Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: 1224 - 1232
© TÜBİTAK
doi:10.3906/mat-2106-116

A parametric family of ternary purely exponential Diophantine equation
 $$
A^{x}+B^{y}=C^{z}
$$

Yasutsugu FUJITA ${ }^{1, *}{ }^{(1)}$, Maohua LE 2 (C)
${ }^{1}$ Department of Mathematics, College of Industrial Technology, Nihon University, Shin-ei, Narashino, Chiba, Japan
${ }^{2}$ Institute of Mathematics, Lingnan Normal College, Zangjiang, Guangdong, China

| Received: 29.06 .2021 | Accepted/Published Online: $07.03 .2022 \quad$ Final Version: 05.05 .2022 |
| :--- | :--- | :--- | :--- | :--- |

Abstract

Let a, b, c be fixed positive integers such that $a+b=c^{2}, 2 \nmid c$ and $(b / p) \neq 1$ for every prime divisor p of c, where (b / p) is the Legendre symbol. Further let m be a positive integer with $m>1$. In this paper, using the Baker method, we prove that if $m>\max \left\{10^{8}, c^{2}\right\}$, then the equation $\left(a m^{2}+1\right)^{x}+\left(b m^{2}-1\right)^{y}=(c m)^{z}$ has only one positive integer solution $(x, y, z)=(1,1,2)$.

Key words: ternary purely exponential Diophantine equation, application of the Baker method

1. Introduction

Let \mathbb{N} be the set of all positive integers. Let A, B, C be fixed coprime positive integers with $\min \{A, B, C\}>1$. The solution of ternary exponential Diophantine equation

$$
\begin{equation*}
A^{x}+B^{y}=C^{z}, \quad x, y, z \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

is a research topic with a long history and rich contents in number theory (see [11]). Let a, b, c be fixed positive integers such that

$$
\begin{equation*}
a+b=c^{2}, 2 \nmid c,\left(\frac{b}{p}\right) \neq 1 \tag{1.2}
\end{equation*}
$$

for every prime divisor p of c, where (b / p) is the Legendre symbol. Further let m be a positive integer with $m>1$. In the last decade, several authors have come up with (1.1) for

$$
\begin{equation*}
A=a m^{2}+1, B=b m^{2}-1, C=c m \tag{1.3}
\end{equation*}
$$

According to Lemma 2.3 to be proved later in this paper, the last condition $(b / p) \neq 1$ in (1.2) is a sufficient and necessary condition to ensure that the positive integers A, B, C of (1.3) are coprime for any m. Then, (1.1) can be rewritten as

$$
\begin{equation*}
\left(a m^{2}+1\right)^{x}+\left(b m^{2}-1\right)^{y}=(c m)^{z}, \quad x, y, z \in \mathbb{N} . \tag{1.4}
\end{equation*}
$$

[^0]Obviously, we see from (1.2) that (1.4) always has a solution $(x, y, z)=(1,1,2)$. Meanwhile, according to a far-sighted conjecture on (1.1) proposed by R. Scott and R. Styer [14], we can put forward the following conjecture about (1.4).

Conjecture 1.1 (1.4) has only one solution $(x, y, z)=(1,1,2)$.

From the results known so far, the following cases of Conjecture 1.1 have been confirmed.
(i) (N. Terai [16]) $(a, b, c)=(4,5,3), m \leq 20$ or $m \not \equiv 3(\bmod 6)$.
(ii) (J.-P. Wang, T.-T. Wang and W.-P. Zhang [20]) $(a, b, c)=(4,5,3), m \not \equiv 0(\bmod 3)$.
(iii) (J.-L. Su and X.-X. Li [15]) $(a, b, c)=(4,5,3), m>90, m \equiv 0(\bmod 3)$.
(iv) (C. Bertók [2]) $(a, b, c)=(4,5,3), 20<m \leq 90$.
(v) (M. Alan [1]) $(a, b, c)=(18,7,5), m \not \equiv 23,47,63$ or $87(\bmod 120)$.
(vi) (N. Terai [17]) $(a, b, c)=(4,21,5), m$ satisfies some conditions.
(vii) (N. Terai and T. Hibino [18]) $(a, b, c)=(12,13,5), m \not \equiv 17$ or $33(\bmod 40)$.
(viii) (N. Terai and T. Hibino [19]) $(a, b, c)=(3 p,(p-3) p, p)$, where p is an odd prime with $3<p<3784$ and $p \equiv 1(\bmod 4), m \not \equiv 0(\bmod 3), m \equiv 1(\bmod 4)$.
(ix) (N.-J. Deng, D.-Y. Wu and P.-Z. Yuan [4]) $(a, b, c)=(3 c,(c-3) c, c), c>3, c m \neq 0(\bmod 3)$.
(x) (E. Kizildere and G. Soydan [9]) $(a, b, c)=(5 p,(p-5) p, p)$, where p is an odd prime with $p>5$ and $p \equiv 3(\bmod 4), p m \equiv \pm 1(\bmod 5)$.
(xi) (E. Kizildere, M.-H. Le and G. Soydan [7]) $(a, b, c)=(r c,(c-r) c, c)$, where r is a positive integer with $r<c$ and $r \equiv 0(\bmod 3), \min \left\{r c m^{2}+1,(c-r) c m^{2}-1\right\}>30$.
(xii) (T. Miyazaki and N. Terai [12]) $(a, b, c)=\left(1, c^{2}-1, c\right), c \equiv \pm 3(\bmod 8), m \equiv \pm 1(\bmod c)$.
(xiii) (N.-J. Deng and P.-Z. Yuan [5]) $(a, b, c)=\left(\left(c^{2}+1\right) / 2,\left(c^{2}-1\right) / 2, c\right), c \equiv \pm 3(\bmod 8), m>c^{2}$, $a m \equiv 1(\bmod 4)$ or $a m \equiv 7(\bmod 8)$ and $a m \not \equiv 0(\bmod 3)$, or $a m \equiv 11(\bmod 24)$.
(xiv) (E. Kizildere, T. Miyazaki, and G. Soydan [8]) $(a, b, c)=\left(\left(c^{2}+1\right) / 2,\left(c^{2}-1\right) / 2, c\right), c \equiv \pm 11$ $(\bmod 24), m \equiv \pm 1(\bmod c), m>c^{2}$.
(xv) (R.-Q. Fu and H. Yang [6]) $a \equiv 0(\bmod 2), m \equiv 0(\bmod c), m>36 c^{3} \log c$.
(xvi) (X.-W. Pan [13]) $a \equiv 4$ or $5(\bmod 8), m \equiv \pm 1(\bmod c), m>6 c^{2} \log c$.

