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Abstract: In this study, Sturm–Liouville operator was investigated on a star graph with nonequal edges. First, the
behaviors of sufficiently large eigenvalues were learned, then the solution of the inverse problem was given to determine
the potantial functions and parameters of the boundary condition on the star graph with the help of a dense set of nodal
points and obtain a constructive solution to the inverse problems of this class.
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1. Introduction
In this work we consider a star graph G with vertex set V = {υ0, υ1, ..., υν} and edge set E = {e1, e2, ..., eν} ,
where υ1, υ2, ..., υν are the boundary vertices, υ0 is the interior vertex and ej = [υj , υ0] for j = 1, ν , positive
integer ν ≥ 2. We suppose that the length of edge ej ∈ E is equal to ℓj , where ℓj = ℓ > 0, j = 1, ν − p , and
ℓj = 2ℓ, j = ν − p+ 1, ν. We introduce a parameter x for each edge ej ∈ E , x ∈ [0, ℓj ] . The following choice
of orientation is convenient for us: x = 0 corresponds to the boundary vertices υ1, υ2, ..., υν and x = ℓj to the
interior vertex υ0.

Let y = {yj(x)}j=1,ν be a vector function on G. Consider a second order differential expression

(Ljyj) (x) := −y
′′

j (x) + qj(x)yj (x) , x ∈ [0, ℓj ] , j = 1, ν,

qj(x), j = 1, ν , are real valued functions from L2 [0, ℓj ] . The domain of expressions Lj

D (Lj) :=
{
yj ∈ W 1

2 [0, ℓj ] : y
′

j ∈ AC [0, ℓj ] , Ljyj ∈ L2 [0, ℓj ]
}
, j = 1, ν.

We study the boundary value problem L = L (q, p, h) for the Sturm–Liouville equations on a star graph G :

(Ljyj) (x) = λyj (x) , x ∈ [0, ℓj ] , j = 1, ν, λ = s2 (1.1)

with the matching conditions

y1 (ℓ1) = yj (ℓj) , j = 2, ν,

υ∑
j=1

y
′

j (ℓj) = 0 (1.2)
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in the interior vertex υ0, and the boundary conditions

y
′

j (0)− hjyj (0) = 0, j = 1, ν (1.3)

in the boundary vertices υ1, ..., υν , where hj are real, h = {hj}j=1,ν , and q = {qj (x)}j=1,ν are called potential
functions on a star graph G .

The solution of many problems in different fields of mathematics, mechanics, physics, geophysics, elec-
tronics, nanotechnology, natural sciences and engineering is reduced to the problems of studying differential
operators on graphs (trees) (see [2, 8, 14–17, 22–24, 27] references there in). Spectral inverse problems for
differential operators given on graphs began to be studied more rapidly in the twenty-first century.

In 1988, by bringing a different perspective to this problem, it was reduced to the solution of inverse nodal
problems for Sturm–Liouville operators by Hald and McLaughlin [9–12, 21]. In recent years, many studies have
been conducted on nodal inverse problems, which is one of the important topics of inverse problems theory, and
some of these studies are studies on graphs. The articles [2, 4, 5, 12, 18, 19, 25, 26, 28, 34] can be shown as the
basis for such studies.

Inverse nodal problems on a graphs for the Sturm–Liouville operators and Dirac operators and for the
diffusion operators are studied in sufficient detail in [5, 29]. The works [6, 33, 34] deal with inverse nodal
problems for the Sturm–Liouville operators on star-shaped graphs with equal edges. The work [30] is related
to inverse nodal problems on a equal edge graph with loops. The work [29] is conserned with inverse nodal
problems for diffusion operators on a star-shaped graph with equal edges. In [13] authors consider inverse nodal
problems for Dirac-type integro-differential operators on a star graph with equal edges. If the lengths of edges
of graphs are nonequal, the problems will become more difficult (see [3, 20]). In particular, the asymptotic
expressions of eigenvalues are difficult to find. For inverse nodal problems on graphs in [7] proved that the
specification of the spectrum and the set of all nodal points uniquely determine the potential.

