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Abstract: This paper is concerned with an inverse coefficient identification problem for a hyperbolic equation in a
rectangular domain with a nonlocal integral condition. We introduce the definition of the classical solution, and then
the considered problem is reduced to an auxiliary equivalent problem. Further, the existence and uniqueness of the
solution of the equivalent problem are proved using a contraction mapping principle. Finally, using equivalency, the
unique existence of a classical solution is proved.
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1. Introduction and problem formulation
As is well known, in many physical problems, determination of coefficients and right-hand side simultaneous in
a differential equation from some known data is required. Such problems are called inverse problems of mathe-
matical physics. They arise in various fields of human activity, such as acoustics, seismology, electromagnetics,
fluid dynamics, remote sensing, nondestructive evaluation, and many other areas. It will be noted that these
kinds of problems are ill-posed in the sense of Hadamard.

Nowadays, in the modern mathematical literature, the theory of inverse boundary-value problems for
equations of hyperbolic type of the second-order is stated rather satisfactory. The inverse and ill-posed problems
associated with the hyperbolic/wave equation have drawn the attention of many authors. A more detailed
bibliography and a classification of inverse problems are found in monographs or books (see for example, [2], [4],
[10], [14], [15], [18], [20], [21], [22], and the references therein). Note that in most of the publications devoted
to problems with nonlocal integral conditions, spatially nonlocal conditions are considered. In this article, we
consider a time nonlocal inverse problem for a hyperbolic equation with integral conditions.

Let us now survey the content of some works devoted to inverse coefficient problems for hyperbolic
equations. A.M. Denisov [5] suggested an iterative method for solving the inverse coefficient problem for a
hyperbolic equation based on a reduction to a nonlinear operator equation for the unknown coefficient and
proved the uniform convergence of the iterations to a solution of the inverse problem. In the paper of G.
Eskin [6] the inverse problems for the second-order hyperbolic equations of general form with time-dependent
coefficients are investigated and the time-dependent Lorentzian metric by the boundary measurements is
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determined. The authors G. Hu, Y. Kian, and Y. Zhao [7] investigated the inverse acoustic source problems in
an unbounded domain with dynamical boundary surface data of Dirichlet kind and they proved the uniqueness
in recovering source terms. Moreover, simultaneous determination of embedded obstacles and source terms in
an inhomogeneous background medium using the observation data of an infinite time period was verified. In the
article published by M.I. Ismailov and I. Tekin [8], the direct and inverse initial boundary-value problems for a
first-order system of two hyperbolic equations are considered. The suitability of the method of characteristics for
the inverse problem of finding solely space-dependent coefficients and the finite difference method for solely time-
dependent coefficients of the first order hyperbolic system are shown. The inverse problems to recover coefficients
of the fifth-order Korteweg-de Vries equation, sixth-order generalized Boussinesq equation, and two sixth-order
equations occurring in the dynamics of multiscale microstructure were considered in the work of J. Janno and A.
Seletski [9]. The authors were proposed to use characteristics of solitary waves for solving the inverse problems
and the uniqueness of the solution was proved. G. Nakamura, M. Watanabe, and B. Kaltenbacher [17] studied
the inverse boundary-value problem for nonlinear wave equations with a field-dependent coefficient in one space
dimension. This article shows that the linear part and the quadratic part of a field-dependent coefficient are
approximately reconstructed from two measurements at the boundary. The inverse problem of recovering a
solution-dependent coefficient multiplying the lowest derivative in a hyperbolic equation is investigated in the
paper by A.Y. Shcheglov [23]. The theorems of global uniqueness and local existence for the solution to the
inverse problem are also proved. By M. Slodicka and L. Seliga [24] was studied a non-linear wave equation with
an unknown time-convolution kernel. The missing kernel from an additional integral measurement has been
recovered.

Problems with time nonlocal conditions are closely related to inverse problems in which the overdetermi-
nation condition is integral form [3], [11], [19]. The conditions set in this way can be considered as a model of
the action of a certain device that registers physical fields [4].