However, in general, Conjecture 1.1 is still an unsolved problem. In this paper, using a lower bound for linear forms in two logarithms and an upper bound for 2-adic logarithms due to M. Laurent [10] and Y. Bugeaud [3] respectively, we prove the following result:

Theorem 1.2 If $m>\max \left\{10^{8}, c^{2}\right\}$, then Conjecture 1.1 is true.

It follows from the above result that, for any given parameters (a, b, c) with (1.2), the proof of Conjecture 1.1 only needs to discuss finitely many smaller values of m.

2. Preliminaries

Lemma 2.1 Let $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ be positive integers with $\min \left\{\alpha_{1}, \alpha_{2}\right\}>1$, and let $\Lambda=\beta_{1} \log \alpha_{1}-\beta_{2} \log \alpha_{2}$. Suppose that α_{1} and α_{2} are multiplicatively independent. If $\Lambda \neq 0$, then

$$
\log |\Lambda| \geq-25.2\left(\log \alpha_{1}\right)\left(\log \alpha_{2}\right)\left(\max \left\{10,0.38+\log \left(\frac{\beta_{1}}{\log \alpha_{2}}+\frac{\beta_{2}}{\log \alpha_{1}}\right)\right\}\right)^{2}
$$

Proof This is the special case of Corollary 2 of [10] for α_{1}, α_{2} positive integers and $m=10$.
For any positive integer n, let $\operatorname{ord}_{2} n$ denote the order of 2 in n.
Lemma 2.2 Let α_{1}, α_{2} be multiplicatively independent odd integers with $\min \left\{\left|\alpha_{1}\right|,\left|\alpha_{2}\right|\right\}>1$, and let β_{1}, β_{2} be positive integers. Further let $\Lambda^{\prime}=\alpha_{1}^{\beta_{1}}-\alpha_{2}^{\beta_{2}}$. If $\Lambda^{\prime} \neq 0$ and $\alpha_{1} \equiv \alpha_{2} \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
\operatorname{ord}_{2}\left|\Lambda^{\prime}\right|< & 19.55\left(\log \left|\alpha_{1}\right|\right)\left(\log \left|\alpha_{2}\right|\right) \\
& \times\left(\max \left\{2 \log 2,0.4+\log (2 \log 2)+\log \left(\frac{\beta_{1}}{\log \left|\alpha_{2}\right|}+\frac{\beta_{2}}{\log \left|\alpha_{1}\right|}\right)\right\}\right)^{2}
\end{aligned}
$$

Proof This is the special case of Theorem 2 of [3] for $p=2, y_{1}=y_{2}=1, \alpha_{1} \equiv \alpha_{2} \equiv 1(\bmod 4), g=1$ and $E=2$.

Here and below, we assume that (a, b, c) and (A, B, C) satisfy (1.2) and (1.3), respectively, and (x, y, z) is a solution of (1.4) with $(x, y, z) \neq(1,1,2)$.

Lemma 2.3 For any positive integer m and any fixed parameters a, b, c with (1.2), A, B, C are always coprime if and only if $(b / p) \neq 1$ for every prime divisor p of c.

Proof Let $d=\operatorname{gcd}(A, B)$. Since

$$
\begin{equation*}
A+B=\left(a m^{2}+1\right)+\left(b m^{2}-1\right)=(c m)^{2}=C^{2} \tag{2.1}
\end{equation*}
$$

A, B, C are coprime if and only if $d=1$.
If $(b / p)=1$, then there exists a positive integer m such that $b m^{2}-1 \equiv 0(\bmod p)$. Since $p \mid c$, by (2.1), we have $a m^{2}+1 \equiv 0(\bmod p)$. It implies that $d \geq p>1$.

