinois
Journal of Mathematics 1997; 41: 532-558. doi:10.1215/ijm/1256068979

[4] Branges L. A proof of the Bieberbach conjecture. Acta Mathematica 1985; 154: 137-152. doi: 10.1007/BF02392821

[5] Cowen C, MacCluer BD. Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathemat-
ics, Boca Raton, CRC Pres, 1995.

[6] Cuckovic Z, Zhao R. Weighted composition operators between different weighed Bergman spaces and different
Hardy spaces. Illinois Journal of Mathematics 2007; 51: 1174-1181. doi: 10.1215/ijm/1258138425

[7] Forelli F. The isometries of Hp. Canadian Journal of Mathematics 1964; 16: 721-728. doi.org/10.4153/CJM-1964-
068-3

[8] Geng LG, Zhou ZH, Dong ZT. Isometric composition operators on weighted Dirichlet type spaces. Journal of
Inequalities and Applications 2012; 23: 1029-1036. doi: 10.1186/1029-242X-2012-23

[9] Gul U. Essential spectra of composition operators on the space of bounded analytic functions. Turkish Journal of
Mathematics 2008; 32: 475-480.

[10] Hassanlou M, Vaezi H, Wang M. Weighted composition operators on weak vector-valued Bergman spaces and Hardy
spaces. Banach Journal of Mathematical Analysis 2015; 9(2): 35-43. doi: 10.15352/bjma/09-2-4

[11] Hedenmalm H, Korenblum B, Zhu K. Theory of Bergman Spaces. New York, Springer, 2000.

[12] Jovovic M, MacCluer BD. Composition operator on Dirichlet spaces. Acta Scientiarum Mathematicarum (Szeged)
1997; 63: 229-247.

[13] Latilla J. Weakly compact composition operators on vector-valued BMOA. Journal of Mathematical Analysis and
Applications 2005; 308: 730–745. doi: 10.1016/j.jmaa.2004.12.002

[14] MacCluer BD. Compact composition operator on Hp(BN ) . Michigan Mathematical Journal 1985; 32: 237-248. doi:
10.1307/mmj/1029003191

[15] MacCluer BD. Composition operators on Sp . Houston Journal of Mathematics 1987; 13: 245-254.

[16] Maccluer BD, Shapiro JH. Angular derivatives and compact composition operators on the Hardy and Bergman
spaces. Canadian Journal of Mathematics 1986; 38: 878–906. doi: 10.4153/CJM-1986-043-4

[17] Nasresfahani S, Vaezi H. Weighted composition operators acting on Dirichlet type spaces. Journal of Mathematical
Extention 2020; 17(2): 121-133.

[18] Shapiro, JH. Composition Operators and Classical Function Theory. Springer, New York, 1993.

[19] Stević S, Sharma AK, Bhat A. Product of multiplication composition and differentiation operators on weighted
Bergman spaces. Applied Mathematics and Computation 2011; 217: 8115-8125. doi: 10.1016/j.amc.2011.03.014

[20] Wang M. Weighted composition operators between Dirichlet spaces. Acta Mathematica Scientia 2011; 2: 641–651.
doi: 10.1016/S0252-9602(11)60264-6

[21] Wolf E. Weighted composition operators between weighted Bergman spaces. RACSAM - Revista de la
Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 2009; 103: 11-15. doi:
10.1007/BF03191830

[22] Zorboska N. Composition operators on weighted Dirichlet spaces. Proceedings of the American Mathematical
Society 1998; 126(7): 2013-2023. doi: S0002-9939(98)04266-X

1223


	Introduction
	Product-type operators on weak vector valued -Besov spaces
	Boundedness and compactness of C on weak vector valued -Besov spaces