The study of the time nonlocal inverse problem with integral conditions, whose results are presented in
this paper, showed that the dimension of the domain in which the solution is sought is important, and also that
the solvability conditions can relate both the domain dimensions and the restrictions on other initial data.

Motivated by these works, in the present work we study an inverse boundary-value problem for a
second-order hyperbolic equation with nonlocal conditions. A distinctive feature of the presented article is
the investigation of an inverse hyperbolic problem with both spatial and time nonlocal conditions.

Let T > 0 be some fixed number and let DT be a rectangular region defined by DT : 0 ≤ x ≤ 1, 0 ≤ t ≤
T . Consider the one-dimensional inverse problem of identifying an unknown pair of functions {u(x, t), a(t)} for
the following hyperbolic equation

utt(x, t) = uxx(x, t) + a(t)u(x, t) + f(x, t), (x, t) ∈ DT , (1.1)

with the nonlocal initial conditions

u(x, 0) =

T∫
0

P1(t)u(x, t)dt+ φ(x), ut(x, 0) =

T∫
0

P2(t)u(x, t)dt+ ψ(x), x ∈ [0, 1], (1.2)

Neumann boundary condition

ux(0, t) = 0, t ∈ [0, T ], (1.3)
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nonlocal integral condition
1∫

0

u(x, t)dx = 0, t ∈ [0, T ], (1.4)

and overdetermination condition
u(0, t) = h(t), t ∈ [0, T ]. (1.5)

where f(x, t), φ(x), ψ(x), Pi(t)(i = 1, 2) , and h(t) are given sufficiently smooth functions of x ∈ [0, 1] and
t ∈ [0, T ] .

It should be noted that the direct problem for hyperbolic equations with the conditions (1.2) has been
investigated in the works [12],[13], and the references therein.

Definition 1.1 The pair {u(x, t), a(t)} is said to be a classical solution to the problem (1.1)–(1.5), if the
functions u(x, t) ∈ C2(DT ) and a(t) ∈ C[0, T ] satisfyies an Equation (1.1) in the region DT , the condition
(1.2) on [0, 1] , and the statements (1.3)–(1.5) on the interval [0, T ] .

In order to investigate the problem (1.1)–(1.5), first we consider the following auxiliary problem

y′′(t) = a(t)y(t), t ∈ [0, T ], (1.6)

y(0) =

T∫
0

P1(t)y(t)dt, y′(0) =

T∫
0

P2(t)y(t)dt, (1.7)

where P1(t), P2(t), a(t) ∈ C[0, T ] are given functions, and y = y(t) is desired function. Moreover, by the
solution of the problem (1.6),(1.7), we mean a function y(t) belonging to C2[0, T ] and satisfying the conditions
(1.6),(1.7) in the usual sense.

Lemma 1.2 ([16]) Assume that P1(t), P2(t), a(t) ∈ C[0, T ] , and the condition

(
T ∥P2(t)∥C[0,T ] + ∥P1(t)∥C[0,T ] +

T

2
∥a(t)∥C[0,T ]

)
T < 1

hold. Then the problem (1.6),(1.7) has a unique trivial solution.

Now along with the inverse boundary-value problem (1.1)–(1.5), we consider the following auxiliary
inverse boundary-value problem: It is required to determine a pair {u(x, t), a(t)} of functions u(x, t) ∈ C2(DT )

and a(t) ∈ C[0, T ] from relations (1.1)–(1.5), and

ux(1, t) = 0, t ∈ [0, T ], (1.8)

h′′(t)− uxx(0, t) = a(t)h(t) + f(0, t), t ∈ [0, T ]. (1.9)

The following theorem is valid.
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Theorem 1.3 Suppose that φ(x), ψ(x), Pi(t) ∈ C[0, T ] (i = 1, 2), h(t) ∈ C2[0, T ], h(t) ̸= 0,

f(x, t) ∈ C(DT ),
1∫
0

f(x, t)dx = 0, t ∈ [0, T ] , and the compatibility conditions

1∫
0

φ(x)dx = 0,

1∫
0

ψ(x)dx = 0, (1.10)

h(0) =

T∫
0

P1(t)h(t)dt+ φ(0), h′(0) =

T∫
0

P2(t)h(t)dt+ ψ(0) (1.11)

holds. Then the following assertions are valid:

( i) each classical solution {u(x, t), a(t)} of the problem (1.1)–(1.5) is a solution of problem (1.1)–(1.3), (1.8),
(1.9), as well;

( ii) each solution {u(x, t), a(t)} of the problem (1.1)–(1.3), (1.8), (1.9), if(
T ∥P2(t)∥C[0,T ] + ∥P1(t)∥C[0,T ] +

T

2
∥a(t)∥C[0,T ]

)
T < 1, (1.12)

is a classical solution of problem (1.1)–(1.5).