Conversely, if there is a positive integer m such that $\operatorname{gcd}\left(a m^{2}+1, b m^{2}-1\right)=d>1$, then d has a prime divisor p. Since

$$
\begin{equation*}
a m^{2} \equiv-1 \quad(\bmod p), \quad b m^{2} \equiv 1 \quad(\bmod p) \tag{2.2}
\end{equation*}
$$

by (2.1), we have

$$
\begin{equation*}
p \mid c m \tag{2.3}
\end{equation*}
$$

Further, since $\operatorname{gcd}\left(a m^{2}+1, m\right)=1$, by (2.2), we get $p \nmid m$. Hence, by (2.3), we have

$$
\begin{equation*}
p \mid c \tag{2.4}
\end{equation*}
$$

Therefore, by (2.4) and the second congruence of (2.2), we get $(b / p)=1$ for a prime divisor of c. Thus, the lemma is proved.

Lemma 2.4 If $m>c^{2}$, then we have
(i) $2 \nmid y$.
(ii) $z \geq 4$.
(iii) $z>m$.

Proof Since $\left(a m^{2}+1\right)^{x}+\left(b m^{2}-1\right)^{y} \geq\left(a m^{2}+1\right)+\left(b m^{2}-1\right)=(c m)^{2}$, we have $z \geq 2$. Hence, by (1.4), we get $0 \equiv(c m)^{z} \equiv\left(a m^{2}+1\right)^{x}+\left(b m^{2}-1\right)^{y} \equiv 1+(-1)^{y}\left(\bmod m^{2}\right)$. Therefore, since $m^{2}>2$, we obtain $2 \nmid y$ and (i) is proved.

We now assume that $z=3$. If $y>1$, since $2 \nmid y$, then we have $y \geq 3$. Hence, since $m>c^{2}$, we get $m^{9 / 2}>(c m)^{3} \geq\left(a m^{2}+1\right)+\left(b m^{2}-1\right)^{3}>\left(b m^{2}-1\right)^{3} \geq\left(m^{2}-1\right)^{3}$, whence we obtain $m^{3 / 2}>m^{2}-1$. But, since $m>c^{2} \geq 9$, it is impossible. So we have $y=1$. Similarly, we can prove that if $y=1$, then $x<3$. Finally, if $y=1$ and $x=2$, then from (1.4) we have

$$
\begin{equation*}
a\left(a m^{2}+1\right)=c^{2}(c m-1) \tag{2.5}
\end{equation*}
$$

Since $\operatorname{gcd}\left(a m^{2}+1, b m^{2}-1\right)=1$, we see from (2.1) that $\operatorname{gcd}\left(a m^{2}+1, c^{2}\right)=1$. Hence, by (2.5), we get $c^{2} \mid a$ and $a \geq c^{2}=a+b>a$, a contradiction. Therefore, we obtain $z \neq 3, z \geq 4$, and (ii) is proved.

Since $2 \nmid y$ and $z \geq 4$, by (1.4), we have $0 \equiv(c m)^{z} \equiv\left(a m^{2}+1\right)^{x}+\left(b m^{2}-1\right)^{y} \equiv\left(a m^{2} x+1\right)+\left(b m^{2} y-1\right) \equiv$ $(a x+b y) m^{2}\left(\bmod m^{4}\right)$, whence we get

$$
\begin{equation*}
a x+b y \equiv 0 \quad\left(\bmod m^{2}\right) \tag{2.6}
\end{equation*}
$$

Since $a x+b y$ is a positive integer, by (2.6), we have

$$
\begin{equation*}
a x+b y \geq m^{2} \tag{2.7}
\end{equation*}
$$

By (1.4), we have $(c m)^{z}>\max \left\{\left(a m^{2}+1\right)^{x},\left(b m^{2}-1\right)^{y}\right\}$, which together with $c^{2}<m$ yields

$$
\begin{equation*}
x<z \frac{\log (c m)}{\log \left(a m^{2}+1\right)}<z, \quad y<z \frac{\log (c m)}{\log \left(b m^{2}-1\right)}<z \tag{2.8}
\end{equation*}
$$

Hence, by (2.8), we get

$$
\begin{equation*}
a x+b y<(a+b) z=c^{2} z<m z . \tag{2.9}
\end{equation*}
$$

Therefore, by (2.7) and (2.9), we get $z>m$ and (iii) is proved. Thus, the proof of this lemma is complete.

3. Proof of Theorem 1.2

We now assume that $m>\max \left\{10^{8}, c^{2}\right\}$ and (x, y, z) is a solution of (1.4) with $(x, y, z) \neq(1,1,2)$. Obviously, the theorem holds if it can be proved that the solution does not exist.