In the present paper unlike other publications we consider inverse nodal problems on a special kind of
star graph G with nonequal edges and want to reconstruct the potential only by the dense subset of nodal
points.

This paper is organized as follows: in Section 2, we find asymptotical formulas of eigenvalues of the
problem L , Section 3 is concerned with the asymptotical formulas of the nodal points and an inverse nodal
problem.

2. Properties of the spectrum

Let Cj (x, s) , Sj (x, s) , j = 1, ν , be solutions of equations (1.1) under the initial conditions Cj (0, s) = S
′

j (0, s) =

1, C
′

j (0, s) = Sj (0, s) = 0, and denote by φj (x, s) , j = 1, ν, the solutions of equations (1.1) satisfying initial

conditions φj (0, s) = 1, φ
′

j (0, s) = hj . For each fixed x ∈ [0, ℓj ] , the functions

Cj (x, s) , Sj (x, s) , C
′

j (x, s) , S
′

j (x, s) , φj (x, s)

and φ
′

j (x, s) , j = 1, ν, are entire in s and

φj (x, s) = Cj (x, s) + hjSj (x, s) .
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From [31] one gets the following asymptotical formulas as |s| → ∞,

φj (x, s) = cos sx+Aj (x)
sin sx

s
+O

(
e|τ |x

s

)
, (2.1)

φ
′

j (x, s) = −s sin sx+Aj (x) cos sx+O
(
e|τ |x

)
, (2.2)

where τ = Im s, and

Aj (x) = hj +
1

2

x∫
0

qj (t) dt (2.3)

for j = 1, ν.

Then the solutions of equations (1.1) satisfying the boundary conditions (1.3) are

yj (x, s) = Hj (s)φj (x, s) , (2.4)

where Hj (s) are functions independent of x. Substituting (2.4) into the martching conditions (1.2), we obtain
the characteristic function of the problem L.

∆(s) =

ν∑
j=1

φ
′

j(ℓj , s)
∏

j ̸=k∈{1,...,ν}

φk(ℓj , s) = (2.5)

=


ν−p∑
j=1

φ
′

j(ℓ, s)×
∏

j ̸=k∈{1,...,ν−p}

φk(ℓ, s)

×
ν∏

k=ν−p+1

φk(2ℓ, s)+

+


υ∑

j=ν−p+1

φ
′

j(2ℓ, s)×
p∏

k=1

φk(ℓ, s)

×
∏

j ̸=k∈{p+1,...ν}

φk(2ℓ, s).

As defined in [33] if λ0 is a zero of ∆(λ)
(
λ = s2

)
then the function y(x, λ0) = y

(
x, s20

)
of the form

y(x, λ) = {yi(x, λ)}i=1,ν , yi(x, λ) = Ai (λ)φi (x, λ) is an eigenfunction and λ = s20 is an eigenvalue of
problem (1.1)–(1.3). Conversely, if λ0 is an eigenvalue then the corresponding eigenfunction is of the form
y(x, λ) = {yi(x, λ)}i=1,ν , yi(x, λ) = Ai (λ)φi (x, λ) with λ = λ0. Since y(x, λ0) ≠ 0, the algebraic system has
a nontrivial solution: consequantly, ∆(λ0) = 0.

Let us introduce the auxiliary function

∆0(s) =

ν∑
j=1

(−s sin sℓj)
∏

j ̸=k∈{1,...,ν}

cos sℓk = (2.6)

= (−s sin sℓ) (cos sℓ)ν−p−1(cos 2sℓ)p−1
{
2υ cos2 sℓ− (ν − p)

}
.
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Using (2.6) and Rouche method (see [31]), we deduce that the function of ∆0(s) has countably many
eigenvalues

