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Abstract: Let {gi;(x)};j=1 and {Li;(z)}7,;=1 be the sets of all coefficients of the first and second fundamental

forms of a hypersurface = in R™"'. For a connected open subset U C R™ and a C*°-mapping = : U — R"!
the hypersurface z is said to be d-nondegenerate, where d € {1,2,...n}, if Lga(z) # 0 for all w € U. Let
M(n) ={F : R® — R" | Fx = gz +b, g € O(n), b € R"}, where O(n) is the group of all real orthogonal
n X m-matrices, and SM(n) = {F € M(n) | g € SO(n)}, where SO(n) = {g € O(n) | det(g) = 1}. In the present
paper, it is proved that the set {g:;j(z), Laj(x),%,7 =1,2,...,n} is a complete system of a SM(n + 1)-invariants of a

d-non-degenerate hypersurface in R™"*. A similar result has obtained for the group M(n + 1).

Key words: Hypersurface, Bonnet’s theorem, differential invariant

1. Introduction

Let R be the field of real numbers, n > 1 a natural number and U a connected open subset of R™. In
what follows, a C°°-mapping = : U — R"™! will be called a parametric U -hypersurface (hypersurface, for
short) in R"*1. Let g(z) = szzl 9ij(z)du;du; and L(z) = szzl L;j(z)du;du; be the first and second
fundamental forms of a hypersurface z(u) = x(u1,ug,...,u,). The hypersurface z is said to be regular if

0y = det ||g”(:c(u))||?J:1 # 0 for all uw € Uj; let Hyeq(n) be the set of regular hypersurfaces in R"*1. The

hypersurface z is said to be d-nondegenerate, where d € {1,2,...n}, if Lgg(z) # 0 for all v € U. Every
d-nondegenerate hypersurface is regular for all d € {1,2,...n}, see Proposition 3.39 below.

Let M(n) ={F : R® — R" | Fx = gz +b, g € O(n), b € R"}, where O(n) is the group of all real
orthogonal n x n-matrices, and SM(n) = {F € M(n) | g € SO(n)}, where SO(n) = {g € O(n) | det(g) = 1}.

Let N be the set of all non-negative integers and
T={G,j/)E NxN|1<i<j<n}.
By Bonnet’s theorem ([2], p.49; [13], p.151, [11], p.71), if z(u) and y(u) are regular hypersurfaces such that
9ij(2)(uw) = gi5(y)(w) and Lij(x)(u) = Li;(y)(u)

for all (i,7) € T and u € U then there exists an F' € SM(n + 1) such that y(u) = Fa(u) for all u e U.
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Bonnet’s theorem is local; below we prove the following global Theorem 4.6: For d € {1,2,...n}
fized, let x(u),y(u) be d-nondegenerate U -hypersurfaces in R™' such that equalities g;j(x) = g;j(y) and
Lys(z) = Las(y) hold for all i,j,s such that 1 < i,j,s <n, i <j and uw € U. Then there exist the unique
g€ SO(n+1) and b e R such that y = gx +b.

Remark 1.1 The number of elements in the complete system in Theorem 4.6 is %n(n + 1) + n, whereas the

number of elements in the complete system in Bonnet’s theorem is n(n+1).

It is well-known that the coefficients of the first and second fundamental forms are not independent and
their relations are subject to the Gauss-Codacci equations. Therefore the following problem is natural (see [3],
p.21): Let x,y € Hreg(n). Is there a proper subset Th of T such that equalities g;;(x)(u) = gi5(y)(uw) and
Lij(x)(u) = Li;j(y)(u) forall (i,7) € Th and € U imply existence of an F' € SM(n+1) such that y(u) = Fx(u)
for all w € U? If the answer is negative the system {g;;,L;; | (¢,7) € T} is called a minimal complete system
of SM(n + 1) -invariants.

In this paper we also give other complete systems of G-invariants of d-nondegenerate hypersurfaces for
G = SM(n + 1) and complete systems of G-invariants of d-nondegenerate hypersurfaces for G = M(n + 1).
Still other complete systems of invariants of hypersurfaces are investigated in works [1]; [3], p.21; [11]. If n =2
and parameters u; = k; for ¢ = 1,2 are principal curvatures of x, then there exists a complete system of
differential invariants of a hypersurface x(uq,u2) with 4 elements (see [1], p.39). Lemma 15.6 in [5], p.347,
implies that the system of all coefficients of the first fundamental form of the hypersurface is not complete.

The paper is organized as follows. In Section 2, we give evident forms of coefficients L;; of the second
fundamental form L of the regular hypersurface in R"*1 (Corollary 2.5); this is used later on.

Let G = SM(n+1) or G = M(n+1). In Section 3, we give the definition of the differential field
R < x >@ of all G-invariant differential rational functions of the hypersurface x and the definition of the
differential algebra R {x7 A;l }G of all G-invariant differential polynomial functions of the hypersurface « and

. 1 . n+1 _ . _ O _ . _ Oz — — 9z
the function A; ", where Ay := det ||(yi,zj)||i7j:1, and Y1 =21 = 5.5 s Yn = 20 = Foyo ) Yntl = Zng1 = 0a -

In Theorems 3.5-3.40, we obtain descriptions of some generating systems of the differential field

R < 2 >% and the differential algebra R {x, A;l}G. These generating systems of G-invariants are useful for
a description of complete systems of G-invariants of a hypersurface.

In Section 4, we obtain complete systems of G-invariant differential rational functions of the d-nonde-
generate hypersurface for groups G = SM(n + 1) and M(n+ 1), see Theorems 4.2—4.6.

Formulations of theorems and proofs of results in Section 3 and Section 4 are given for the case d = 1:
for d € {2,...,n} they are similar. In what follows, n > 1. The case n = 1 is easily considered. Proofs that
directly follow from definitions are omitted.

The results of the present paper give rise to the following problems:

(1) Which of the systems Eq.(4.1), Eq.(4.3), Eq.(4.4) is a minimal complete system?

(2) Describe a complete system of relations between the elements of every complete system of Eq.(4.1),
Eq.(4.3), Eq.(4.4).
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2. Coefficients of the second fundamental form of a given regular hypersurface

Let (x,y) = o1y1 +++ + Tpi1Ynt1 be the inner product of two vectors in R"T1. Denote by det Gr(ay, ..., a,)

the determinant of the Gram matrix ||(ag,a;)| ,—; of the vectors a; € R"™'. Let {e1,e2,...,6441}, where

e1 = (1,0,...,0,0),...,6441 = (0,0,...,0,1), be an orthonormal basis in R"*!; let {a1,az,...,a,} be a

set of vectors in R""'. We consider a; = (aij,azj,... ,anJrLj)T and ¢ = {ey,... 75n+1}—r, where T is
the transposition operation, as column-vectors. Set Py := det|lajll,—y  x 1511 ny1je10..n a0d Ap =
(71)1+kpk for k = 1, 2, o5 n + 1. Let [Ealag AP an] = A1€1 + AQEQ —+ -+ An+1€n+1 € Rn+1 .
Proposition 2.1 We have

([earaz . ..ay], [earas ... ay)) = det Gr(ay,ag, . .., ap). (2.1)

Remark 2.2 For n =2, the equality Fq.(2.1) follows from the Extended Lagrange Identity (see [6], p. 148).

For any set of vectors {b,ay,as,...,a,} in R"*! denote [bajas...a,] = det||bajas...a,].

Proposition 2.3 Let {a1,as,...,a,} be a set of linearly independent vectors in R"T'. Then the vector

leaias...an]

1s a unit vector and
\/det Gr(ai,az,...,an)

n =

(earaz...an],a;) =0
forall j=1,2,...,n.