We first discuss the case $\min \left\{\left(a m^{2}+1\right)^{2 x},\left(b m^{2}-1\right)^{2 y}\right\}<(c m)^{z}$. If $\left(a m^{2}+1\right)^{2 x}<(c m)^{z}$, then from (1.4) we get $\left(b m^{2}-1\right)^{y}=(c m)^{z}-\left(a m^{2}+1\right)^{x}>\left(a m^{2}+1\right)^{x}\left(\left(a m^{2}+1\right)^{x}-1\right)>\left(a m^{2}+1\right)^{x}$. So we have $2\left(b m^{2}-1\right)^{y}>(c m)^{z}$. Taking the logarithms of both sides of (1.4), we have

$$
\begin{equation*}
z \log (c m)=y \log \left(b m^{2}-1\right)+\log \left(1+\frac{\left(a m^{2}+1\right)^{x}}{\left(b m^{2}-1\right)^{y}}\right) \tag{3.1}
\end{equation*}
$$

It is well known that $\log (1+\alpha)<\alpha$ for any $\alpha>0$. By (3.1), we get

$$
\begin{equation*}
0<z \log (c m)-y \log \left(b m^{2}-1\right)<\frac{\left(a m^{2}+1\right)^{x}}{\left(b m^{2}-1\right)^{y}}<\frac{2\left(a m^{2}+1\right)^{x}}{(c m)^{z}}<\frac{2}{(c m)^{z / 2}} \tag{3.2}
\end{equation*}
$$

Taking $\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)=\left(c m, b m^{2}-1, z, y\right)$ and $\Lambda=\beta_{1} \log \alpha_{1}-\beta_{2} \log \alpha_{2}$, by (3.2), we have

$$
0<\Lambda<\frac{2}{(\mathrm{~cm})^{z / 2}}
$$

whence we get

$$
\begin{equation*}
\log 2>\log \Lambda+\frac{z}{2} \log (c m) \tag{3.3}
\end{equation*}
$$

Since $\Lambda>0$, applying Lemma 2.1, we have

$$
\begin{equation*}
\log \Lambda \geq-25.20(\log (c m))\left(\log \left(b m^{2}-1\right)\right) H^{2} \tag{3.4}
\end{equation*}
$$

where

$$
\begin{equation*}
H=\max \left\{10,0.38+\log \left(\frac{z}{\log \left(b m^{2}-1\right)}+\frac{y}{\log (c m)}\right)\right\} \tag{3.5}
\end{equation*}
$$

The combination of (3.3) and (3.4) yields

$$
\begin{equation*}
2 \log 2+50.40(\log (c m))\left(\log \left(b m^{2}-1\right)\right) H^{2}>z \log (c m) \tag{3.6}
\end{equation*}
$$

Since $c \geq 3$ and $m>10^{8}$, we have

$$
\begin{equation*}
c m>3 \times 10^{8} . \tag{3.7}
\end{equation*}
$$

Hence, by (3.6) and (3.7), we get

$$
\begin{equation*}
0.01+50.40 H^{2}>\frac{z}{\log \left(b m^{2}-1\right)} \tag{3.8}
\end{equation*}
$$

When $10 \geq 0.38+\log \left(z /\left(\log \left(b m^{2}-1\right)\right)+y /(\log (c m))\right)$, by (3.5) and (3.8), we have $H=10$ and

$$
\begin{equation*}
\frac{z}{\log \left(b m^{2}-1\right)}<5040.01 \tag{3.9}
\end{equation*}
$$

Further, since

$$
\begin{equation*}
\max \left\{a m^{2}+1, b m^{2}-1\right\}<(c m)^{2}<m^{3} \tag{3.10}
\end{equation*}
$$

by (3.9) and (3.10), we get

$$
\begin{equation*}
z<5040.01 \log \left(b m^{2}-1\right)<15120.03 \log m \tag{3.11}
\end{equation*}
$$

On the other hand, by (iii) of Lemma 2.4, we have

$$
\begin{equation*}
z>m \tag{3.12}
\end{equation*}
$$

Hence, the combination of (3.11) and (3.12) yields $m<15120.03 \log m$, whence we calculate that $m<2 \times 10^{5}$, a contradiction.

When $10<0.38+\log \left(z /\left(\log \left(b m^{2}-1\right)\right)+y /(\log (c m))\right)$, since $z /\left(\log \left(b m^{2}-1\right)\right)>y /(\log (c m))$ by (3.2), we have

$$
\begin{equation*}
\frac{z}{\log \left(b m^{2}-1\right)}>\frac{1}{2}\left(\frac{z}{\log \left(b m^{2}-1\right)}+\frac{y}{\log (c m)}\right)>\frac{1}{2} e^{10-0.38}>7531 \tag{3.13}
\end{equation*}
$$

However, by (3.5) and (3.8), we get

$$
0.01+50.40\left(0.38+\log 2+\log \left(\frac{z}{\log \left(b m^{2}-1\right)}\right)\right)^{2}>\frac{z}{\log \left(b m^{2}-1\right)}
$$

whence we calculate that $z /\left(\log \left(b m^{2}-1\right)\right)<4600$, which contradicts (3.13). Therefore, if $m>\max \left\{10^{8}, c^{2}\right\}$, then (1.4) has no solutions (x, y, z) with $(x, y, z) \neq(1,1,2)$ and $\left(a m^{2}+1\right)^{2 x}<(c m)^{z}$.