{
tθn
}
n∈Z =

({
s(01)n

}n=−0

n=−∞

∪{
s(01)n

}+∞

n=0

)ν−p∪
j=2

{
s(0j)n

}
n∈Z

 ν+1∪
j=ν−p+1

{
s(0j)n

}
n∈Z

 ,

we arrange the zeros in the following way:

s
(01)
−0 = s

(01)
0 = 0, s(01)n =

nπ

ℓ
, n ∈ Z\ {0} ;

s(02)n =
nπ + θ

ℓ
, s(03)n =

nπ − θ

ℓ
, n ∈ Z;

s(0j)n =

(
n+ 1

2

)
π

ℓ
, j = 1, ν − p, n ∈ Z;

s(0j)n =

(
n+ 1

2

)
π

2ℓ
, j = ν − p+ 1, ν + 1, n ∈ Z,

where θ = arccos

√
ν − p

2ν
. The set of zeros of ∆(s) denote by

{tn}n∈Z =

({
s(1)n

}−0

n=−∞

∪{
s(1)n

}+∞

n=0

)ν−p∪
j=2

{
s(j)n

}
n∈Z

 ν+1∪
j=ν−p+1

{
s(j)n

}
n∈Z

 ,

we arrange the zeros in the following usual way: (1) s
(j)
−n = −s

(j)
n for all not pure real s(j)n , (2) Re s

(j)
n+1 ≥ Re s

(j)
n .

Using Lemma 2.1 in [29] we can obtain the following proposition.

Lemma 2.1 The zeros of ∆(s) can be enumerated as follows:

tn = t(0)n + o(1). (2.7)

Moreover, using Lemma 2.1 we can obtain the following result.

Lemma 2.2 The following asymptotic behavior for the set {tn} of zeros of the function ∆(s) is true:
(a)

s(1)n =
nπ

ℓ
+

ν−p∑
j=1

ηj +
ν∑

j=ν−p+1

ηj

(ν + p)πn
+O

(
1

n2

)
, (2.8)

(b)

s(2)n =
nπ + θ

ℓ
+

1

nπ + θ

 p

ν2 − p2

ν−p∑
j=1

ηj

+

[
(p− 1)(ν − p)

2pν
+

ν2 − p(p− 1)

2ν(ν + p)

] ν∑
j=ν−p+1

ηj

+O

(
1

n2

)
,

(2.9)
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(c)

s(2)n =
nπ − θ

ℓ
+

1

nπ − θ

 p

ν2 − p2

ν−p∑
j=1

ηj

+

[
(p− 1)(ν − p)

2pν
+

ν2 − p(p− 1)

2ν(ν + p)

] ν∑
j=ν−p+1

ηj

+O

(
1

n2

)
,

(2.10)
(d)

s(j)n =
(n+ 1

2 )π

ℓ
+

τ
(1)
j−3

(n+ 1
2 )π

+O

(
1

n2

)
, j = 4, ν − p+ 1, (2.11)

(e)

s(j)n =
(n+ 1

2 )π

2ℓ
+

2τ
(2)
j

(n+ 1
2 )π

+O

(
1

n2

)
, j = ν − p+ 2, ν + 1, (2.12)

where τ
(1)
j−3 and τ

(2)
j are the solutions of the equations

P1(x) :=

ν−p∑
i=1

∏
i̸=k∈{1,...,ν−p}

(x− ηk), P2(x) :=

ν∑
i=ν−p+1

∏
i̸=k∈{p+1,...,ν}

(x+ ηk)

respectively, and ηj = hj +
1

2

ℓj∫
0

qj(t)dt, i.e. ηj = Aj(ℓj) for j = 1, ν.