Proof Let {u(x, t), a(t)} be any classical solution to problem (1.1)–(1.5). By integrating both sides of Equation
(1.1) with respect to x from 0 to 1, we find

d2

dt2

1∫
0

u(x, t)dx− (ux(1, t)− ux(0, t)) = a(t)

1∫
0

u(x, t)dx+

1∫
0

f(x, t)dx, t ∈ [0, T ]. (1.13)

Using the fact that
1∫
0

f(x, t)dx = 0, t ∈ [0, T ] , and the boundary condition (1.3), we conclude that the

statement (1.8) is true.
Setting x = 0 in Equation (1.1), we find

utt(0, t)− uxx(0, t) = a(t)u(0, t) + f(0, t), t ∈ [0, T ]. (1.14)

Taking into consideration h(t) ∈ C2[0, T ] and twice differentiating (1.5) yields

utt(0, t) = h′′(t), t ∈ [0, T ]. (1.15)

From (1.14), taking into account (1.5) and (1.15), we conclude that the relation (1.9) is fulfilled.
Now suppose that {u(x, t), a(t)} is the solution to problem (1.1)–(1.3), (1.8), (1.9). Then from (1.13),

by the condition
1∫

0

f(x, t)dx = 0, t ∈ [0, T ],

1246



AZIZBAYOV/Turk J Math

and relations (1.3), (1.8) we have

d2

dt2

1∫
0

u(x, t)dx = a(t)

1∫
0

u(x, t)dx, t ∈ [0, T ]. (1.16)

Furthermore, from (1.2) and (1.10) it is easy to see that

1∫
0

u(x, 0)dx−
T∫

0

P1(t)

 1∫
0

u(x, t)dx

 dt =

1∫
0

u(x, 0)− T∫
0

P1(t)u(x, t)dt

 dx =

1∫
0

φ(x)dx = 0,

1∫
0

ut(x, 0)dx−
T∫

0

P2(t)

 1∫
0

u(x, t)dx

 dt =

1∫
0

ut(x, 0)− T∫
0

P2(t)u(x, t)dt

 dx =

1∫
0

ψ(x)dx = 0. (1.17)

Since, by Lemma 1.2, problem (1.16), (1.17) has only a trivial solution. It means that
1∫
0

u(x, t)dx =

0, t ∈ [0, T ] , i.e. the condition (1.4) is satisfied.
Next, from (1.9) and (1.14), we obtain

d2

dt2
(u(0, t)− h(t)) = a(t)(u(0, t)− h(t)), 0 ≤ t ≤ T. (1.18)

By virtue of (1.2) and the compatibility conditions (1.11), we have

u(0, 0)− h(0)−
T∫

0

P1(t)(u(0, t)− h(t))dt = u(0, 0)−
T∫

0

P1(t)u(0, t)dt

−

h(0)− T∫
0

P1(t)h(t)dt

 = φ(0)−

h(0)− T∫
0

P1(t)h(t)dt

 = 0,

ut(0, 0)− h′(0)−
T∫

0

P2(t)(u(0, t)− h(t))dt

= ut(0, 0)−
T∫

0

P2(t)u(0, t)dt−

h′(0)− T∫
0

P2(t)h(t)dt



= ψ(0)−

h′(0)− T∫
0

P2(t)h(t)dt

 = 0. (1.19)

Using Lemma 1.2, and relations (1.18), (1.19), we conclude that condition (1.5) is satisfied. The theorem
is proved. 2
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2. Existence and uniqueness of the classical solution

We seek the first component of classical solution {u(x, t), a(t)} of the problem (1.1)–(1.3), (1.8), (1.9) in the
form

u(x, t) =

∞∑
k=0

uk(t) cosλkx, λk = kπ, (2.1)

where

uk(t) = mk

1∫
0

u(x, t) cosλkxdx, k = 0, 1, 2, . . . ,

and

mk =

{
1, k = 0,
2, k = 1, 2, . . . .