Proof. Since the vectors {aj,as,...,a,} are linearly independent, we obtain det Gr(a1,as,...,a,) # 0.
Hence, by Proposition 2.1, @ is a unit vector. The equality ([caiaz...a,],a;) = [aja1az...a,] is obvious.

Since |laja1az . ..ay| has two equal columns, [ajaias...a,] =0. O

Proposition 2.4 For any set {ai,...,a,} of linearly independent vectors in R"*1 and b € R"*!, we have

— o [baiasz...an]
(TL, b) o \/det Gr(ai,az,...,an) ’

Corollary 2.5 Let x(uy,us,...,u,) be a reqular hypersurface in R"*1. Then the coefficients of the second

Sfundamental form of x are

8%z Or Ox oxr | —

1
Lii(z) = |22 9 9% 9T 152 i=1,2,....n. 2.2
i(@) Ou;O0uj Our Oug Ouy, for any i, j " (2:2)

Proof. It follows from the definition of the coefficients L;;(x) = (7 2°z_) (see [2], p. 32]) and Proposition

? OuLuJ
24. 0

Remark 2.6 For n =2, Eq.(2.2) is known ([12], p. 80). For hypersurfaces given explicitly x = x(uy, ..., uy,),
where n > 2, Fq.(2.2) is given in ([2], p. 36).
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3. Generating systems of some differential algebras of G-invariant differential rational functions

of the nondegenerate hypersurface for groups G =M(n+1) and G = SM(n+1)

Below we use some notions and notation from the differential algebra, see [7-10].

Definition 3.1 (See [7, 10]) Let x(u) = z(uy, ua, - .., u,) be a U-hypersurface in R"*1. For any m; € N and
1=1,2,...,n, we set
8wz1+m2+~-'+mnx

(0,0,...,0) _ (m1,ma,...,my) __
X’ =X X = .
’ ou ug™? -+ Qup'™

Any polynomial p(z, z(1:0:::0,0) 4(0,1,...,0,0) ,x(ml’mz“"’m"*hm")) of x and a finite number of partial deriva-

tives of x with coefficients in R is called a differential polynomial of x and briefly denoted by p{x}.

The set of all differential polynomials of x will be denoted by R{x}. It is a differential R-algebra with

respect to the derivations 6%17 6%2’ ceey 8% . This differential R-algebra is also an integral domain. The quotient
field of it will be denoted by R < x >. It is a differential field with respect to the derivations %, ai’ ceey 81.
1 u2 Un

An element h of R < x > will be called a differential rational function of x and denoted by h < x >.

Let 2 = z(u),y = y(u),...2z = z(u) be a finite number of U-hypersurfaces in R"*! and fi, fa,..., fm €
R < x,y,...,z >. A differential polynomial of x,y,...z, f1, fa,..., fm is similarly defined; and hence it
will be denoted by p{z,y,...,2, f1,...,fm}. The differential R-algebra of all differential polynomials of
Ty Yy 2y f1,.-., fm is denoted by R{z,y,...z, f1,...,[m}. The differential field of all differential rational
functions of x,y, ...z, f1, fo,--., fm is denoted by R < x,y,...2, f1,---, fm >.

Clearly, the set Fx(u) is a U-hypersurface in R"*! for any U-hypersurface x(u) in R"*! and F €
M(n+1).

Definition 3.2 A differential rational function h < x,y,...,z, f1,-.., fm > will be called G -invariant, where
G is a subgroup of M(n+ 1), if for all g € G we have

h <gx,gy,...,92,f1 < gx,9Y,...,92 >, ...\ fm < gT,9Y,...,92 >>=
h<z,y,...,2,[1<T,yYye.., 2>, fn <T,Y,...,2>>.

The set of all G-invariant differential rational functions of hypersurfaces
z,y, ...,z and functions fq,..., f,, will be denoted by

G
R<xz,y,....2, f1, ooy frn >

It is a differential subfield of R < z,y,...,2, f1,..., fm >. The set of all G-invariant differential polynomial
functions of x,y,...,z and f1,..., f;m will be denoted by R{x,y,...,z, f1,..., fm}G. It is a differential subalge-
bra of the differential algebra R{z,v,...,2, f1,- .., fm} and the differential field R < z,y,..., 2, f1,.--, fm >©.

Definition 3.3 Let K be a differential subfield of R < z,y,...,z >. A subset S of K is a generating system
of the differential field K if the smallest differential subfield of it containing S is K.

Definition 3.4 Let fi,...,fm € R<x,y,...,2> and K be a differential R-subalgebra of
R{z,y,...,z,f1,.- .y fm}. A subset S of K will be called a generating system of the differential algebra K if

the smallest differential subalgebra of it containing S is K.
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Let R{a@A;l}G be the differential algebra of all G-invariant differential polynomial functions of a
hypersurface z and the function A;'. We note that (z(mm2:mn) g(Prpz:Pu)) are M(n + 1)-invariant

functions. Hence functions Ay and A;' are M(n + 1)-invariant. In what follows, A := A;; we investigate

properties of the differential algebra R {1’, Agl}G for d = 1; the other d being similar.

Theorem 3.5 The set of elements

or Oz 0%r 0%z
— == 1<i<j<n; AL (=5, —— 1<r<n, 3.1
<8ui 6uj> for lsisjsn <8u% 8u18ur> for 1srs<n (3:-1)
. . . . _1\ M(n+1)
is a generating system of the differential algebra R {x, A } .
Proof. Let R{ T ..,E?T””,A_l} be the differential algebra of all differential polynomial functions
. G
of 6(?51 RN au , A" and R { Su ...,ng, A‘l} be the differential algebra of all G-invariant differential
polynomial functions of 6?5 e 22 AT
_11M(n+1) - F) oz _ O(n+1)
Lemma 3.6 R{x7A 1} _R{Tiv"wauwn’ 1} .

Proof. Tt is similar to the proof of Lemma 1 in [8]. O

Lemma 3.7 The set of elements

{(x(ml"“’m"),x(pl""’p”)) \ Zmi > I,Zpi >1,m;,p; € N} (3.2)

i=1 i=1
O(n+1)
is a generating system of the differential algebra R{au ey a‘af } .

Proof. Tt is similar to the proof of Lemma 3 in [8]. O

Lemma 3.8 The set
{(l-(mlv"ymn)7x(plv")p'r:.))’A71 | Z?:l m; > 1’2?:1]% >1,m;,p; € N}

oz —1}O(n+1).

Y Quy )

s a generating system of the differential algebra R{au -
9 A Lo n{ s )
Proof. Let f € R{au1 ..,W“i,A’ } . Then f can be written in the form f = — 15—,

where h{au ,...,Bu }ER{BM ...,597”} and m € N. Let g € O(n+1). Since f is O(n + 1)-invariant,

oen) | oar)
we have { f’uAl(!;; } {812(90)73”"} Since A(x) is M(n 4+ 1)-invariant, we have h{ (u$)7 e aa(ﬂf)} =

Jur’ " Duy Juy Dug’ o Du. Now Lemma 3.7 implies

O(n+1)
h{@... }forallgEO(n—i—l) thatlsheR{d"C Lz ..@} .

Lemma 3.8. O
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Let V := {( Ox 8“") for 1<i<j<m (621 0%« ) for 1<r< n} and R{V} be the differential

Ou;? Ouy Ou?’ Ou1du,

generated by V. Denote by R{V, A‘l} the differential R-

O(n+1)
R-subalgebra of R{aa—;l, . ;fn , A‘l}

subalgebra, of

generated by elements of V' and the function A=!. According to Lemma 3.6 and

O(n+1)
) d -1
R{Z=,. . 2= a1}
Lemma 3.8, for a proof of our theorem, it is enough to prove that (z(™1:m2:mn) g(P1p2,pn)) € R {V, A_l}

for all m;,p; € N such that my +mo+---+my, >1and py +p2+---+pp > 1.

