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Abstract: Let a,b,c be fixed positive integers such that a +b = ¢, 2t c and (b/p) # 1 for every prime divisor p of
¢, where (b/p) is the Legendre symbol. Further let m be a positive integer with m > 1. In this paper, using the Baker
method, we prove that if m > max{10%, c*}, then the equation (am? +1)® 4+ (bm® — 1)¥ = (cm)? has only one positive

integer solution (z,y,2) = (1,1,2).
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1. Introduction

Let N be the set of all positive integers. Let A, B, C' be fixed coprime positive integers with min{A4, B,C} > 1.

The solution of ternary exponential Diophantine equation
A*+BY=C* z,y,2z€N (1.1)

is a research topic with a long history and rich contents in number theory (see [11]). Let a,b, ¢ be fixed positive

integers such that
9 b
a+b=c", 24c, =) #1 (1.2)
p
for every prime divisor p of ¢, where (b/p) is the Legendre symbol. Further let m be a positive integer with
m > 1. In the last decade, several authors have come up with (1.1) for
A=am?+1, B=bm?> -1, C =cm. (1.3)
According to Lemma 2.3 to be proved later in this paper, the last condition (b/p) # 1 in (1.2) is a sufficient and

necessary condition to ensure that the positive integers A, B,C of (1.3) are coprime for any m. Then, (1.1)

can be rewritten as

(am?® + 1) + (bm* —1)Y = (em)?, z,y,2 € N. (1.4)
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Obviously, we see from (1.2) that (1.4) always has a solution (z,y,z) = (1,1,2). Meanwhile, according to
a far-sighted conjecture on (1.1) proposed by R. Scott and R. Styer [14], we can put forward the following

conjecture about (1.4).

Conjecture 1.1 (1.4) has only one solution (x,y,z) = (1,1,2).

From the results known so far, the following cases of Conjecture 1.1 have been confirmed.

(i) (N. Terai [16]) (a,b,c) = (4,5,3), m <20 or m # 3 (mod 6).
(ii) (J.-P. Wang, T.-T. Wang and W.-P. Zhang [20]) (a,b,c) = (4,5,3), m £ 0 (mod 3).
(iii) (J.-L. Su and X.-X. Li [15]) (a,b,¢) = (4,5,3), m > 90, m =0 (mod 3).
(iv) (C. Berték [2]) (a,b,c) = (4,5,3), 20 <m < 90.
(v) (M. Alan [1]) (a,b,c) = (18,7,5), m # 23,47,63 or 87 (mod 120).
(vi) (N. Terai [17]) (a,b,c) = (4,21,5), m satisfies some conditions.
(vii) (N. Terai and T. Hibino [18]) (a,b,c) = (12,13,5), m # 17 or 33 (mod 40).

(viii) (N. Terai and T. Hibino [19]) (a,b,¢) = (3p, (p—3)p,p), where p is an odd prime with 3 < p < 3784
and p=1 (mod 4), m # 0 (mod 3), m =1 (mod 4).

(ix) (N.-J. Deng, D.-Y. Wu and P.-Z. Yuan [4]) (a,b,¢) = (3¢, (¢ — 3)¢,¢), ¢ >3, em Z 0 (mod 3).

(x) (E. Kizildere and G. Soydan [9]) (a,b,c) = (5p, (p — 5)p, p), where p is an odd prime with p > 5 and
p=3 (mod 4), pm = +£1 (mod 5).

(xi) (E. Kizildere, M.-H. Le and G. Soydan [7]) (a,b,c) = (rc, (¢ — 7)c,c¢), where r is a positive integer
with 7 < ¢ and r =0 (mod 3), min{rem? + 1, (¢ — r)em? — 1} > 30.

(xii) (T. Miyazaki and N. Terai [12]) (a,b,c) = (1,¢? — 1,¢), ¢ = %3 (mod 8), m = +1 (mod c).

(xiii) (N.-J. Deng and P.-Z. Yuan [5]) (a,b,c) = ((¢* +1)/2,(c* —1)/2,¢), ¢ = £3 (mod 8), m > 2,
am =1 (mod 4) or am =7 (mod 8) and am # 0 (mod 3), or am =11 (mod 24).

(xiv) (E. Kizildere, T. Miyazaki, and G. Soydan [8]) (a,b,c) = ((c* + 1)/2,(c* — 1)/2,¢), ¢ = *11
(mod 24), m = 41 (mod ¢), m > c?.