Proof (a) Using Rouche’s theorem, for sufficiently large integer |n| , ∆(s) has exactly one zero in a suitable

neighborhood of s
(0)
n =

nπ

ℓ
, and denote

s(1)n =
nπ

ℓ
+ β(1)

n , (2.13)

where β
(1)
n = o(1) as |n| → +∞. Substituting (2.13) into ∆(s) = 0 , then from (2.5), we have

∆
(
s(1)n

)
=

ν−p∑
j=1

[
−nπ

ℓ
sinβ(1)

n ℓ+ ηj cosβ
(1)
n ℓ+ o(1)

]
×

∏
j ̸=k∈{1,...,ν−p}

[
cosβ(1)

n ℓ+ o(
1

n
)

]
× (2.14)

×
ν∏

k=ν−p+1

[
cos 2β(1)

n ℓ+ o(
1

n
)

]
+

υ∑
j=υ−p+1

[
−nπ

ℓ
sin 2β(1)

n ℓ+ ηj cos 2β
(1)
n ℓ+ o(1)

]
×

×
p∏

k=1

[
cosβ(1)

n ℓ+ o(
1

n
)

]
×

∏
j ̸=k∈{p+1,...,ν}

[
cos 2β(1)

n ℓ+ o(
1

n
)

]
= 0.

From (2.14), we have sinβ
(1)
n ℓ = O

(
1

n

)
. Using the inversion formula, we get

β(1)
n =

C(1)

nℓ
+O

(
1

n2

)
, (2.15)
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where C(1) is a constant. Substituting (2.15) into (2.14) and let |n| → +∞ , we obtain

C(1) =

ℓ

{
ν−p∑
j=1

ηj +
ν∑

j=ν−p+1

ηj

}
(ν + p)π

. (2.16)

In this case, if we make use of (2.13), (2.15) and (2.16) we get (2.8).
(b) As in case (a) using Rouche’s theorem, for sufficiently large integer |n| , ∆(s) has only one zero in a

suitable neighborhood of s
(02)
n =

nπ + θ

ℓ
, and denote

s(2)n =
nπ + θ

ℓ
+ β(2)

n , (2.17)

where β
(2)
n = o(1) as |n| → +∞ . Substituting (2.17) into ∆(s) = 0 , then from (2.5), we have

∆
(
s(2)n

)
=

ν−p∑
j=1

[
nπ + θ

ℓ
A

(n)
1 − ηjA

(n)
2 + o(1)

]
×

∏
j ̸=k∈{1,...,ν−p}

[
A

(n)
2 +

ℓηk
nπ + θ

A
(n)
1 + o(

1

n
)

]
× (2.18)

×
ν∏

k=ν−p+1

[
A

(n)
3 − ℓηk

nπ + θ
A

(n)
4 + o(

1

n
)

]
+

ν∑
j=ν−p+1

[
−nπ + θ

ℓ
A

(n)
4 + ηjA

(n)
3 + o(1)

]
×

×
p∏

k=1

[
A

(n)
2 +

ℓηk
nπ + θ

A
(n)
1 + o(

1

n
)

]
×

∏
j ̸=k∈{p+1,...,ν}

[
A

(n)
3 − 2ℓηk

nπ + θ
A

(n)
4 + o(

1

n
)

]
= 0,

where

A
(n)
1 =

√
ν + p

2ν
cosβ(2)

n ℓ+

√
ν − p

2ν
sinβ(2)

n ℓ,

A
(n)
2 =

√
ν − p

2ν
cosβ(2)

n ℓ−
√

ν + p

2ν
sinβ(2)

n ℓ,

A
(n)
3 =

p

ν
cos 2β(2)

n ℓ+

√
ν2 − p2

ν
sin 2β(2)

n ℓ,

A
(n)
4 =

√
ν2 − p2

ν
cos 2β(1)

n ℓ− p

ν
sin 2β(2)

n ℓ,
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or

nπ + θ

ℓ
A

(n)
2 A

(n)
3

[
(ν − p)A

(n)
1 A

(n)
3 − pA

(n)
2 A

(n)
4

]
+ (2.19)

+

ν−p∑
j=1

ηj

A
(n)
3

[
(ν − p− 1)(A

(n)
1 )2A

(n)
3 − (A

(n)
2 )2A

(n)
3 − pA

(n)
1 A

(n)
2 A

(n)
4

]
−

−

 ν∑
j=ν−p+1

ηj

A
(n)
2

[
(ν − p)A

(n)
1 A

(n)
3 A

(n)
4 + (p− 1)A

(n)
2 (A

(n)
4 )2 +A

(n)
2 (A

(n)
3 )2

]
+ o(1)

= 0.