Let Vp := {(gfi7 6657) | 3,7 such that 1<i<j< n}, and R{V;} be the differential R-subalgebra of

O(n+1)
} ! generated by elements of Vj. Since Vj C V, it follows that R{Vp} C R{V}.

ox ox -1
R{z,. .. 2=.A

Lemma 3.9 We have (8325’% , g—fl) € R{W} forall i,j,l € {1,2,...,n}.

Proof. For all i,5 € {1,...,n}, we have a% ((,zfi, 5’;) =2 (%{fuw g—;). This equality implies that

(6325”%, gji) € R{Vp} for all 4,5 such that 1 < ¢,5 < n. Using the fact that (6325”%,8%) € R{Vp} and

the equality a%i(aai, 8857) = (882251,, ngj) + (gfi, 83252],), we obtain (giu?, g—é) € R{V,} for all i,j such that

1<4i,j <n. Assume that i # j,i # 1,5 # 1. We have
i ox @ B 0%z @ . oxr 0%z
8Uj 8UZ ’ (“)ul o 8ui8uj ’ aul 8uz ’ auj(‘?ul ’

0 (0w Ox) _( &x Ov) (Ov O (3.3)
Ou; \Ou;’ Ou; ) \ Qu;ou;’ Ou du;’ u;0uy )’ '
0 (00 De\_( OPr ox\ (00 O
8’1]4 8uz ’ 8’LLJ' o 8ui8ul ’ 8uj 8uz ’ 8uj8ul ’

8 (Bx Bz N\ _ o (0x Bx\ _ 8 (dx Oz \ _ 8%z Oz N\ _ Px  dx\ _
PUt 87’117(61‘2’87’:) - b17 aul(a'u;i’T’ug:l) - bQ, 377”(8’377377;2) - bg, (6u15u77877z) - U}l, (8’u,_7'gul’a1i;) - 'I.UQ,

_|_

(81??gul , 8‘%_) = wsz. Then the system Eq.(3.2) takes the following form

wy + we = by, wy + ws =by, wo+ w3 = bs.

As the system of equations for wi,ws, w3 this system has the unique solution (wi,ws,ws), where wy; =

%(bl"’bQ—bg) ER{V@},wQZ %(b1+b3—b2) GR{VQ},wg = %(b2+b3—b1) GR{VO}. O

Lemma 3.10 A € R{V}.

Proof. By the definition of A, we have A = det ||(y;, zj)||?j:11, see Introduction. The definition of V'
. . .. 2 2 .
implies that (y;,z;) = (gfi, 8‘%) eV forall 1 <4i,j <n and (Yni1,2n+1) = (g—u%”,g—u%”) eV.Fori=n+1

8%z 3z) (82z oz

andany 1 <j<mnorj=n+1andany 1 <i<mn, we have (y;,2;) = (BT‘;” B Gut 5u) s Tespectively.

By Lemma 3.9, (22, 22) ¢ R{V} forall 1 <i<n. Hence A € R{V}. O
1 i
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Let det Gr(y1,...,Ymi21,---,2m) = det|[(yi, 2;)|[{=1, where y1,...,ym € R and z,...,2, €
R1,

Lemma 3.11 ([14], p. 75) For all vectors y1,Ya, .-, Ynt2, 21522, - - - » Znt2 in R"T1 we have

det Gr(y1, .- Ynt2; 215 - - -y Znt2) = det ||(y1,zj)|\2j:21 =0.

Lemma 3.12 Let (m1,ma,...,m,) € N* and (p1,p2,...,pn) € N™ be n-tuples such that
n 82 rren i -
Siime > 130 pi > 1 (b)) (aeern), 28) € R{V,AT

and for any i such that 1 < i <n we have

Then (w(mlam%---;mn),m(?lap%--wpn)) € R{‘/’ A_l} .

Proof. Applying Lemma 3.11 to vectors

oz Oz 0%z
=z :7’~~~7 = Z :7, = Z :7’
Y1 1 duy Yn " Bu, Yn+1 n+1 au%
Ynio = x(ﬂn,.--,mn)’ Zngo = 2(P155Pn)
we obtain the equality det A = 0, where A = ||(y;, zj)H:l;rjl Denote by D,,o|; the cofactor of the element

(Yn+2, z;) of the matrix A, where j =1,2,...,n+ 2. The equality det A =0 implies that

(Un+2,21) Dpgapn + -+ + Ynt2s Znt1) Dngopns1 + Unt2, Zny2) Dngajng2 = 0. (3.4)

Since A = Dy, yojn42 # 0, Eq.(3.4) implies that

(U 2mya) = () o)) (35)

— ((Yng2,21) Dot + - + Unt2, 2ns1) Dnsopnrr) A7

By the assumptions of our lemma, (Yo, 2,11) = (x(M07m250mn) g%?) €R {V7 A‘l} and (Ynito,2i) =

(g(mamzsmn) g—i) € R{V, A‘l} for all 7 such that 1 <i <mn. We prove that D, o, € R{V7 A‘l} for all
s such that 1 <s<n-+1. We have

_ n+2+s .
Diypaps = (1) AetGr(Yiy .oy Ynt1; 21y -« s Zs—1s Zstly -« Zntbls Znt2))-

By the definition of V', we have (yn41,2n+1) € R{V} and (y;,2;) € R{V} for all ¢,j such that 1 <i,j <n.
According to Lemma 3.9, we obtain (y,41,2;) € R{V} and (yi, zn4+1) € R{V} forall ¢,j such that 1 <4,j <n.

By Lemma’s assumptions, (yi,znt2) = (%,x(m’pz"”*p")) € R{V,Afl} for all 4 such that 1 < ¢ < n and
(Yn+1, Znt2) = (%,x(’“’p"”'“’p”)) € R{V,A™'}. Hence D, o5 € R{V,A™'} forall s such that 1 <s <n+1
1

and Eq. (3.5) implies that (yn+42,2n42) € R{V,A71}. O
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Lemma 3.13 (aflgu ,af’lg’u GR{VA 1} for all 1,7 such that 1 <i,j5 <n.

Proof. By Lemma 3.9, (aulgu ’Bu L) e R{V} for all i,5 such that 1 < 4,5 < n. By the definition of

2 2 2
Vv, (ﬁ7 %) € V for all 4 such that 1 < i < n. Hence, using Lemma 3.12, we obtain (851(,;”” 7aualem ) €
i Ou? .

R{V,A™'} for all i,j such that 1 <i,j <n. O

Lemma 3.14 (811,82gu 76u )€ R{V,A™} forall i,j such that 1 <i,j <n.

Proof. For all i,j such that 1 <4,j < n, we have the following equality

i 0% 873: B B 873; . 0%z 0%z (3.6)
8u1 8u18ui’ an o (97.14%8’11,1’ E)uj aulauz ’ aulan ' ’

2

By Lemma 3.9, we have (81? Do 78u L) e R{V}, and by Lemma 3.13, we have (81?12& , aﬁgu € R{V,A71}

for all 4,5 such that 1 <4,j <n. Hence Eq.(3.6) implies that (Tgu7 Bu] € R{V,A™!} for all such i,j. O

Lemma 3.15 (giﬁ,au D ER{VA 1} for all 1,7 such that 1 <1i,j <n.

Proof. For all i,j such that 1 <4,j <n, we have

0 (P2 0\ _( 05 os\ (o o .
Ou; \Ou?’ du; ) \ Ou?du;’ du; oud’ du;ou; ) '
By Lemma 3.9, (%,%) € R{V}. By Lemma 3.14, (3,?235”“.7%) € R{V, A_l} for all 4,7 such that
1 J
1<4,7 <n. Hence Eq.(3.7) implies that (6 ”5, du 8% € R{V A~ 1} forall 1<i4,57<n. O

Lemma 3.16 For all i such that 1 < i <n, we have (g— au28u )€ R{V}.