(xv) (R.-Q. Fu and H. Yang [6]) a =0 (mod 2), m =0 (mod ¢), m > 36¢®logc.

(xvi) (X.-W. Pan [13]) a =4 or 5 (mod 8), m = +1 (mod ¢), m > 6c¢*logc.

However, in general, Conjecture 1.1 is still an unsolved problem. In this paper, using a lower bound for

linear forms in two logarithms and an upper bound for 2-adic logarithms due to M. Laurent [10] and Y. Bugeaud

[3] respectively, we prove the following result:

Theorem 1.2 If m > max{108,c?}, then Conjecture 1.1 is true.

It follows from the above result that, for any given parameters (a, b, ¢) with (1.2), the proof of Conjecture

1.1 only needs to discuss finitely many smaller values of m.

1225



FUJITA and LE/Turk J Math

2. Preliminaries
Lemma 2.1 Let oy, a9, (1,82 be positive integers with min{ay,as} > 1, and let A = 5y loga; — Bz logas.

Suppose that a1 and s are multiplicatively independent. If A # 0, then

| (o frooas s (5 7))
og|A] > —25.2(log a1 )(log a2) | max 4 10, 0.38 + log + .

logas  logay
Proof This is the special case of Corollary 2 of [10] for aj,as positive integers and m = 10. O
For any positive integer n, let ords n denote the order of 2 in n.
Lemma 2.2 Let oy, ay be multiplicatively independent odd integers with min{|aq|, |as|} > 1,
and let 1,82 be positive integers. Further let A" = afl — a§2 CIf AN #0 and ap = as =1 (mod 4), then

ordsy [A’] < 19.55 (log | ]) (log |aea])

(] (et ) )
x | max < 2log2,0.4 4 log(2log 2) + log + .

log|ag| = log o]

Proof This is the special case of Theorem 2 of [3] for p=2, y3 =y2 =1, a1 = a3 =1 (mod 4), g =1 and
E=2. O

Here and below, we assume that (a,b,c) and (A, B,C) satisfy (1.2) and (1.3), respectively, and (z,y, 2)
is a solution of (1.4) with (z,y,2) # (1,1,2).

Lemma 2.3 For any positive integer m and any fized parameters a,b,c with (1.2), A, B,C are always coprime
if and only if (b/p) # 1 for every prime divisor p of c.
Proof Let d = gcd(A, B). Since
A+ B = (am?®+ 1)+ (bm? — 1) = (em)? = C?, (2.1)
A, B,C are coprime if and only if d = 1.
If (b/p) = 1, then there exists a positive integer m such that bm? —1 =0 (mod p). Since p | ¢, by (2.1),

we have am? +1 =0 (mod p). It implies that d > p > 1.

Conversely, if there is a positive integer m such that ged(am? +1,bm? —1) = d > 1, then d has a prime

divisor p. Since

am? = —1 (mod p), bm?=1 (mod p), (2.2)

by (2.1), we have

plem. (2.3)

Further, since ged(am? +1,m) = 1, by (2.2), we get p{m. Hence, by (2.3), we have
ple. (2.4)

Therefore, by (2.4) and the second congruence of (2.2), we get (b/p) = 1 for a prime divisor of ¢. Thus, the

lemma is proved. O
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Lemma 2.4 If m > ¢?, then we have

(i) 21y.

(if) z>4.

(i) z>m.
Proof Since (am? + 1)® + (bm? — 1)¥ > (am? + 1) + (bm? — 1) = (cm)?, we have z > 2. Hence, by (1.4), we
get 0= (em)® = (am? +1)% + (bm? —1)Y =1+ (—1)Y (mod m?). Therefore, since m? > 2, we obtain 2 { y
and (i) is proved.

We now assume that z = 3. If y > 1, since 2 { y, then we have y > 3. Hence, since m > c?, we get

m%2 > (em)® > (am?® 4+ 1) + (bm? —1)3 > (bm? —1)3 > (m? — 1)3, whence we obtain m?/2 > m? — 1. But,

since m > ¢ > 9, it is impossible. So we have y = 1. Similarly, we can prove that if y = 1, then 2 < 3.