Then applying the formal scheme of the Fourier method, from (1.1) and (1.2) we have

u′′k(t) + λ2kuk(t) = Fk(t;u, a), k = 0, 1, 2 . . . ; 0 ≤ t ≤ T, (2.2)

uk(0) = φk +

T∫
0

P1(t)uk(t)dt, u′k(0) = ψk +

T∫
0

P2(t)uk(t)dt, k = 0, 1, 2 . . . . (2.3)

where

Fk(t;u, a) = fk(t) + a(t)uk(t), fk(t) = mk

1∫
0

f(x, t) cosλkxdx,

φk = mk

1∫
0

φ(x) cosλkxdx, ψk(t) = mk

1∫
0

ψ(x) cosλkxdx, k = 0, 1, 2, . . . .

Solving the problem (2.2), (2.3) gives

u0(t) = φ0 +

T∫
0

P1(t)u0(t)dt+ t

ψ0 +

T∫
0

P2(t)u0(t)dt

+

t∫
0

(t− τ)F0(τ ;u, a)dτ, (2.4)

uk(t) =

φk +

T∫
0

P1(t)uk(t)dt

 cosλkt+
1

λk

ψk +

T∫
0

P2(t)uk(t)dt

 sinλkt

+
1

λk

t∫
0

Fk(τ ;u, a) sinλk(t− τ)dτ, k = 1, 2, ..., 0 ≤ t ≤ T. (2.5)

Obviously,

u′k(t) = −λk

φk +

T∫
0

P1(t)uk(t)dt

 sinλkt+

ψk +

T∫
0

P2(t)uk(t)dt

 cosλkt
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+

t∫
0

Fk(τ ;u, a) cosλk(t− τ)dτ, k = 1, 2, ..., 0 ≤ t ≤ T. (2.6)

To determine the first component of the classical solution to the problem (1.1)–(1.3), (1.8), (1.9) we
substitute the expressions uk(t) (k = 0, 1, ...) into (2.1) and obtain

u(x, t) =

φ0 +

T∫
0

P1(t)u0(t)dt

+ t

ψ0 +

T∫
0

P2(t)u0(t)dt



+

t∫
0

(t− τ)F0(τ ;u, a)dτ +

∞∑
k=1


φk +

T∫
0

P1(t)uk(t)dt

 cosλkt

+
1

λk

ψk +

T∫
0

P2(t)uk(t)dt

 sinλkt +
1

λk

t∫
0

Fk(τ ;u, a) sinλk(t− τ)dτ

 cosλkx. (2.7)

It follows from (1.9) and (2.1) that

a(t) = [h(t)]−1

{
h′′(t)− f(0, t) +

∞∑
k=1

λ2kuk(t)

}
. (2.8)

By substituting expression (2.5) into (2.8), we obtain the equation for the second component of the
solution to problem (1.1)–(1.3), (1.8), (1.9):

a(t) = [h(t)]−1

h′′(t)− f(0, t) +

∞∑
k=1

λ2k

φk +

T∫
0

P1(t)uk(t)dt

 cosλkt

+
1

λk

ψk +

T∫
0

P2(t)uk(t)dt

 sinλkt +
1

λk

t∫
0

Fk(τ ;u, a) sinλk(t− τ)dτ

 . (2.9)

Thus, the solution of problem (1.1)–(1.3), (1.8), (1.9) was reduced to the solution of system (2.7), (2.9)
with respect to unknown functions u(x, t) and a(t) .

Lemma 2.1 If {u(x, t), a(t)} is any solution to problem (1.1)–(1.3), (1.8), (1.9), then the functions

uk(t) = mk

1∫
0

u(x, t) cosλkxdx, k = 0, 1, 2, . . . ,

satisfyies the system (2.4), (2.5) in C[0, T ] .