If we make use of the identity

(ν − p)A
(n)
1 A

(n)
3 − pA

(n)
2 A

(n)
4 = sinβ(2)

n ℓ

[
2ν

√
ν − p

2ν
cos2 β(2)

n ℓ+

+2p

√
ν − p

2ν
cos 2β(2)

n ℓ+ (ν − 2p)

√
ν + p

2ν
sin 2β(2)

n ℓ

]

Equation (2.19) implies

nπ + θ

ℓ

(
sinβ(2)

n ℓ
)
A

(n)
2 A

(n)
3 A

(n)
5 + (2.20)

+

ν−p∑
j=1

ηj

A
(n)
3

[
(ν − p− 1)(A

(n)
1 )2A

(n)
3 − (A

(n)
2 )2A

(n)
3 − pA

(n)
1 A

(n)
2 A

(n)
4

]
−

−

 ν∑
j=ν−p+1

ηj

A
(n)
2

[
(ν − p)A

(n)
1 A

(n)
3 A

(n)
4 + (p− 1)A

(n)
2 (A

(n)
4 )2 +A

(n)
2 (A

(n)
3 )2

]
+ o(1)

= 0

where

A
(n)
5 =

[
2ν

√
ν − p

2ν
cos2 β(2)

n ℓ+ 2p

√
ν − p

2ν
cos 2β(2)

n ℓ+ (ν − 2p)

√
ν + p

2ν
sin 2β(2)

n ℓ

]
.

Using the limits of expressions A
(n)
i , i = 1, 5, when |n| → +∞, we have

sinβ(2)
n ℓ = O

(
1

nπ + θ

)

from (2.20). Using the inversion formula, we get

β(2)
n =

C(2)

(nπ + θ)ℓ
+O

(
1

n2

)
, (2.21)
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where C(2) is a constant. Substituting (2.21) into (2.20) and let |n| → +∞, we obtain

C(2) =
pℓ

ν2 − p2

ν−p∑
j=1

ηj

+

[
(p− 1)(ν − p)

2pν
+

ν2 − p(p− 1)

2ν(ν + p)

]
ℓ

 ν∑
j=ν−p+1

ηj

 . (2.22)

In this case if we make use of (2.17), (2.21) and (2.22) we get (2.9). Similarly, in the case (c) the formula (2.10)
can be proved.

(d) Using Rouche’s theorem, for sufficiently large integer |n| , there lie exactly ν − p − 1 zeros of ∆(s)

in a suitable neighborhood of

s(0j)n =
(n+ 1

2 )π

ℓ
,

and denote

s(j)n =
(n+ 1

2 )π

ℓ
+ β(j)

n , j = 4, ν − p+ 1, (2.23)

where β
(j)
n = o(1) as |n| → +∞. Substituting (2.23) into ∆(s) = 0 , then from (2.5), we have

∆
(
s(j)n

)
=

ν−p∑
i=1

[(
(n+ 1

2 )π

ℓ
+ β(j)

n

)
cosβ(j)

n ℓ+ ηi sinβ
(j)
n ℓ+ o(1)

]
× (2.24)

×
∏

i ̸=k∈{1,...,ν−p}

sinβ(j)
n ℓ− ηk

cosβ
(j)
n ℓ

(n+ 1
2 )π

ℓ
+ β

(j)
n

+ o(
1

n
)

×

×
ν∏

k=ν−p+1

− cos 2β(j)
n ℓ− ηk

sin 2β
(j)
n ℓ

(n+ 1
2 )π

ℓ
+ β

(j)
n

+ o(
1

n
)

+

+

ν∑
i=ν−p+1

[(
(n+ 1

2 )π

ℓ
+ β(j)

n

)
sin 2β(j)

n ℓ− ηi cos 2β
(j)
n ℓ+ o(1)

]
×

×
p∏

k=1

− sinβ(j)
n ℓ− ηk

cosβ
(j)
n ℓ

(n+ 1
2 )π

ℓ
+ β

(j)
n

+ o(
1

n
)

×

×
∏

i ̸=k∈{p+1,...,ν}

− cos 2β(j)
n ℓ− ηk

sin 2β
(j)
n ℓ

(n+ 1
2 )π

ℓ
+ β

(j)
n

+ o(
1

n
)


= 0.