Using the same method, we can obtain a similar result for $\left(b m^{2}-1\right)^{2 y}<(c m)^{z}$. Thus, we may assume that

$$
\begin{equation*}
\min \left\{\left(a m^{2}+1\right)^{2 x},\left(b m^{2}-1\right)^{2 y}\right\}>(c m)^{z} \tag{3.14}
\end{equation*}
$$

Next, we discuss the case $2 \mid m$. Take $\left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)=\left(a m^{2}+1,-\left(b m^{2}-1\right), x, y\right)$ and $\Lambda^{\prime}=\alpha_{1}^{\beta_{1}}-\alpha_{2}^{\beta_{2}}$. By (i) of Lemma 2.4, we have $2 \nmid y$. Hence, by (1.4), we get $\Lambda^{\prime}=\left(a m^{2}+1\right)^{x}+\left(b m^{2}-1\right)^{y}=(c m)^{z}$ and

$$
\begin{equation*}
\operatorname{ord}_{2} \Lambda^{\prime} \geq z \tag{3.15}
\end{equation*}
$$

Since $\alpha_{1} \equiv a m^{2}+1 \equiv 1(\bmod 4)$ and $\alpha_{2} \equiv-\left(b m^{2}-1\right) \equiv 1(\bmod 4)$, by Lemma 2.2 , we have

$$
\begin{equation*}
\operatorname{ord}_{2} \Lambda^{\prime}<19.55\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right)\left(H^{\prime}\right)^{2} \tag{3.16}
\end{equation*}
$$

where

$$
\begin{equation*}
H^{\prime}=\max \left\{12 \log 2,0.4+\log (2 \log 2)+\log \left(\frac{x}{\log \left(b m^{2}-1\right)}+\frac{y}{\log \left(a m^{2}+1\right)}\right)\right\} \tag{3.17}
\end{equation*}
$$

The combination of (3.15) and (3.16) yields

$$
\begin{equation*}
z<19.55\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right)\left(H^{\prime}\right)^{2} \tag{3.18}
\end{equation*}
$$

When $12 \log 2 \geq 0.4+\log (2 \log 2)+\log \left(x /\left(\log \left(b m^{2}-1\right)\right)+y /\left(\log \left(a m^{2}+1\right)\right)\right)$, by (3.17) and (3.18), we have

$$
\begin{equation*}
z<1352.58\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right) \tag{3.19}
\end{equation*}
$$

Further, by (3.10) and (3.19), we get

$$
\begin{equation*}
z<12173.22(\log m)^{2} \tag{3.20}
\end{equation*}
$$

Furthermore, by (3.12) and (3.20), we obtain $m<12173.22(\log m)^{2}$, whence we calculate that $m<3 \times 10^{6}$, a contradiction.

When $12 \log 2<0.4+\log (2 \log 2)+\log \left(x /\left(\log \left(b m^{2}-1\right)\right)+y /\left(\log \left(a m^{2}+1\right)\right)\right)$, by (3.17) and (3.18), we have

$$
\begin{align*}
z< & 19.55\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right) \\
& \times\left(0.4+\log (2 \log 2)+\log \left(\frac{x}{\log \left(b m^{2}-1\right)}+\frac{y}{\log \left(a m^{2}+1\right)}\right)\right)^{2} . \tag{3.21}
\end{align*}
$$

From (2.8), we get

$$
\begin{equation*}
\max \left\{\frac{x}{\log \left(b m^{2}-1\right)}, \frac{y}{\log \left(a m^{2}+1\right)}\right\}<\frac{z \log (c m)}{\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right)} \tag{3.22}
\end{equation*}
$$

Hence, by (3.21) and (3.22), we have

$$
\begin{align*}
z^{\prime} & <19.55(\log (c m))\left(0.4+\log (2 \log 2)+\log 2+\log z^{\prime}\right)^{2} \\
& <19.55(\log (c m))\left(1.42+\log z^{\prime}\right)^{2} \tag{3.23}
\end{align*}
$$

where

$$
\begin{equation*}
z^{\prime}=\frac{z \log (c m)}{\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right)} \tag{3.24}
\end{equation*}
$$

By (3.7), we have $\log \log (c m)=2.97$ and $2(\log \log \log (c m)) /(\log \log (c m))<0.74$. Therefore, we can deduce from (3.23) that

$$
\begin{equation*}
z^{\prime}<343(\log (c m))(\log \log (c m))^{2} \tag{3.25}
\end{equation*}
$$

For a detailed proof of (3.25), see Appendix at the end of this paper. Further, by (3.10), (3.24), and (3.25), we get

$$
\begin{align*}
z & <343\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right)(\log \log (c m))^{2} \\
& <3087(\log m)^{2}\left(\log \left(\frac{3}{2} \log m\right)\right)^{2} \tag{3.26}
\end{align*}
$$