It follows from Lemma 2.1 that
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Corollary 2.2 Let system (2.7), (2.9) have a unique solution. Then problem (1.1)-(1.3), (1.8), (1.9) cannot
have more than one solution, i.e. if the problem (1.1)-(1.3), (1.8), (1.9) has a solution, then it is unique.

With the purpose to study the problem (1.1)-(1.3), (1.8), (1.9), we consider the following functional
spaces.

Denote by B3
2,T a set of all functions of the form

u(x, t) =

∞∑
k=0

uk(t) cosλkx, λk = kπ,

considered in the region DT , where each of the function uk(t) (k = 0, 1, 2, ...) is continuous over an interval
[0, T ] and satisfies the following condition:

J(u) ≡ ∥u0(t)∥C[0,T ] +

{ ∞∑
k=1

(
λ3k ∥uk(t)∥C[0,T ]

)2} 1
2

< +∞.

The norm in this set is defined by

∥u(x, t)∥B3
2,T

= J(u).

It is known that B3
2,T is Banach space [1].

Obviously, E3
T = B3

2,T × C[0, T ] is also Banach space, where the norm of an element z = {u, a} is
determined by the formula

∥z(x, t)∥E3
T
= ∥u(x, t)∥B3

2,T
+ ∥a(t)∥C[0,T ] .

Now consider the operator
Φ(u, a) = {Φ1(u, a), Φ2(u, a)},

in the space E3
T , where

Φ1(u, a) = ũ(x, t) ≡
∞∑
k=0

ũk(t) cosλkx, Φ2(u, a) = ã(t),

and the functions ũ0(t), ũk(t), k = 1, 2, ..., and ã(t) are equal to the right-hand sides of (2.4), (2.5), and (2.9),
respectively.

Hence we have

∥ũ0(t)∥C[0,T ] ≤ |φ0|+ T (∥P1(t)∥C[0,T ] + T ∥P2(t)∥C[0,T ]) ∥u0(t)∥C[0,T ]

+T |ψ0|+ T
√
T

 T∫
0

|f0(τ)|2 dτ


1
2

+ T 2 ∥a(t)∥C[0,T ] ∥u0(t)∥C[0,T ] , (2.10)

( ∞∑
k=1

(λ3k ∥ũk(t)∥C[0,T ])
2

) 1
2

≤
√
6

( ∞∑
k=1

(λ3k |φk|)2
) 1

2

+
√
6

( ∞∑
k=1

(λ2k |ψk|)2
) 1

2
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+
√
6(∥P1(t)∥C[0,T ] + ∥P2(t)∥C[0,T ])T

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+
√
6T

 T∫
0

∞∑
k=1

(λ2k |fk(τ)|)2dτ


1
2

+
√
6T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

, (2.11)

∥ã(t)∥C[0,T ] ≤
∥∥[h(t)]−1

∥∥
C[0,T ]

∥h′′(t)− f(0, t)∥C[0,T ] +

( ∞∑
k=1

λ−2
k

) 1
2

×

( ∞∑
k=1

(λ3k |φk|)2
) 1

2

+ T ∥P1(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+

( ∞∑
k=1

(λ2k |ψk|)2
) 1

2

+ T ∥P2(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+
√
T

 T∫
0

∞∑
k=1

(λ2k |fk(τ)|)2dτ


1
2

+ T ∥a(t)∥C[0,T ]

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2


 . (2.12)

Suppose that the data for problem (1.1)–(1.3), (1.8), (1.9) satisfy the assumptions:

(A1 ) φ(x) ∈ C2[0, 1], φ′′′(x) ∈ L2(0, 1), φ
′(0) = φ′(1) = 0;

(A2 ) ψ(x) ∈ C2[0, 1], ψ′′(x) ∈ L2(0, 1), ψ
′(0) = ψ′(1) = 0;

(A3 ) f(x, t), fx(x, t) ∈ C(DT ), fxx(x, t) ∈ L2(DT ), fx(0, t) = fx(1, t) = 0, 0 ≤ t ≤ T ;

(A4 ) h(t) ∈ C2[0, T ], h(t) ̸= 0, 0 ≤ t ≤ T.