Finally, if y =1 and « = 2, then from (1.4) we have
a(am?® 4+ 1) = 2(em — 1). (2.5)
Since ged(am? + 1,bm? — 1) = 1, we see from (2.1) that ged(am? + 1,¢?) = 1. Hence, by (2.5), we get ¢? | a
and a > c¢* = a+ b > a, a contradiction. Therefore, we obtain z # 3, z > 4, and (ii) is proved.
Since 2fy and z > 4, by (1.4), we have 0 = (cm)® = (am?+1)"+(bm?—1)¥ = (am?z+1)+(bm?y—1) =

(ax + by)m? (mod m*), whence we get

ar +by =0 (mod m?). (2.6)

Since ax + by is a positive integer, by (2.6), we have

azx + by > m?. (2.7)

By (1.4), we have (em)* > max{(am? + 1)%, (bm? — 1)¥}, which together with ¢? < m yields

log(cm) log(cm)
_ —_— . 2.8
v Zlog(am2 +1) <& ¥< Zlog(bm2 —1) <7 (28)
Hence, by (2.8), we get
ax +by < (a+b)z = *z < mz. (2.9)

Therefore, by (2.7) and (2.9), we get z > m and (iii) is proved. Thus, the proof of this lemma is complete. O

3. Proof of Theorem 1.2
We now assume that m > max{10%, ¢} and (z,y, z) is a solution of (1.4) with (z,y, z) # (1,1,2). Obviously,

the theorem holds if it can be proved that the solution does not exist.

We first discuss the case min{(am? + 1)%®, (bm? — 1)?Y} < (cm)*. If (am?® 4+ 1)?® < (em)?, then from
(1.4) we get (bm?* —1)¥ = (em)® — (am? + 1)® > (am? + 1)* ((am? +1)® —1) > (am?® 4+ 1)®. So we have
2(bm? — 1)¥ > (cm)?. Taking the logarithms of both sides of (1.4), we have

zlog(em) = ylog(bm? — 1) + log (1 + m> . (3.1)
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It is well known that log(l + ) < « for any « > 0. By (3.1), we get

(am?+1)*  2(am? +1)* 2
(bm2 —1)v (em)? < (em)?/2’

0 < zlog(em) — ylog(bm? — 1) <

Taking (a1, ag, B1, B2) = (em,bm? — 1, 2,y) and A = B loga; — B2logas, by (3.2), we have

2

A -
0< A< )

whence we get

log2 > log A + g log(em).

Since A > 0, applying Lemma 2.1, we have

log A > —25.20 (log(cm)) (log(bm* — 1)) H?,

where

z Y
H = 10,0.38 +1 .
m{ s <1og<bm2 " log<cm>>}

The combination of (3.3) and (3.4) yields

2log 2 + 50.40 (log(cm)) (log(bm® — 1)) H? > zlog(cm).

Since ¢ > 3 and m > 108, we have
em > 3 x 108,

Hence, by (3.6) and (3.7), we get

z

0.01 +50.40H% > ——~
+ log(bm? — 1)

When 10 > 0.38 + log (z/(log(bm? — 1)) + y/(log(cm))) , by (3.5) and (3.8), we have H = 10 and

z

————— < 5040.01.
log(bm? — 1) <

Further, since

max{am? + 1,bm?* — 1} < (ecm)? < m?,

by (3.9) and (3.10), we get

z < 5040.01 log(bm? — 1) < 15120.03 log m.

On the other hand, by (iii) of Lemma 2.4, we have

zZ > m.
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Hence, the combination of (3.11) and (3.12) yields m < 15120.03 logm, whence we calculate that m < 2 x 10°,
a contradiction.

When 10 < 0.38 + log (z/(log(bm? — 1)) + y/(log(cm))), since z/(log(bm?* — 1)) > y/(log(cm)) by (3.2),
we have

=1 =y
log(bm? —1) = 2 \log(bm? — 1) = log(cm)

1
) > 5el‘J*O‘”S > 7531. (3.13)

However, by (3.5) and (3.8), we get

2
0.01 + 50.40 (0.38 +log2 + log (WZQ_I)» > m’

whence we calculate that z/(log(bm? — 1)) < 4600, which contradicts (3.13). Therefore, if m > max{10%,¢?},
then (1.4) has no solutions (z,vy,2) with (z,y,2) # (1,1,2) and (am? + 1)** < (em)?.