Acting as in case (a) from (2.24) we find

sinβ(j)
n ℓ = O

(
1

(n+ 1
2 )π

)
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as |n| → +∞. Using the inversion formula, we get

β(j)
n =

C(j)

(n+ 1
2 )πℓ

+O

(
1

n2

)
, (2.25)

where C(j), j = 4, ν − p+ 1 are all constants. Next, substituting (2.25) into (2.24) we have
ν−p∑
i=1

[
1 + o

(
1

n

)]
×

∏
i̸=k∈{1,...,ν−p}

[
C(j)

(n+ 1
2 )π

− ℓηk

(n+ 1
2 )π

+ o(
1

n
)

]
×

ν∏
k=ν−p+1

[
1 + o

(
1

n

)]
+

+

ν∑
i=ν−p+1

[
2C(j)

(n+ 1
2 )π

− ℓηi

(n+ 1
2 )π

+ o

(
1

n

)]
×

p∏
k=1

[
C(j)

(n+ 1
2 )π

− ℓηk

(n+ 1
2 )π

+ o(
1

n
)

]
×

×
∏

i̸=k∈{p+1,...,ν}

[
1 + o

(
1

n

)]
= 0.

Letting |n| → +∞ yields

ν−p∑
i=1

∏
i ̸=k∈{1,...,ν−p}

(
C(j) − ℓηk

)
= 0, j = 4, ν − p+ 1. (2.26)

Denote

τj−3 =
C(j)

ℓ
, j = 4, ν − p+ 1, (2.27)

P1 (x) =

ν−p∑
i=1

∏
i ̸=k∈{1,...,ν−p}

(x− ηk) dx. (2.28)

In view of (2.23), (2.25), (2.26) and (2.28) we arrive at (2.11). Similarly, in the case (e) the formula (2.12) can
be proved. 2

3. Inverse nodal problem
Let

y (x, s) = {yj (x, s)}j=1,ν , yj (x, s) = Djφj(x, s), (3.1)

where Dj , j = 1, ν are constants depending on s , then the function y (x, s) satisfies (1.1) and (1.3). In this we

denote sn = s
(2)
n . It follows from (2.9) that

sn =
nπ + θ

ℓ
+

M(ν, p)

nπ + θ
+O

(
1

n2

)
, (3.2)

where

M(ν, p) =
p

ν2 − p2

ν−p∑
j=1

ηj

+

[
(p− 1)(ν − p)

2pν
+

ν2 − p(p− 1)

2ν(ν + p)

] ν∑
j=ν−p+1

ηj

 . (3.3)
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Using asymptotics formulas (2.1) and (3.2), we obtain as |n| → +∞, uniformly in x ∈ [0, ℓj ] ,

φj(x, sn) = cos snx+Aj (x)
sin snx

sn
+ o

(
1

n

)
, j = 1, ν, (3.4)

where

Aj (x) = 2hj −M(ν, p)x+

x∫
0

qj (t) dt. (3.5)

Fix j = 1, ν and assume that xk
nj are the zeros (i.e. nodal points) of the functions φj(x, sn). Taking

(3.4) into account, from equation φj(x, sn) = 0, we obtain the following asymptotic formula, uniform in j , for
the zeros i.e. nodal points as |n| → +∞

xi
nj =

(
i− 1

2

)
π

sn
+

Aj

(
xi
nj

)
s2n

+ o

(
1

n2

)
, i ∈ Z. (3.6)