Then from (2.10)–(2.12) we correspondingly find

∥ũ0(t)∥C[0,T ] ≤ ∥φ(x)∥L2(0,1)
+ T ∥ψ(x)∥L2(0,1)

+ T
√
T ∥f(x, t)∥L2(DT )

+T (∥P1(t)∥C[0,T ] + T ∥P2(t)∥C[0,T ] + T ∥a(t)∥C[0,T ]) ∥u0(t)∥C[0,T ] , (2.13)

{ ∞∑
k=1

(
λ3k ∥ũk(t)∥C[0,T ]

)2} 1
2

≤
√
6 ∥φ′′′(x)∥L2(0,1)

+
√
6 ∥ψ′′(x)∥L2(0,1)

+
√
6T ∥fxx(x, t)∥L2(DT ) +

√
6T (∥P1(t)∥C[0,T ] + ∥P2(t)∥C[0,T ]

+ ∥a(t)∥C[0,T ])

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

, (2.14)
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∥ã(t)∥C[0,T ] ≤
∥∥[h(t)]−1

∥∥
C[0,T ]

∥h′′(t)− f(0, t)∥C[0,T ] +

( ∞∑
k=1

λ−2
k

) 1
2

×[∥φ′′′(x)∥L2(0,1)
+ ∥ψ′′(x)∥L2(0,1)

+
√
T ∥fxx(x, t)∥L2(DT ) + T (∥P2(t)∥C[0,T ]

+ ∥P1(t)∥C[0,T ] + ∥a(t)∥C[0,T ])

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

 . (2.15)

It follows from (2.13) and (2.14) that

∥ũ(x, t)∥B3
2,T

≤ A1(T ) +B1(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C1(T ) ∥u(x, t)∥B3
2,T

, (2.16)

where
A1(T ) = ∥φ(x)∥L2(0,1)

+ T ∥ψ(x)∥L2(0,1)
+ T

√
T ∥f(x, t)∥L2(DT )

+
√
6 ∥φ′′′(x)∥L2(0,1)

+
√
6 ∥ψ′′(x)∥L2(0,1)

+
√
6T ∥fxx(x, t)∥L2(DT ) ,

B1(T ) = T 2 +
√
6T,

C1(T ) = T (1 +
√
6) ∥P1(t)∥C[0,T ] + T (T +

√
6) ∥P2(t)∥C[0,T ] .

Further from (2.15), we may also write

∥ã(t)∥C[0,T ] ≤ A2(T ) +B2(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C2(T ) ∥u(x, t)∥B3
2,T

, (2.17)

where
A2(T ) =

∥∥[h(t)]−1
∥∥
C[0,T ]

{∥h′′(t)− f(0, t))∥C[0,T ]

+

( ∞∑
k=1

λ−2
k

) 1
2 [

∥φ′′′(x)∥L2(0,1)
+ ∥ψ′′(x)∥L2(0,1)

+
√
T ∥fxx(x, t)∥L2(DT )

] ,

B2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

(λ−2
k )

) 1
2

T,

C2(T ) =
∥∥[h(t)]−1

∥∥
C[0,T ]

( ∞∑
k=1

(λ−2
k )

) 1
2

T (∥P1(t)∥C[0,T ] + ∥P2(t)∥C[0,T ]).

From the inequalities (2.16) and (2.17), we conclude that

∥ũ(x, t)∥B3
2,T

+ ∥ã(t)∥C[0,T ] ≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3
2,T

+ C(T ) ∥u(x, t)∥B3
2,T

, (2.18)

where
A(T ) = A1(T ) +A2(T ), B(T ) = B1(T ) +B2(T ), C(T ) = C1(T ) + C2(T ).

Thus, we can prove the following theorem
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Theorem 2.3 Let R = A(T ) + 2 . If the statements (A1)− (A4) and the condition

R(B(T )R+ C(T )) < 1, (2.19)

holds, then problem (1.1)–(1.3), (1.8),(1.9) has a unique solution in the ball K = KR ⊂ E3
T .