: 2%z 9%z %z 9%zx\ _ o9(d%z _ 0% : : 2’z _ 9z
Proof. Since (6u§7 6u1) € V, the equality au (au ’aTg) Q(auf’ W) implies that (anv aufaui) €

R{V} forall 1<i<n. O

Lemma 3.17 (z(mimzmn) 22y ¢ RIV A=Y and (z(mim2-omn) 82y e R{V,A™'} for all
i 1

(my,ma,...,my) € N™ such that m; +mg +---+m, > 1.

Proof. We use induction on » =mq +mg---+m,. Let r =1. Then

(x(mlvavu’mn)

5‘) eV cR{V)

by the definition of V', and
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by Lemma 3.9. Hence our lemma holds for » = 1.

Assume that

(:c(mlammwmn) z ) *1} (:g(ml’mmwmn) i )€ R{V A~ 1}
’ 8ui ’ 8
for all 4 such that 1 <i <mn and (m1,ma,...,m,) € N™ such that m; + mso---+m, = r. Let us prove these

properties for r + 1. By the inductive hypothesis, we have

<*>{}

(3.8)
(m1,m a T 1
AL 8 ER{VA }
for all 7 such that 1 < i <n and (mi,ma,...,my,) € N™ such that m; +mg---+m, = r. By Lemma 3.9,

(ai;u]v Bul) € R{V} for all 4,5,1 € {1,...,n}, and by Lemma 3.15, (%, 8325’;,_) € R{V,A'} for all i,j

such that 1 < 4,7 < n. Hence, applymg Lemma 3.12 to differential polynomials z(™1:72:mn) and 6u Bu ,
3

(m1,ma,...,mp)

we see that (z ) e R{V A~ 1} for all 7,5 such that 1 <4,5 <n. We have

) au au
O mrmamyy 02\ _ Ozt O (mareem) 02T
Ou; (33 ’ an> N ( Ou; ’auj) + (x ’8ui8uj> ’
Since
(z(mamz,mn) %) eR{V,A™'}, (z(mamzymn) azizaxuj) eR{V,A™'},
this equality implies that (W, Bu; ) € R{V A~ 1} for all 7,7 such that 1 <14,j <n.

By the inductive hypothesis (3.8) and Lemma 3.14, (852gu_ , a‘%) €R {V, A‘l} for all 7,5 such that
10U J

1 <1i,j <n and by Lemma 3.16, (%, %) € R{V} for all i such that 1 < i <n. Hence, applying Lemma
1 1 T

3.12 to x(mumz,ma) and 5 , we see that (x(m1m2.ma) 0 5urp—) € R{V,A™'}. Since

3
03z

—1

(m1,ma,...,my) & -1 (m1,ma,...,my)
(z ,62)€R{V,A bz
Uy

the equality

0 ( omamamn) 07T Oatmi--m) (om0
€T ’ geeey Tl y =5 — y =5 + €T 1wy ,
Ou; ou? Ou; ou? Ou2u;

implies that (W, giu?) €R {V, A‘l}. Thus we have

O (mima,...;mn) 8$ Hxlmimz,...mn) 92,

1 1
G ) € VAT (P S e R{v.ATY

for all 4,5 such that 1 <4,5 <n. Lemma is proved. O
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Lemma 3.18 (z(m1m2:mn) g (P1.p2,pn)) € R{V, A’l} for all
(mi,...,mp), (P1,...,pn) € N™ such that my + -+ m, > 1, pr+--+p, > 1, and R{V,A_l} =
R{x Afl}M(nJrl)'

Proof. By Lemma 3.17 and Lemma 3.12, (m(ml’mz"“’m")7x(pl’m"“’p")) € R{V,A_l} C R{x,A‘l}M(n+l)

for all (my,ma,...,my) € N*, (p1,p2,-..,pn) € N™ such that my +mg+---+m, > 1 and py +p2+---+p, >
1. By Lemma 3.8, the system of all elements (z(™1:m2:7n) g(P1p2,-Pn))  wwhere (my,ma,...,m,) €

N™ (p1,p2,-..,pn) € N, my +mg+---+m, > 1 and p; + p2 + --- + p, > 1, is a generating system
of R{x A~ 1}M(n+1 as an R-algebra. Hence R{VA 1} R{x A~ 1} () g
The proof of Theorem 3.5 is completed. O

Theorem 3.19 The set of elements

2 2
<8x 8:5)7 where 1 <14 < j < n; <8m M), (3.9)

Ou;” Ou, Ou?’ dui0u,

where 1 < r < n, is a generating system of the differential field R < x >M®+1)

Proof. Let R < a%, a‘%, cee ;T”’ > be the differential field of all differential rational functions of
(%‘1, (%”2, cee 889” and R < c‘?;l’ 88;2 . a >G be the differential field of all G-invariant differential rational
functions of gf , a% o 8‘21 .
Lemma 3.20 R <z >M0th=pR < 9z dz = 0r 0(ntl),

Buy’ Ouz’ ? Ounp

Proof. Tt is similar to the proof of Lemma 1 in [8]. O

Lemma 3.21 Let f € R < 2= 0z 0z S0(tl)  Then there exist O(n + 1)-invariant differential

Ouy? Ousg’ ? Oun

polynomials f1, fo such that f = f1/fa.

Proof. Tt is similar to the proof of Proposition 1 in ([4], p.7). O

Lemma 3.22 The set

{(x(m1,~~7mn)7x(pl,...,pn)) | ZmZ > 1, Zpi >1, mg,pi € N}
=1 i=1

is a generating system of the differential field R < au fo, 22 S0MA)

S Duy,

Proof. 1t is similar to the proof of Lemma 3 in [8]. O
Let V be the system (3.9). By Lemma 3.10, A € R{V} C R <V >. Hence

a% 8CE >o(n+1) )

1 —
R{V,A™ }CR<V>CR<8u1 B
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Lemma 3.18 and Lemma 3.22 imply R <V >= R < 8851""’8671 >0+ 50 R <V >= R < z >Mr+1),
The proof of Theorem 3.19 is completed. O
For any set of vectors {a1,as,...,ant1} in R™", where the vector a; = ((le,agj,...,(ln+1j)T is a
column-vector, let [ajas...an+1] := det ||a”||?j:11 For any hypersurface x(u) in R"!, consider
|:x(m117m127"' 7m1n) .. x(mn+1,l;mn+1,27”' amn+l,n)
and set § = 0, := det Gr(y1,. -, Yn; 21, -, 2n), Where y; = 21 = %7112 =29 = 8‘3—;”2,-~- JYn = Zp = aau””n .