Using the same method, we can obtain a similar result for (bm? — 1)%¥ < (¢cm)?. Thus, we may assume
that

min {(am® + 1)**, (bm* — 1)} > (cm)”. (3.14)

Next, we discuss the case 2 | m. Take (a1, s, 81, 82) = (am? +1,—(bm? —1),2,y) and A’ = afl - ag2.
By (i) of Lemma 2.4, we have 2{y. Hence, by (1.4), we get A’ = (am? + 1)® + (bm? — 1)¥ = (em)? and

ordy A > 2. (3.15)

Since a1 =am?+1=1 (mod 4) and ay = —(bm? — 1) =1 (mod 4), by Lemma 2.2, we have

ordy A" < 19.55 (log(am® + 1)) (log(bm® — 1)) (H')?, (3.16)
where
’r z Yy
H' = max {1210g 2,0.4 4 log(2log 2) + log <1og(bm2 Y + Tog(am? 1 1)> } . (3.17)

The combination of (3.15) and (3.16) yields

z < 19.55 (log(am?® + 1)) (log(bm?® — 1)) (H')*. (3.18)

When 12log 2 > 0.4 + log(2log 2) + log (z/(log(bm? — 1)) + y/(log(am? 4 1))), by (3.17) and (3.18), we

have

z < 1352.58 (log(am?® + 1)) (log(bm? — 1)) . (3.19)

Further, by (3.10) and (3.19), we get

z < 12173.22(log m)?. (3.20)

Furthermore, by (3.12) and (3.20), we obtain m < 12173.22(log m)?, whence we calculate that m < 3 x 105, a

contradiction.
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When 12log2 < 0.4 + log(2log 2) + log (z/(log(bm? — 1)) + y/(log(am? + 1))), by (3.17) and (3.18), we

have

z < 19.55 (log(am?® + 1)) (log(bm?* — 1))

2
T Y
X (0.4 + log(2log 2) + log <10g(bm2 —y + Tog(am? + 1)>> . (3.21)

From (2.8), we get

max { fogn 1) ogan® T } < Togtan® T 110>g>(522<bm2 —1) (3:22)
Hence, by (3.21) and (3.22), we have
2 < 19.55 (log(cm)) (0.4 + log(2log 2) + log 2 + log 2')°
< 19.55 (log(cm)) (1.42 + log 2')° (3.23)
where
, zlog(em)

° T (log(am? + 1)) (log(bm2 — 1)) " (3.24)

By (3.7), we have loglog(cm) = 2.97 and 2 (logloglog(ecm)) / (loglog(cm)) < 0.74. Therefore, we can deduce
from (3.23) that

2" < 343 (log(em)) (log log(em))? . (3.25)
For a detailed proof of (3.25), see Appendix at the end of this paper. Further, by (3.10), (3.24), and (3.25), we
get

z < 343 (log(am® + 1)) (log(bm® — 1)) (log log(em))?,

< 3087(log m)? <log <Z log m)>2. (3.26)

Furthermore, the combination of (3.12) and (3.26) yields
3 2
m < 3087(logm)? (log (2 log m)) ,

whence we calculate that m < 7.9 x 109, a contradiction. Thus, the theorem holds for 2 | m.
Finally, we discuss the case 21 m. Since 21 ¢, we see from (1.2) that am? + 1 and bm? — 1 must have
opposite parity. Since am? + 1 and bm? — 1 are symmetric in (1.4) and other conditions, we may therefore

assume without loss of generality that 2 | am? + 1. Take

{(—cm, —(bm? — 1),z,y) ,

(0417012,51,52) = ((—1)(Cm_1)/20m,bm2 _ l,z,y) ’

(3.27)
- {0/232 - alﬂl, if em =3 (mod 4) and 21 z,

oyt —ay?,  otherwise.
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Since z >4 by (ii) of Lemma 2.4, it is easy to see from (3.14) that = > 1. Hence, by (1.4) and (3.27), we have
a; =ay =1 (mod 4), A = (am? +1)* and

ordy A" > . (3.28)
Applying Lemma 2.2 to (3.27), we get
ordy A" < 19.55 (log(cm)) (log(bm?* — 1)) (H')?, (3.29)
where
H' = max {1210g 2,0.4 + log(2log 2) + log (log(bnjz 5+ 1og(ycm)> } . (3.30)
The combination of (3.28) and (3.29) yields
z < 19.55 (log(em)) (log(bm? — 1)) (H')?. (3.31)
Further, by (3.14), we have
o> —2loelem) (3.32)