Proof In the space E3
T , consider the operator equation

z = Φz, (2.20)

where z = {u, a} , and the components Φi(u, a) (i = 1, 2) , of operator Φ(u, a) defined by the right sides of (2.7)
and (2.9), respectively and the following inequalities hold:

∥Φz∥E3
T
≤ A(T ) +B(T ) ∥a(t)∥C[0,T ] ∥u(x, t)∥B3

2,T
+ C(T ) ∥u(x, t)∥B3

2,T

≤ A(T ) +B(T )R2 + C(T )R = A(T ) + (B(T )(A(T ) + 2) + C(T ))(A(T ) + 2), (2.21)

∥Φz1 − Φz2∥E3
T
≤ B(T )R(∥u1(x, t)− u2(x, t)∥B3

2,T

+ ∥a1(t)− a2(t)∥C[0,T ]) + C(T ) ∥u1(x, t)− u2(x, t)∥B3
2,T

. (2.22)

Then it follows from (2.19), (2.21), and (2.22) that the operator Φ acts in the ball K = KR , and
satisfy the conditions of the contraction mapping principle. Therefore the operator Φ has a unique fixed point
{z} = {u, a} in the ball K = KR , which is a solution of equation (2.20); i.e. the pair {u, a} is the unique
solution of the systems (2.7) and (2.9) in K = KR .

Then the function u(x, t) as an element of space B3
2,T is continuous and has continuous derivatives

ux(x, t) and uxx(x, t) in DT .
Next, from (2.2) it follows that u′′k(t) (k = 1, 2, . . .) are continuous in [0, T ] and consequently we have:

( ∞∑
k=1

(λk ∥u′′k(t)∥C[0,T ])
2

) 1
2

≤
√
2

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+
√
2

( ∞∑
k=1

(λk ∥fk(t) + a(t)uk(t)∥C[0,T ])
2

) 1
2

or

( ∞∑
k=1

(λk ∥u′′k(t)∥C[0,T ])
2

) 1
2

≤
√
2

( ∞∑
k=1

(λ3k ∥uk(t)∥C[0,T ])
2

) 1
2

+
√
2
∥∥∥∥fx(x, t) + a(t)ux(x, t)∥C[0,T ]

∥∥∥
L2(0,T )

.

From the last relations it is obvious that the function utt(x, t) is continuous in the region DT .
It is easy to verify that Eq. (1.1) and conditions (1.2), (1.3), (1.8), (1.9) satisfy in the usual sense. So,

{u(x, t), a(t)} is a solution of (1.1)–(1.3), (1.8),(1.9), and by Lemma 2.1 it is unique in the ball K = KR . The
proof is complete. 2

In summary, from Theorem 1.3 and Theorem 2.3, straightforward implies the unique solvability of the
original problem (1.1)–(1.5).

1253



AZIZBAYOV/Turk J Math

Theorem 2.4 Suppose that all assumptions of Theorem 2.3, and the conditions

1∫
0

φ(x)dx = 0,

1∫
0

ψ(x)dx = 0,

1∫
0

f(x, t)dx = 0, t ∈ [0, T ],

h(0) =

T∫
0

P1(t)h(t)dt+ φ(0), h′(0) =

T∫
0

P2(t)h(t)dt+ ψ(0),

(
T ∥P2(t)∥C[0,T ] + ∥P1(t)∥C[0,T ] +

T

2
(A(T ) + 2)

)
T < 1,

holds. Then problem (1.1)–(1.5) has a unique classical solution in the ball K ⊂ E3
T .

3. Conclusions
In the work, the classical solvability of a nonlinear coefficient identification problem for a second-order hyperbolic
equation with nonlocal conditions was investigated. The considered problem was reduced to an auxiliary inverse
boundary value problem in a certain sense and its equivalence to the original problem is shown. Then using
the Fourier method and contraction mappings principle, the existence and uniqueness theorem for the auxiliary
problem is proved. Further, on the basis of the equivalency of these problems, the existence and uniqueness
theorem for the classical solution of the original inverse coefficient problem is established for the smaller value
of time.
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