Furthermore, the combination of (3.12) and (3.26) yields

$$
m<3087(\log m)^{2}\left(\log \left(\frac{3}{2} \log m\right)\right)^{2}
$$

whence we calculate that $m<7.9 \times 10^{6}$, a contradiction. Thus, the theorem holds for $2 \mid m$.
Finally, we discuss the case $2 \nmid m$. Since $2 \nmid c$, we see from (1.2) that $a m^{2}+1$ and $b m^{2}-1$ must have opposite parity. Since $a m^{2}+1$ and $b m^{2}-1$ are symmetric in (1.4) and other conditions, we may therefore assume without loss of generality that $2 \mid a m^{2}+1$. Take

$$
\begin{align*}
& \left(\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right)= \begin{cases}\left(-c m,-\left(b m^{2}-1\right), z, y\right), \\
\left((-1)^{(c m-1) / 2} c m, b m^{2}-1, z, y\right),\end{cases} \\
& \Lambda^{\prime}= \begin{cases}\alpha_{2}^{\beta_{2}}-\alpha_{1}^{\beta_{1}}, & \text { if } c m \equiv 3(\bmod 4) \text { and } 2 \nmid z, \\
\alpha_{1}^{\beta_{1}}-\alpha_{2}^{\beta_{2}}, & \text { otherwise } .\end{cases} \tag{3.27}
\end{align*}
$$

Since $z \geq 4$ by (ii) of Lemma 2.4, it is easy to see from (3.14) that $x>1$. Hence, by (1.4) and (3.27), we have $\alpha_{1} \equiv \alpha_{2} \equiv 1(\bmod 4), \Lambda^{\prime}=\left(a m^{2}+1\right)^{x}$ and

$$
\begin{equation*}
\operatorname{ord}_{2} \Lambda^{\prime} \geq x \tag{3.28}
\end{equation*}
$$

Applying Lemma 2.2 to (3.27), we get

$$
\begin{equation*}
\operatorname{ord}_{2} \Lambda^{\prime}<19.55(\log (c m))\left(\log \left(b m^{2}-1\right)\right)\left(H^{\prime}\right)^{2} \tag{3.29}
\end{equation*}
$$

where

$$
\begin{equation*}
H^{\prime}=\max \left\{12 \log 2,0.4+\log (2 \log 2)+\log \left(\frac{z}{\log \left(b m^{2}-1\right)}+\frac{y}{\log (c m)}\right)\right\} \tag{3.30}
\end{equation*}
$$

The combination of (3.28) and (3.29) yields

$$
\begin{equation*}
x<19.55(\log (c m))\left(\log \left(b m^{2}-1\right)\right)\left(H^{\prime}\right)^{2} \tag{3.31}
\end{equation*}
$$

Further, by (3.14), we have

$$
\begin{equation*}
x>\frac{z \log (c m)}{2 \log \left(a m^{2}+1\right)} \tag{3.32}
\end{equation*}
$$

Hence, by (3.31) and (3.32), we get

$$
\begin{equation*}
z<39.1\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right)\left(H^{\prime}\right)^{2} \tag{3.33}
\end{equation*}
$$

When $12 \log 2 \geq 0.4+\log (2 \log 2)+\log \left(z /\left(\log \left(b m^{2}-1\right)\right)+y /(\log (c m))\right)$, by (3.30) and (3.33), we have

$$
\begin{equation*}
z<2705.15\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right) \tag{3.34}
\end{equation*}
$$

Therefore, by (3.10), (3.12), and (3.34), we get $m<24346.35(\log m)^{2}$, whence we calculate that $m<6 \times 10^{6}$, a contradiction.

When $12 \log 2<0.4+\log (2 \log 2)+\log \left(z /\left(\log \left(b m^{2}-1\right)\right)+y /(\log (c m))\right)$, by (2.8), (3.30), and (3.33), we have

$$
\begin{aligned}
z< & 39.1\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right) \\
& \times\left(0.4+\log (2 \log 2)+\log \left(\frac{z}{\log \left(b m^{2}-1\right)}+\frac{y}{\log (c m)}\right)\right)^{2} \\
< & 39.1\left(\log \left(a m^{2}+1\right)\right)\left(\log \left(b m^{2}-1\right)\right)\left(1.42+\log \left(\frac{z}{\log \left(b m^{2}-1\right)}\right)\right)^{2}
\end{aligned}
$$

whence we get

$$
\begin{equation*}
\frac{z}{\log \left(b m^{2}-1\right)}<39.1\left(\log \left(a m^{2}+1\right)\right)\left(1.42+\log \left(\frac{z}{\log \left(b m^{2}-1\right)}\right)\right)^{2} \tag{3.35}
\end{equation*}
$$

Further, since $m>10^{8}$, we have $a m^{2}+1>10^{16}, \log \log \left(a m^{2}+1\right)>3.60$, and $2\left(\log \log \log \left(a m^{2}+1\right)\right) /\left(\log \log \left(a m^{2}+\right.\right.$ $1))<0.72$. Hence, using the same method as in the proof of (3.25), we can deduce from (3.35) that

$$
\begin{equation*}
\frac{z}{\log \left(b m^{2}-1\right)}<591\left(\log \left(a m^{2}+1\right)\right)\left(\log \log \left(a m^{2}+1\right)\right)^{2} \tag{3.36}
\end{equation*}
$$

Furthermore, by (3.10), (3.12), and (3.36), we have $m<5319(\log m)^{2}(\log (3 \log m))^{2}$, whence we calculate that $m<2.4 \times 10^{7}$, a contradiction. Thus, the theorem holds for $2 \nmid m$. To sum up, the proof is complete.