Theorem 3.23 The set of elements

Oz v for1<i<j<m &827% for 2 < s < mj;
Ou;” Ou, =t=J= ou?’ duydus - (3.10)
3.10
5o A [00 00 oa o
’ " |Ouy Ous  Ou,  Oud
is a generating system of the differential algebra R {x, o1, A‘l}SM("+1).
Proof.
Lemma 3.24 We have
Ox Ox SO(n+1)
R{z,5- 1, A" }MOHD o 28I 51 A .
{xa ) } 8U1’ aOUna )
Proof. 1t is similar to the proof of Lemma 1 in [8]. O
Lemma 3.25 The set of elements
7L AT [glmanman) p(mars s man) g (Mngan, s mnan)
(3.11)

(x(m,m,pn), plan vqn))

)

where mj1 + -+ 4+miym > 1, pr+--4+pn =1, 1+ +q, > 1, is a generating system of the differential

algebra R{@ R S AN

Ouy? ? Ounp

Proof. Let R[z(m1mz5mn) my 4my +- - +m,, > 1]59"+1) he the R-algebra of all SO(n + 1)-invariant
polynomials of all x("1:™2:mn) swhere my + my + --- +m, > 1. By the First Main Theorem for SO(n + 1)
(see [14], p.45), the system

[x(m117m127“' 7m1n)x(m217m22,'“ sMan) || $(mn+117mn+12;”' M4 1)

(x(phva-“:pn)’ PACERCRE ,qn))7
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where my; + myas + -+ mip > Lpr+p2+ - +pn > L1 +q+ -+ qn > 1, is a generating system of

R[a:(ml’m2"“’m"), mi+mo+--+my > 1]50("+1). This implies, as in Lemma 3.8, that the system Eq.(3.11) is

1}S]VI(7L+1) .

a generating system of R {x, AN ]

Denote by Z the set of elements
@@ for 1<i<j<m;
du;” Ou, =t=J=m
P o
Out’ Ouydus

[83: Ox Ox 8295}

Ouy duzy Dy, Oul

> for 2 <s<m;

Then the system (3.10) has the form {Z,67!,A='}. Let R{Z} be the differential subalgebra of

SO(n+1)
R{g—fl, ey aifL,é_l,A_l} generated by the system Z. Denote by R{Z, (5_1,A_1} the differential
R-subalgebra of the differential algebra R < g—;l, . 8871 >90M+1) generated by the system {Z,671, A1},

Lemma 3.26 § € R{Z}.

Proof. Since (y;,2;) = (675 oz ) € Z forall 1 <i,j<n, weseethat 6 € R{Z}. O

Bui ) Bu]-

Lemma 3.27 ([1/], p.53) The equality

W1 ynallzr - znga] = det ]| (i, 2) 11772

holds for all vectors y1,...,Ynt1, 215+ -+ 2n+1 N R,

Lemma 3.28 A € R{Z}.

oz 0. _ 0

Proof. Applying Lemma 3.27 to vectors y; = z1 = Duyr o Yn = En = Wzn;yn-i-l = Zntl = 67?, we
obtain
00 O 05 Oz, = A (312)
- — ...— — | =de iy Zi)ll; ., = A. .
6’&1 8uQ Bun 81@ Yir % =1

Since [@ bz .. Oz 829”] € Z,wehave A€ R{Z}. O

duy  Ouz  Ouy Ou?

By Lemma 3.24 and Lemma 3.25, to prove Theorem 3.23 it suffices to prove that
|:x(m117... sMin) | . x(mn+11,-<. ,mn+1n)] cR {Z7 (5—17 A_l} ,
(m(m,n.,pn),x(ql,m,qn)> c R{Z,(S_l,A_l}

for all myj,pi,q; € N such that my +mep +---+mp > Lpr+p2+ - +pp > 1L, 1+ g+ +q, > 1.
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Lemma 3.29 (g%,g%) € R{Z75*1} and V C R{Z,(S’l}, where V' is the system used in the proof of
1 1

Theorem 3.5.
Proof. Denote by D,,41);, where j =1,2,...,n+ 1, the cofactor of the element (y,1,2;) of the matrix
| (yi, z])||?j:11 in Eq.(3.12). Then Eq.(3.12) implies the equality
A = (Ynt1,21) Dngapn + -+ Unt 1, 20) Dngapn + (Ynt1s 2041) Dy it (3.13)
Since 0 = Dy q1jnt1 # 0, Eq.(3.13) implies that

0%z 0%z
(yn+1,zn+1) = 57%; ('Tu%

= A5 - (yn+1azl)Dn+l|1571 — = (yn+172n)Dn+1\n571~

(3.14)

Since Vo C Z, by Lemma 3.9, (yny1,%;) = (& Dz ¢ R{Vo} € R{Z} forall j =1,...n. We prove that

2 .
Ou?’ Ou;

Dyi1)s € R{Z} forall s=1,...n. Since
Dn+1|s = (_1)(n+1)+s det GT(Z/h ey YnyRly ey Rs—1yRs419e 0y Zn+1)7

the elements of D, have the forms (y;, z;), where 4,5 < n, and (y,2,41) for £ < n. By the definition

of Z, (yi,2;) € Z C R{Z} for all i,j < n. By Lemma 3.9, for all k¥ < n we have (Y, 2nt1) = (%,%) €
1

R{Vo} C R{Z}. Hence Eq.(3.14) implies that (Ys41,2n+1) € R{Z,67'}. Since V C Z U {(yn+1,2n+1)}, we
obtain V.C R{Z,67'}. O

Lemma 3.30 We have (x(Pup2: ) grirzr)y ¢ R{Z,é_l,A_l} for all p;,r; € N such that p; + ps +
ot pp>landry+ra+ -+ > 1.

Proof. By Lemma 3.29, V. C R{Z,6~'}. This implies that R{V,A™'} C R{Z,67',A~*}. Hence, by
Lemma 3.18,
(zPrpzeepn) glrorem)y e R{Z,671, A7'} for all p;,r; € N such that p; +po + - +p, > 1 and
ri+ro+---4+r,>1. 0

Lemma 3.31 I:x(mllam127"' Man) p(M21,Ma2,Man) L g (Mng11,Mnga2, ,mn+1n)] c R {Z7 5_17 A_l} for all mi; €

N such that ms;1 +myo+---+myp>1 and i=1,2,...,n+1.

: ) 9 ) %x. —
Proof. Applying Lemma 3.27 to vectors y; = Juo¥2 = Fuo o Un = e Ynt1l = 67?7 z1 =
x(mlhlev“‘ 7m1n)’ 29 = x(m21,m22,~~ 1m2n)7 ey Zp4l = x(mn+117mn+127'“ ,mn+1n) , we obtain
_ n+1
1+ Ynsa)[21 - 2nt] = det || (g, 2) 1 (3.15)

By Eq.(3.12), A=[y; ... yn+1]2. Using this equality and Eq.(3.15), we obtain

(21 znga] = A7 yr - yna] det [ (i, 2) 1742, (3.16)
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By Lemma 3.30, (y;,2;) € R{Z,67'A~"} forall 1 <i,j <n+1. Eq.(3.16) implies, since [y; ...yn41] €
7Z C R{Z7(5—1A_1}, [21...2n41] € R{Z75_1A_1}. O

Let us finish the proof of our theorem. By Lemma 3.30,
(zPrp2o ) g (rirern)) g R{Z,(S‘l,A_l} for all p;,7; € N such that py + p2 +--- +p, > 1 and
rn+ro+---+r, >1. By Lemma 3.31,

[l mi)glmas s man) o gna o) € R {7,671, A1}

for all m;; € N such that mj; +---+m;, > 1, where  =1,2,...,n+ 1. Hence Lemma 3.24 and Lemma 3.25

imply that R{Z,67*,A™'} = R {z(u), A*I}SM(HH). The proof of Theorem 3.23 is completed. O

Theorem 3.32 The set of elements
( dr Ox

A’ du;
(22 e
Ou?’ Ouqdus
[(’9:6 oz 8233]

duy  Ou, OuF

) for1<i<j<nm;

) for 2 < s < mj (3.17)

is a generating system of the differential field R < x(u) >SM+1)
Proof.
Lemma 3.33 R < g >SM0+D= R < 0z 0z SO(n+1)

Oui’" " " Ouyp

Proof. Tt is similar to the proof of Lemma 1 in [8]. O

Lemma 3.34 Let f € R < 2% ... 02 5S0(+1)  Then there exist SO(n + 1)-invariant differential

Ouy """ Oun

polynomials f1, fo such that f = f1/fa.