From (3.2) we have

1

sn
=

ℓ

nπ + θ
− ℓ2M(ν, p)

(nπ + θ)
3 + o

(
1

n3

)
. (3.7)

Putting (3.7) into (3.6), we obtain the following asymptotical formulas for nodes (i.e. nodal points) as
|n| → +∞ uniformly in i ∈ Z :

xi
nj =

(
i− 1

2

)
πℓ

nπ + θ
+

ℓ2Aj

(
xi
nj

)
(nπ + θ)

2 −
(
i− 1

2

)
πℓ2M(ν, p)

(nπ + θ)
3 + o

(
1

n3

)
. (3.8)

Fix j = 1, ν − p. It is easy to see from (3.8) that there exists N1 ∈ N such that for all |n| > N1 the
function φj(x, sn) has exactly |n| (simple) zeros in the interval (0, ℓ) , namely,

0 < x1
nj < x2

nj < ... < xn
nj < ℓ for n > 0,

0 < x0
nj < x−1

nj < ... < xn+1
nj < ℓ for n < 0.

Analogously, for the fix j = ν − p+ 1, ν there exists N2 ∈ N such that for all |n| > N2 the function
φj(x, sn) has exactly 2 |n| (simple) nodes in the interval (0, 2ℓ) , i.e.

0 < x1
nj < x2

nj < ... < x2n
nj < 2ℓ for n > 0,

0 < x0
nj < x−1

nj < ... < x2n+1
nj < 2ℓ for n < 0.

The sets

Xj =
{
xi
nj : n > N1, i = 1, n

}∪{
xi
nj : n < −N1, i = 0, n+ 1

}
, j = 1, ν − p
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and

Xj =
{
xi
nj : n > N2, i = 1, 2n

}∪{
xi
nj : n < −N2, i = 0, 2n+ 1

}
, j = ν − p+ 1, υ

are called nodes sets on the ej
(
j = 1, ν − p

)
and ej

(
j = ν − p+ 1, ν

)
, respectively. Clearly, the set Xj is dense

in (0, ℓj) for j = 1, ν.

Theorem 3.1 Fix j = 1, ν and x ∈ [0, ℓj ] suppose that
{
xi
nj

}
⊂ Xj are chosen such that lim

|n|→+∞
xi
nj = x .

Then there exists a finite limit

gj (x) := lim
|n|→+∞

(
xi
nj −

(
i− 1

2

)
πℓ

nπ + θ

)
(nπ + θ)

2

ℓ2
, (3.9)

and
gj (x) = Aj (x)− πM (ν, p)x, (3.10)

where Aj (x) and M (ν, p) are defined by (2.3) and (3.3), respectively.

Proof If we use the asymptotical formula (3.8), we get that(
xi
nj −

(
i− 1

2

)
πℓ

nπ + θ

)
(nπ + θ)

2

ℓ2
= Aj

(
xi
nj

)
−
(
i− 1

2

)
πM (ν, p)

nπ + θ
+ o(1). (3.11)

Since,

lim
|n|→+∞

xi
nj = x, lim

|n|→+∞

(
i− 1

2

)
πℓ

nπ + θ
= x

and
lim

|n|→+∞
Aj

(
xi
nj

)
= Aj (x) ,

from this and (3.11), we conclude that as |n| → +∞ the limit of left hand side of (3.11) exist, and (3.10) holds.
Theorem 3.1 is proved. 2

Let us now state a uniqueness theorem and present a constractive prosedure for solving the inverse nodal
problem.