References

[1] Alan M. On the exponential Diophantine equation $\left(18 m^{2}+1\right)^{x}+\left(7 m^{2}-1\right)^{y}=(5 m)^{z}$. Turkish Journal of Mathematics 2018; 42 (4): 1990-1999. doi: 10.3906/mat-1801-76
[2] Bertók C. The complete solution of the Diophantine equation $\left(4 m^{2}+1\right)^{x}+\left(5 m^{2}-1\right)^{y}=(3 m)^{z}$. Periodica Mathematica Hungararica 2016; 72 (1): 37-42. doi: 10.1007/s10998-016-0111-x
[3] Bugeaud Y. Linear forms in p-adic logarithms and the Diophantine equation $\left(x^{n}-1\right) /(x-1)=y^{q}$. Mathematical Proceedings of the Cambridge Philosophical Society 1999; 127 (3): 373-381. doi: 10.1017/S0305004199003692
[4] Deng N-J, Wu D-Y, Yuan P-Z. The exponential Diophantine equation $\left(3 a m^{2}-1\right)^{x}+\left(a(a-3) m^{2}+1\right)^{y}=(a m)^{z}$. Turkish Journal of Mathematics 2019; 43 (5): 2561-2567. doi: 10.3906/mat-1905-20
[5] Deng N-J, Yuan P-Z. Diophantine equation $\left((c+1) m^{2}+1\right)^{x}+\left(c m^{2}-1\right)^{y}=(a m)^{z}$. Mathematics in Practice and Theory 2020; 50 (20): 220-226 (in Chinese).
[6] Fu R-Q, Yang H. On the exponential Diophantine equation $\left(a m^{2}+1\right)^{x}+\left(b m^{2}-1\right)^{y}=(c m)^{z}$ with $c \mid m$. Periodica Mathematica Hungararica 2017; 75 (2): 143-149. doi: 10.1007/s10998-016-0170-z
[7] Kizildere E, Le M-H, Soydan G. A note on the ternary purely exponential Diophantine equation $A^{x}+B^{y}=C^{z}$ with $A+B=C^{2}$. Studia Scientiarum Mathematicarum Hungarica 2020; 57 (2): 200-206. doi: 10.1556/012.2020.57.2.1457
[8] Kizildere E, Miyazaki T, Soydan G. On the Diophantine equation $\left((c+1) m^{2}+1\right)^{x}+\left(c m^{2}-1\right)^{y}=(a m)^{z}$. Turkish Journal of Mathematics 2018; 42 (4): 2690-2698. doi: 10.3906/mat-1803-14
[9] Kizildere E, Soydan G. On the Diophantine equation $\left(5 p m^{2}-1\right)^{x}+\left(p(p-5) m^{2}+1\right)^{y}=(p m)^{z}$. Honam Mathematical Journal 2020; 42 (1): 139-150. doi: 10.5831/HMJ.2020.42.1.139
[10] Laurent M. Linear forms in two logarithms and interpolation determinants II. Acta Arithmetica 2008; 133 (4): 325-348. doi: 10.4064/aa133-4-3
[11] Le M-H, Scott R, Styer R. A survey on the ternary purely exponential Diophantine equation $a^{x}+b^{y}=c^{z}$. Surveys in Mathematics and its Applications 2019; 14: 109-140.
[12] Miyazaki T, Terai N. On the exponential Diophantine equation $\left(m^{2}+1\right)^{x}+\left(c m^{2}-1\right)^{y}=(a m)^{z}$. Bulletin of the Australian Mathematical Society 2014; 90 (1): 9-19. doi: 10.1017/S0004972713000956
[13] Pan X-W. A note on the exponential Diophantine equation $\left(a m^{2}+1\right)^{x}+\left(b m^{2}-1\right)^{y}=(\mathrm{cm})^{z}$. Colloquium Mathematicum 2017; 149 (2): 265-273. doi: 10.4064/cm6878-10-2016
[14] Scott R, Styer R. Number of solutions to $a^{x}+b^{y}=c^{z}$. Publicationes Mathematicae Debrecen 2016; 88 (1-2): 131-138.
[15] Su J-L, Li X-X. The exponential Diophantine equation $\left(4 m^{2}+1\right)^{x}+\left(5 m^{2}-1\right)^{y}=(3 m)^{z}$. Abstract and Applied Analysis 2014; 2014: 1-5. doi: 10.1155/2014/670175
[16] Terai N. On the exponential Diophantine equation $\left(4 m^{2}+1\right)^{x}+\left(5 m^{2}-1\right)^{y}=(3 m)^{z}$. International Journal of Algebra 2012; 6 (21-24): 1135-1146.
[17] Terai N. On the exponential Diophantine equation $\left(4 m^{2}+1\right)^{x}+\left(21 m^{2}-1\right)^{y}=(3 m)^{z}$. Annales Mathematicae et Informaticae 2020; 52: 243-253. doi: 10.33039/ami.2020.01.003
[18] Terai N, Hibino T. On the exponential Diophantine equation $\left(12 m^{2}+1\right)^{x}+\left(13 m^{2}-1\right)^{y}=(5 m)^{z}$. International Journal of Algebra 2015; 9: 261-272.
[19] Terai N, Hibino T. On the exponential Diophantine equation $\left(3 p m^{2}+1\right)^{x}+\left(p(p-3) m^{2}-1\right)^{y}=(p m)^{z}$. Periodica Mathematica Hungararica 2017; 74 (2): 227-234. doi: 10.1007/s10998-016-0162-z
[20] Wang J-P, Wang T-T, Zhang W-P. A note on the exponential Diophantine equation $\left(4 m^{2}+1\right)^{x}+\left(5 m^{2}-1\right)^{y}=(3 m)^{z}$. Colloquium Mathematicum 2015; 139 (1): 121-126. doi: 10.4064/cm139-1-7