Proof. Tt is similar to the proof of Proposition 1 in ([4], p. 7). O

Lemma 3.35 The set of all elements

x(mu,mlzw' 7m1n)x(m217m227"' 77ﬂ2n) - m(mn+1lanln+127"‘ 7mn+1n)]
)

(3.18)

(m(zn,pzw,pn)7 a2, )Qn)),

where My, +Mya + -+ mip > Lpr+pa+ - +pn > 1,1 +q+ -+ qn > 1, is a generating system of the

differential field R < £, ... L& >S50+,

? Ounp

Proof. Let B := R[ac(mlvm%“'vmn) | my+mo+ - +my, > 1]50("'*'1). By the First Main Theorem for
SO(n+1) (see [14], p.45), the system Eq.(3.18) is a generating system of B. Lemma 3.34 implies that Eq.(3.18)

is a generating system of R < é‘?—fl, e aaTw >50(n+1) g
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Let Z be the system Eq. (3. 17) By Lemma 3.26 and Lemma 3.28, §;A € R{Z} C R < Z >. Hence

R{Z,6" A"} CR<Z>CR<F, .. 22 >0+ Lemmas 3.30, Lemma 3.31 and Lemma 3.35 imply
that R < Z >= R < %7"'7% >50(+1) - Using Lemma 3.33, we get R < Z >= R < g >SMn+1)

Theorem 3.32 is completed. O

Theorem 3.36 The set (where i,j,s=1,...,n, 1 <i<j<mn)

2
(ax 696) 571, AL [ 0w axax...ax] (3.19)

Ou;’ Ou; Ou10ug Ouy Ous ouy,
is a generating system of the differential algebra R {3:, oY Afl}SMOHl).
Proof. Let
2
W = %,ﬂ ,781 O v O [1<i<j<mn;.
Ou; " Ouy Ouq0us Oug Ouy 8un
Denote by R{W?} the differential R-subalgebra of R < 59711 ...,% >O(+1) generated by elements of W
and by R {W AN 1} the differential R -subalgebra of R < 8u1 "waaTmn >0 +1) generated by functions

571, A7! and elements of .

Consider the set Vy = {(aa—i, 6‘%) ,1<i<j< n} from the proof of Theorem 3.5. Since Vy C W and
§€ R{Vy}, we have § € R{Vp} C R{W} and R{Vp,6 '} Cc R{W,671,A"'}.

By Lemma 3.9, (ﬂ 92 vy € R{Vy} for all 4,5,1 € {1,2,...,n}. Hence

6u¢8u_,»7 Ouy
Ou  Ov, € R{W} foralli,jle{1,2 } (3.20)
or all 4, 5, ,n}. .
3u23u3 8u g
Lemma 3.37 (%, av?fgu,;) ER{W, 07, A7} foralli=1,2,...,n
. 2
Proof. Applying Lemma 3.27 to vectors y; = 8(%7 Yo = a%, e Yp = aaTxn’ Ynil = g—u’é; 21 = 88—51, 29 =
8’9—;’;, ,zn:%, Zna1 81?1811, , we obtain

1. yntallz1 - - - 2nga] = det [[(yi, ;) ?j:ﬂ (3:21)

For j =1,2,...,n+1,let D, y); be the cofactor of the element (y,11,2;) of the matrix ||(y;, zj)H:ljl

Eq.(3.21) implies that
W1 ynsallzr - 2ng1] = Wnt1s 20) Dogapn + -+ (Ynt1, 2 1) Digajn -
This equality implies
(Yn+15 Zn4+1) Dngipnrr = (W1 -+ Yntal[21 - Zng1] = (Ynt1, 20) D — - = (Ynt1, 20) Do (3.22)
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Since D, 4141 = 6, Eq.(3.22) implies that
(Unt1>2n41) =0 (W1 - - ynta] [21 - - 2n1] = Wna1520) Dgrjt — - — Unt1s 2n) Do ajn)- (3.23)
Since [y1...Ynt+1) € R{W?} and [21...2p41]) € R{W}, we obtain
(Y1 Ynt1] [z 2na] € R{W}.

By Lemma 3.9, (yn41,2i) = (giu%”, %) € R{Vp} for all i =1,2,...n. Hence (ynt1,2i) = (giu%f, g—;) € R{W}
forall i=1,2,...,n.

We prove that D, 41s € R{W,6*,A7} forall s=1,2,...n. Since

Dn+1|s = (—1)(n+1)+s det Gr(Y1, Y2, - - Uni 215 225 -+ Zs— 15 Zs 1y -+ 5 Znt1),

elements of D,, 1, have the forms (y;, z;), where 4,7 <n, and (yx, 2n+1), where k& < n. By the definition of
W, (yi,z;) € W C R{W} for all 4,j <n. By Lemma 3.9,

oxr  O%*x
(Yks Znt1) = <M7M> € R{W} Cc R{W}

for all k <n. Hence Eq.(3.23) implies that (y,t1,2n+1) € R {VV, 51, A’l}. o
Lemma 3.37 implies that Z C R {W,é’l, Afl}, where Z is the system (3.17). By Theorem 3.23
R{Z,6-1,A7} = R{z,6-,A=11"M "V Hence
R{W,67, A"} = R{z,07 1, A1} M)

The proof of Theorem 3.36 is completed. O

Theorem 3.38 The set of elements

or Ox
8”181@' 8U1 8”2 o 5un

L 0%z Ox Ox or
,=— |, wherel <i<j<mn;
aui 8Uj

(3.24)

is a generating system of the differential field R < x >SMn+1)

2
Proof. Let W be the system Eq.(3.24). Since A = [82”” Oz Dz @} , we have A € R{W}. Hence

Ou? duy Oua """ Quy
A7l € R < W >. Since § € R{W}, we obtain that 6 € R < W >. So R{W,67L,A"'} CR<W >.
Lemma 3.37 implies that

ZCR{W,67" A"} CR<W >C R < g >5Mmtl)

In the proof of Theorem 3.32, it is proved that R < Z >= R < z >SM(®+1)  Hence, using the equality
R< Z>=R<x>%M0+D e obtain R < W >= R < z >3M®+1)  Theorem 3.38 is proved. O
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Proposition 3.39 Let d € {1,2,...,n} and = be a d-nondegenerate U -hypersurface. Then x is a regular
hypersurface and 0,(u) >0 for all u e U.

Proof. Let x be a d-nondegenerate U-hypersurface. Then Lgq(z(u)) # 0 for all w € U. This implies that

[a1(z)az(z) ... any1(x)] # 0, where a;(x) are column-vectors, a;(z) = % for 1 <i<n and apyi(x) = 22—%.
i wq
Hence the vectors a1 (z),...,an+1(x) are linearly independent for all w € U. Then ay(z),as(x),...,a,(z) are

also linearly independent. This implies that for all w € U, det||(a;(z), a;(z)) = 0,(u) # 0. In this case,

[
it is known that 0;(u) > 0. O

Let {gi;(x),Lij(x) | 3,5 =1,...,n} be the set of all coefficients of the first and second fundamental forms
of a U-hypersurface z(u) in R"*1. Assume that z(u) is a d-nondegenerate U-hypersurface in R"*1. Then

Ag # 0 for all uw € U. Hence the function Agl exists. By Proposition 3.39, 6,(u) > 0. Hence the function

6,(u)"2 exists.

Theorem 3.40 Let d € {1,2,...,n} and x(u) be a d-nondegenerate U - hypersurface in R"T'. Then the set
{gij(sc),A;l,J*%,Ld,«(a:) li,5,r=1,2,...,n; i < j}

s a generating system of the differential algebra
R{gij(2), 075074, Lig(@) | =1, omi < j}.