Theorem 3.2 Let X0
j ⊂ Xj be a subset of nodes which is dense (0, ℓj) for j = 1, ν . Then, the specification

of
ν∪

j=1

X0
j uniquely determines the potential qj (x) − ⟨q⟩ a.e. on (0, ℓj) and the coefficients hj ,j = 1, ν of

the boundary conditions. The potentials qj (x) − ⟨q⟩ and the numbers hj can be constructed via the following
algorithm:

1. For j = 1, ν , and each x ∈ [0, ℓj ] , we choose a sequence
{
xi
nj

}
⊂ X0

j such that lim
|n|→+∞

xi
nj = x :
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2. From (3.9), we find the function gj (x) and calculate values for gj (x) at x = 0, i.e.

hj = gj (0) , j = 1, υ. (3.12)

3. The functions qj (x) can be determined as

qj (x)− ⟨q⟩ = 2g′j (x) +
πp

ν2 − p2

ν−p∑
j=1

hj+ (3.13)

+
π

2

[
(p− 1) (ν − p)

pν
+

ν2 − p(p− 1)

ν (ν + p)

] ν∑
j=ν−p+1

hj ,

where

⟨q⟩ := πp

ν2 − p2

ν−p∑
j=1

ℓ∫
0

qj(t)dt+

+
π

2

[
(p− 1) (ν − p)

pν
+

ν2 − p(p− 1)

ν (ν + p)

] ν∑
j=ν−p+1

2ℓ∫
0

qj(t)dt.

Proof Formulas (3.12) and (3.13) can be derived from (3.10) step by step. We obtain the following
reconstruction prosedure:

i) Taking value for gj(x) at x = 0 , then it yields hj = gj (0) , j = 1, ν.

ii) After hj are reconstructed, on takes derivatives of the function gj(x) we have (3.13). 2

4. Example

Let graph G with vertex set V = {υ0, υ1, υ2} and edge set E = {e1, e2} , where υ1, υ2 are the boundary
vertices, υ0 is the interior vertex and ej = [υj , υ0] for j = 1, 2. We suppose that the length of edge e1, e2 ∈ E

is equal to ℓ1 and ℓ2 (ℓ1 ̸= ℓ2) respectively. In this case,

∆0 (s) = −s sin s(ℓ1 + ℓ2).

From here,

s0n =
πn

ℓ1 + ℓ2
, n ∈ Z.

Next, it follows from Equation (2.5) that,

∆(s) = −s sin s(ℓ1 + ℓ2) + (A1 +A2) cos s (ℓ1 + ℓ2) + o(1).

From ∆(s) = 0, we have

sn =
πn

ℓ1 + ℓ2
+

(A1 +A2) (ℓ1 + ℓ2)

nπ
+O

(
1

n2

)
.
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Fix j = 1, 2 and assume that xk
nj are the zeros of the functions φj (x, sn) . Taking (3.4) in to account,

from equation φj (x, sn) = 0, we obtain the following asymptotic formula, uniform in j , for the zeros as
|n| → +∞

xk
nj =

(
k − 1

2

)
(ℓ1 + ℓ2)

n
+

Aj

(
xk
nj

)
(ℓ1 + ℓ2)

2

n2π2
−

−
(
k − 1

2

)
(ℓ1 + ℓ2)

2 (A1 +A2)

n3π2
+ o

(
1

n2

)
.

Denote

gj (x) := lim
|n|→+∞

(
xk
nj −

(
k − 1

2

)
(ℓ1 + ℓ2)

n

)
n2π2

(ℓ1 + ℓ2)2
.

then

gj (x) = Aj (x)−
(A1 +A2)x

(ℓ1 + ℓ2)
. (4.1)

1. For j = 1, 2, and each x ∈ [0, ℓj ] , we choose a sequence
{
xk
nj

}
⊂ X0

j such that

lim
|n|→+∞

xk
nj = x;

2. From (4.1), we find the function gj (x) and calculata values for gj (x) at x = 0, i.e.

hj = gj (0) , j = 1, 2.

3. The functions qj (x) can be determined as

qj (x)− ⟨q⟩ = 2g
′

j (x) +
2 (h1 + h2)

(ℓ1 + ℓ2)
, j = 1, 2,

where

⟨q⟩ = 1

(ℓ1 + ℓ2)

 ℓ1∫
0

q1 (t) dt+

ℓ2∫
0

q2 (t) dt

 .
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