S1. Appendix : Detailed proof of (3.25)

Let t be a real variable with $t>1$, and let

$$
\begin{equation*}
f(t)=t-19.55(\log (c m))(1.42+\log t)^{2} \tag{S1.1}
\end{equation*}
$$

We see from (3.23) that

$$
\begin{equation*}
f\left(z^{\prime}\right)<0 \tag{S1.2}
\end{equation*}
$$

Further let

$$
\begin{equation*}
t_{0}=343(\log (c m))(\log \log (c m))^{2} . \tag{S1.3}
\end{equation*}
$$

If $f^{\prime}\left(t_{0}\right) \leq 0$, then from (S1.1) and (S1.3) we have

$$
\begin{aligned}
& 323(\log (c m))(\log \log (c m))^{2} \\
& \quad<19.55(\log (c m))(1.42+\log 343+\log \log (c m)+2(\log \log \log (c m)))^{2}
\end{aligned}
$$

whence we get

$$
\begin{equation*}
343<19.55\left(\frac{1.42+\log 343}{\log \log (c m)}+1+\frac{2(\log \log \log (c m))}{\log \log (c m)}\right)^{2} \tag{S1.4}
\end{equation*}
$$

By (3.7), we have $\log \log (c m)>2.97$ and $2(\log \log \log (c m)) /(\log \log (c m))<0.74$. Hence, by (S1.4), we get $343<19.55(2.444+1+0.74)^{2}<343$, a contradiction. So we have

$$
\begin{equation*}
f\left(t_{0}\right)>0 \tag{S1.5}
\end{equation*}
$$

By (S1.1), we have

$$
\begin{equation*}
f^{\prime}(t)=1-39.1(\log (c m))\left(\frac{1.42+\log t}{t}\right) \tag{S1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\prime \prime}(t)=39.1(\log (c m))\left(\frac{(1.42+\log t)-1}{t^{2}}\right) \tag{S1.7}
\end{equation*}
$$

where $f^{\prime}(t)$ and $f^{\prime \prime}(t)$ are derivative and divalent derivative of $f(t)$, respectively. Obviously, we see from (S1.7) that $f^{\prime \prime}(t)>0$ for $t>1$. It implies that $f^{\prime}(t)$ is an increasing function for $t>1$. If $f^{\prime}\left(t_{0}\right) \leq 0$, then from (S1.3) and (S1.6) we have $t_{0} \leq 39.1(\log (c m))\left(1.42+\log t_{0}\right)$ and

$$
\begin{aligned}
& 343(\log (c m))(\log \log (c m))^{2} \\
& \quad \leq 39.1(\log (c m))(1.42+\log 343+\log \log (c m)+2 \log \log \log (c m)),
\end{aligned}
$$

whence we get

$$
\begin{aligned}
343 \log \log (c m) & \leq 39.1\left(\frac{1.42+\log 343}{\log \log (c m)}+1+\frac{2 \log \log \log (c m)}{\log \log (c m)}\right) \\
& <39.1(2.45+1+0.74)<164
\end{aligned}
$$

a contradiction. So we have

$$
\begin{equation*}
f^{\prime}\left(t_{0}\right)>0 \tag{S1.8}
\end{equation*}
$$

Recall that $f^{\prime}(t)$ is an increasing function for $t>1$. We see from (S1.8) that $f^{\prime}(t)>0$ for $t \geq t_{0}$. It implies that $f(t)$ is also an increasing function for $t \geq t_{0}$. Therefore, by (S1.5), we have

$$
\begin{equation*}
f(t)>0 \quad \text { for } t \geq t_{0} \tag{S1.9}
\end{equation*}
$$

Thus, we find from (S1.2) and (S1.9) that z^{\prime} satisfies (3.25).

[^0]: *Correspondence: fujita.yasutsugu@nihon-u.ac.jp
 2010 AMS Mathematics Subject Classification: 11D61, 11J86