Proof. For d =1, let Wy := {g;;(2), L1,(x) | 4,5, 7 =1,...,n; 1 <j} and R{Wl,A_l,é_%} be the

differential R-subalgebra of
R{gis(@), 87578 Lij(@) | inj = 1, mii < 5}

generated by elements of the system W; and functions A~!,§ -3,

Using Eq.(2.2), we obtain [alizguj%(%’;... a%i} = 5—%L1j(a:) for all j = 1,...,n. Hence we have

[afguj%%“'%} € R{Wl,Afl,éfé} for all § = 1,...,n. This implies W C R{Wl,Aﬂ?é*%},

where W is the system Eq.(3.24). Hence {W,A™! 671} C R{Wl,A_l,(S_%}. By Theorem 3.36

[afgug%%a%w] e {(W,A"1 671} C R{W17A*1,5*%} forall i,j = 1,...,n. Eq.(2.2) implies that

2
Lij—5é[ 0%*x Ox Ox oz

- At 52
Ou;0u; Ouy Oug auJER{Wl’ 0 }

forall 7,5 =1,...,n. Hence
R{Wl,A_l,(S_%} = R{gij(x),A_l,é_%,Lij(x) | i,j = 1, .. .,n;i S j} B
The proof of Theorem 3.40 is completed. O
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4. Complete systems of G-invariants of hypersurfaces

Let G be any subgroup of M(n+1).

Definition 4.1 Two U -hypersurfaces x(u) and y(u) in R will be called G -equivalent if there exists F € G
such that y(u) = Fa(u) for all w € U. In this case, it will be denoted by x £ Y.

In this section, A(z) := ||la1(x)az(z) ... an+1(z)| is the matrix with column-vectors a;(x) = % for all ¢ such

2

that 1 <i<n,and a,;1(z) = Z%. Denote [a1(x)as(z) ... ans1(z)] = det A(z).

= m
Any 1-nondegenerate U-hypersurface in R"*! will be briefly called a nondegenerate U -hypersurface.

Let x be a nondegenerate U-hypersurface in R"*!. Since z is a nondegenerate hypersurface, we have

Ay = [a1(@)az(x) ... anr (2)]> £0

for all w € U. Hence [a1(z)az(z)...ant1(x)] #0 for all w € U and A(z)~! is well-defined.

Theorem 4.2 Let z(u),y(u) be nondegenerate U -hypersurfaces in R"t1.

(1) Let x M) y. Then for all i,7,s such that 1 <1,7,8 <n and for all w € U, we have
o or\_ (04 B\ (P B \_ (0% Py -
ou;" Ouj ) \Ou; Ou; ) \Ou} Ouidus)  \Oul’ Ouidug )’ '

(2). Conversely, assume that equalities FEq.(4.1) hold. Then x M) y. Moreover, the unique

g € O(n+1) and the unique b € R™*! exist such that y(u) = gx(u)+b for allu € U. Eaxplicitly: g = A(y)A(z)™?
and b=y — A(y)A(z) lz.

Proof. (1) Assume that x Mz y. The functions

Oz Oz (OPr O
Ou; Ouj )\ Oud’ Ouydus
are M (n + 1)-invariant, so equalities Eq.(4.1) hold.
(2) Assume that equalities Eq.(4.1) hold. Eq. (4.1) and Lemma 3.10 imply that Ag(u) = A, (u) for
all w € U. Since z,y are nondegenerate hypersurfaces, it follows that A (u) # 0 and Ay(u) # 0 for all

uw € U. Hence A,(u)~t = A, (u)~! for all w € U. Let V be the system used in the proof of Theorem 3.5 and
f{z} € R{V,A7"}. Then Theorem 3.5, Eq.(4.1) and the equality A,(u)™* = A,(u)~! imply that

fz(w)} = f{y(u)} forallueU. (4.2)
For any s such that 1 < s < n, we set %A—qu) = ‘ 9a1(2) das(z)  Dans1(2) Consider the matrix

R Oug Ous Oug

A(w) 7125 = ||pg; ()]

Lemma 4.3 pfj(x) € R{V,A*I} forall v,j,s such that 1 <i,7<n+1,1<s<n.
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Proof. The equality A(I)_lag‘iﬁ = pr H implies that A(z Hp” H = aA(T . Since z is a

nondegenerate hypersurface, A, (u) = (det A(z)(u))? # 0 for all uw € U. Since det A(a:)(u) # 0, the system

(x) prj {z}]| = asu(a;) of linear equations has the following solution

daj(z)

P (z) = {al(:c) . “i—l(m)Tus

1)t ()| 2(0) i )]

where i, j,s such that 1 <4¢,7 <n+4+1 and 1 < s <n. This equality implies that

daj(z)

py(z) = {al(x) .. .ai_l(I)Tus

ai+1(z) - an+1(I):| [al(x) - an_H(x)]A*l

for all 4,7, s such that 1 <4,5 <nm+1 and 1 <s <n. Using Lemma 3.27 and Theorem 3.5, it is obtained that

[al(ac) et (@) 8‘(‘;2(:”) aisn(2). .. anﬂ(x))} [a1(@) . .. ani1(@)]

is an element of R{V,A™'}. Since A~! € R{V,A™'}, it follows that pf;(x) € R{V,A~'} for all i,j,s such
that 1 <i,7<n+1land 1<s<n. 0O

Lemma 4.4 A(z(u))” 1%1&“)) = A(y(u))*%ui“)) for all s such that 1 <s<mn and u € U.

Proof. Using Eq.(4.1), Eq.(4.2) and Lemma 4.3, we have pf;(z(u)) = pj;(y(u)) for all v € U and

i,7,8 such that 1 < i,57 <n+1 and 1 < s < n. Hence the equality A(z)~ 185115@ = HpU )H implies that

A(x(u))*%uiu)) = A(y(u))_lw for all s such that 1 <s<nandueU. O
Now we complete the proof of our theorem. We have the following equality

I(A)A(x)~) _ 0A(y) 0A(z)~!

A) ™+ Aly)

8u5 N 8U3 aus
= 20 Ayt - A A 5 4w
= 40s) (4025 a2 ) g

for all s such that 1 < s < n and w € U. Using this equality and the equality in Lemma 4.4, we see that

AW A(@) )
Oug

for all s such that 1 < s <n, we see that A(y(u))A(z(u))~! does not depend on v € U. Put g = A(y)A(x)"L.
Because det A;(u) # 0 and det Ay(u) # 0 for all w € U, we have detg # 0 and A(y) = gA(x) for all u e U.

Let us prove that g € O(n+1). Lemma 3.17, Eq. (4.2) and the equality A(z)" A(z) = ||(a;(z), aj(:c))||?]+:11

imply that A(z)" A(x) = A(y) " A(y). This and the equality A(y) = gA(x) imply that g"g = I, where I is the
unit matrix. Hence g € O(n+1).

=0 for all s such that 1 < s < n. Since U is a connected open subset of R™, using this equality

The equality A,(u) = gA,(u) implies that agl(i) = gaw(u for all s such that 1 < s<n and u € U.

These equalities imply existence of a vector b € R"*! such that y(u) = gz(u) + b for all u € U.

2226



SAGIROGLU and GOZUTOK /Turk J Math

Let y(u) = Dz(u) + ¢ for certain ¢ € R"™ and D € O(n+1) and all w € U. Then ag—gj) = Dag—g:) for
all it =1,2,...,n and w € U. Using these equalities, we see that A(y(u)) = DA(xz(u)) for all u € U. Hence
D = A(y)A(z)~! = g. The uniqueness of g is proved. The equalities y(u) = Dz(u) + ¢ and D = A(y)A(z)~!
imply that ¢ =y — A(y)A(z) "'z = b. Proof of Theorem 4.2 is completed. O

Theorem 4.2 means that the system Eq.(3.9) is a complete system of M (n)-invariants on the set of all

nondegenerate U-hypersurfaces in R"+!.