2log(am? +1)°
Hence, by (3.31) and (3.32), we get
z < 39.1 (log(am® + 1)) (log(bm® — 1)) (H')?. (3.33)

When 12log2 > 0.4 + log(2log 2) + log (z/(log(bm? — 1)) + y/(log(cm))) , by (3.30) and (3.33), we have

z < 2705.15 (log(am? + 1)) (log(bm? — 1)) . (3.34)

Therefore, by (3.10), (3.12), and (3.34), we get m < 24346.35(log m)?, whence we calculate that m < 6 x 10°,
a contradiction.

When 12log2 < 0.4 + log(2log2) + log (z/(log(bm? — 1)) + y/(log(cm))) , by (2.8), (3.30), and (3.33),

we have
z < 39.1 (log(am® + 1)) (log(bm® — 1))

2
2 Y
x (0.4 + log(2log 2) + log <log(b 1) + Tog(c )>)

< 39.1 (log(am? + 1)) (log(bm? — 1)) (1-42 +log (bg(bmztn))Z ’

whence we get

z

g7 =] < 39.1 (log(am? + 1)) (1.42 + log <Z)>>2 . (3.35)

log(bm? — 1

Further, since m > 108, we have am?+1 > 10, loglog(am?+1) > 3.60, and 2 (log log log(am? + 1)) /(loglog(am?+
1)) < 0.72. Hence, using the same method as in the proof of (3.25), we can deduce from (3.35) that

m < 591 (log(am? + 1)) (loglog(am? + 1)) (3.36)

Furthermore, by (3.10), (3.12), and (3.36), we have m < 5319(logm)? (log(3logm))®, whence we calculate that

m < 2.4 x 107, a contradiction. Thus, the theorem holds for 2 {m. To sum up, the proof is complete.
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S1. Appendix : Detailed proof of (3.25)

Let t be a real variable with ¢t > 1, and let

F(t) =t —19.55 (log(cm)) (1.42 + log t)* . (S1.1)
We see from (3.23) that
f(z) <o. (S1.2)
Further let
to = 343 (log(cm)) (log log(cm))? . (S1.3)

If f'(tg) <0, then from (S1.1) and (S1.3) we have
323 (log(cm)) (log log(cm))?

< 19.55 (log(cm)) (1.42 + log 343 4 log log(cm) + 2 (log log log(cm)))?

whence we get

1.42 + log 343 2 (log log log(cm)) ) ’ (S1.4)

343 < 19.55
< log log(cm) loglog(cm)

By (3.7), we have loglog(cm) > 2.97 and 2 (logloglog(cm)) / (loglog(cm)) < 0.74. Hence, by (S1.4), we get
343 < 19.55(2.444 + 1 4 0.74)% < 343, a contradiction. So we have

f(to) > 0. (S1.5)

By (S1.1), we have

F(t) = 1 - 39.1 (log(cm)) (1.4%;@) (S1.6)
and
/(1) = 39.1 (log(cm)) (“'42 +2§g b= 1) , (S1.7)

where f/(t) and f”(t) are derivative and divalent derivative of f(t), respectively. Obviously, we see from (51.7)
that f”(t) > 0 for ¢t > 1. It implies that f’(¢) is an increasing function for ¢t > 1. If f'(t9) < 0, then from
(S1.3) and (S1.6) we have ty < 39.1 (log(cm)) (1.42 + logty) and
343 (log(cm)) (log log(cm))?
< 39.1 (log(em)) (1.42 + log 343 + log log(em) + 21og loglog(cm)) ,

whence we get

1.42 + log 34 2log log 1
34310g10g(cm)§39.1( +log 343 Og‘)gog(cm)>

log log(em) log log(em)
< 39.1(2.45+ 1+ 0.74) < 164,
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a contradiction. So we have

f'(to) > 0. (S1.8)

Recall that f/(t) is an increasing function for ¢t > 1. We see from (S1.8) that f/(t) > 0 for ¢ > to. It implies

that f(t) is also an increasing function for ¢ > to. Therefore, by (S1.5), we have

F(t) >0 fort>to. (S1.9)

Thus, we find from (S1.2) and (S1.9) that 2’ satisfies (3.25).
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