Theorem 4.5 Let z(u) and y(u) be nondegenerate U -hypersurfaces in R"*'. Then

(1) Let SM(n+1) y

u € U, we have

Then for all i,7 such that 1 < 4,7 < n and s such that 2 < s < n, and any

o0 0 _ (04 0y (e Oa \_ (0%
Ou;" Ouj ) \Ou;" Ou; ) "\ ou}’ ourous ) \Ou}’ Ouidus )’
[8:1: Ox ox 5’%} B [3y Oy Oy 32y]

Jui Ous  Oun 0@2) " |ow Ous Bun 0u)

(2) Conversely, assume that equalities Fq.(4.3) hold. Then x SM{p+) Moreover, the unique
g € SO(n +1) and the unique b € R"*1 emxist such that y = gx +b. Eplicitly, we have g = A(y)A(z)™! and

b=y — A(y)A(z) .

Proof. (1) Assume that x SM D y. The functions

e or\ (0% o\ [or  or o
Ou; Ouj ) "\ Oud’ Ouidus ) | Ouy ou,  Ou?
are SM(n + 1)-invariant, so equalities Eq. (4.3) hold.

(2) Assume that equalities Eq. (4.3) hold. Let Z be the system Eq.(3.17), R{Z} be the differential
R-subalgebra in Theorem 3.23. Let

0 =0, :=det Gr(vy,va, ..., Un; 21,22, ..., 2n),

where vy = z1 = g—fl,vg = z9 = 59—12,~-~ JUp = Zp = ('?BTITL' By Lemma 3.26 and Lemma 3.28, §,,A, € R{Z}.
Hence Eq. (4.3) implies that 6, = 6,, Ay = A, forall u € U. Since x(u), y(u) are nondegenerate hypersurfaces,
we have Ay(u) # 0 and Ay(u) # 0 for all w € U. By Proposition 3.39, §;(u) > 0 and 6, (u) >0 forall u e U.

The equalities §, = §, and A, = A, for all w € U and Proposition 3.39 imply that d;! = (5;1 and
A=A forallueU. Let f{z} € R{Z,67',A™'} where R{Z,6~* A~'} is the differential algebra used
in the proof of Theorem 3.23. Then equalities §, ! = 5;1 and A = A;l and Eq.(4.3) imply f(z) = f(y) for
all uw € U. Using Lemma 3.29, Eq. (4.3) and the equality f(z) = f(y), we obtain equalities Eq. (4.1). Hence
by Theorem 4.2 there exist the unique g € O(n + 1) and b € R"*! such that y(u) = gx(u) +b for all u € U.
This equality and Eq.(4.3) imply that

dr O or 0%z oy Oy oy 0%y
Ou;  Ousg Ou,, Ouj Ou;  Ous Ou,, Ouf
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2
Since Ag(u) = [aa—fl %~-~;T”’n giuﬂ # 0 for all w € U, we see that det(g) = 1. By Theorem 4.2,
g=A(y)A(z)"! and b=y — A(y)A(x) tx. Proof of Theorem 4.5 is completed. O

Theorem 4.5 means that the system Eq. (3.17) is a complete system of SM (n)-invariants on the set of

all nondegenerate U -hypersurfaces in R"*1.

Theorem 4.6 Let d € {1,2,...,n} and x(u),y(u) be d-nondegenerate U -hypersurfaces in R" 1.

(1) Assume that x SMtD)

we have

y. Then for all i,7,s such that 1 <1i,j,s <n, where i < j, and all u € U,

9i5(x) = g5 (), Las(x) = Las(y)- (4.4)

(2) Conversely, assume that equalities Fq.(4.4) hold. Then x SMHD

g€ S0(n+1) and b € R™! exist such that y = gr +b. Here g = A(y)A(z)™! and b=y — A(y)A(x) 'z.

Moreover, the unique

Proof. (1) Assume that z SM(p+1)

1<4,5,8 <n. So equalities Eq. (4.4) hold.
(2) Assume that equalities Eq. (4.4) hold. We prove the theorem for the case d = 1. Let W; be the
set and R{W7} be the differential R-algebra defined in the proof of Theorem 3.40. Let 6 = ¢, be the function

used in the proof of Theorem 3.23. Since § = det Hgin?j:l, we have § € R{W;}. Using Eq.(2.2), we obtain

y. The functions g;;(x) and Lgs(x), are SM(n + 1)-invariant for all

A = §(L11)%. Hence A € R{W;}. Since z(u),y(u) are nondegenerate hypersurfaces, we have A, (u) # 0 and
Ay(u) # 0 for all w € U. By Proposition 3.39, §,(u) > 0 and d,(u) > 0.

Let R{Wl,éf%,Afl} be the differential algebra used in the proof of Theorem 3.40. By Theorem

3.40, Ly € R {Wl,(s_%,A_l} for all 4,7 = 1,2,...,n. Using Eq.(2.2), we obtain [agg’uj 3‘9—51(%”2 . 6‘873;} =
5L € R{Wl,cS‘%,A‘l} for all 4,5 =1,...n. This implies W C R{Wl,a—%,A—l}), where W is the set
defined in the proof of Theorem 3.36. Hence R {VV, o1, Afl} CR {I/Vl7 52 , Afl}. Lemma 3.37 implies that
Z CR {VV, 5‘1,A_1}, where Z is the system Eq.(3.17). Hence R{Z} C R{Wl,é_%,A_l}.

The equalities 6, = d, and A, = A, for all u € U imply that 0, =6, and A = A forall u e U.

Let f{z} € R{Z} C R{Wl,é_%7A_1}. Then equalities 6, ' =4,', A;' = AJ!, and Eq.(4.4) imply that

fa(w)} = f{y(w)} (4.5)

for all w € U. Since R{Z} C R{Wl,é’%,Afl}), Eq.(4.5) implies Eq.(4.3). Then, by Theorem 4.5,

x SM{p+1) y. Moreover, by Theorem 4.5, the unique g € SO(n + 1) and b € R**! exist such that y = gz + b,

namely g = A(y)A(x)~! and b=y — A(y)A(z) " 'z. Proof of Theorem 4.6 is completed. O

5. Conclusion and future work

Bonnet’s theorem is well known for regular surfaces in R*, and ensures that whenever the first and second

fundamental forms of two parametric surfaces coincide, the surfaces are related by means of a rigid motion,
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i.e. they correspond to the same object up to a change in their position. The present paper provides more
relaxed conditions to guarantee this property for nondegenerate hypersurfaces in R"t!. In particular, our
paper proves that one does not need to check that all the elements of both fundamental forms need to coincide.
In fact, under certain hypotheses of nondegeneracy of the second fundamental form, it is enough to ensure
the equality between some elements of the first and second fundamental forms, made precise in Theorem 4.6.
It is known that, from Gauss-Codazzi equations, the elements of the first and second fundamental forms are
not independent. Additionally, we showed that one does not need to assume regularity on the surface, since
regularity is a consequence of the d-nondegeneracy of the parametrization (Proposition 3.39).

Besides, the results provided in our paper enable us to present the following questions arising naturally:
1. Which of the systems Eq.(4.1), Eq.(4.3), Eq.(4.4) is a minimal complete system?

2. Can we describe a complete system of relations between the elements of every complete system of Eq. (4.1),
Eq.(4.3), Eq.(4.4)?

For future studies, we will consider the problem of devising a constructive method to identify when two
parametric surfaces or hypersurfaces are the same. In more detail, if we take a parametric (hyper)surface x(u),
and apply a change of parameters h(u), then y(u) = (zoh)(u) and z(u) define the same thing. But if h(u) is
unknown, it is not at all obvious, how to use Bonnet’s theorem or the complete system provided in the paper,

to detect that the images of x(u) and y(u) coincide.
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