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Abstract: We study the Dirichlet problem for the degenerate parabolic equation of the Kirchhoff type

ut − a
(
∥u∥pLp(Ω)

) n∑
i=1

Di

(
|u|p−2 Diu

)
+ b (x, t, u) = f (x, t) in QT = Ω× (0, T ) ,

where p ≥ 2 , T > 0 , Ω ⊂ Rn , n ≥ 2 , is a smooth bounded domain. The coefficient a(·) is real-valued function defined
on R+ and b(·, ·, τ) is a measurable function with variable nonlinearity in τ . We prove existence of weak solutions of
the considered problem under appropriate and general conditions on a and b . Sufficient conditions for uniqueness are
found and in the case f ≡ 0 the decay rates for ∥u∥L2(Ω) are obtained.
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1. Introduction
This paper is concerned with the existence, uniqueness and behavior of the solution for a nonlocal nonlinear
parabolic Dirichlet-type boundary value problem whose model example is the following: ∂u

∂t − a
(
‖u‖pLp(Ω)

) n∑
i=1

Di

(
|u|p−2

Diu
)
+ b (x, t, u) = f (x, t) ,

u (x, 0) = 0 = u0 (x) , u |ΓT
= 0

(1.1)

where p ≥ 2 and (x, t) ∈ QT := Ω × (0, T ) , T > 0, ΓT := ∂Ω× [0, T ] , Ω ⊂ Rn (n ≥ 2) is a bounded domain
with Lipschitz boundary, Di ≡ ∂/∂xi , a(·) is real-valued function defined on R+ and b : Ω× (0, T )× R→ R,

b (x, t, τ) is a function with variable nonlinearity in τ, (for example, b (x, t, τ) = b0 (x, t) |τ |α(x,t)−2
τ + b1 (x, t)).

Besides for the functions u(t) : (0, T ) 7→ Lp(Ω) we denote

‖u(t)‖pLp(Ω) = ‖u(t)‖
p
p =

∫
Ω

|u(x, t)|p dx.

Equation (1.1) is considered as the class of nonlocal evolution equations, in which the arguments of some terms
are functionals of the unknown function. Such equations are often termed the Kirchhoff type equations. This is
because an equation (of hyperbolic type) with one of the coefficients given by the Dirichlet energy integral of the
unknown function was first proposed by Kirchhoff in 1883 as a model of the transversal oscillation of a string
∗Correspondence: usert@hacettepe.edu.tr
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[24]. In this model, the change of the string length caused by oscillation was taken into account. Pohozaev
worked on some early classical studies of these Kirchhoff of type equations in [27].

There are numerous nonlocal mathematical models of Kirchhoff type studied by many authors to express
the processes in physics and engineering see, e.g., [1, 9, 11, 12, 15, 20, 35, 41] and references therein. For
example, nonlocal PDEs arise in mathematical modelling of migration of a population to describe the density
of some biological species are worked in [3, 13, 17, 21], nonlocal models obtained from combustion theory is
considered in [5, 22] and in medicine [8].

There is a series of papers devoted to answer the questions of existence, uniqueness and asymptotic
behavior of solutions of the initial and boundary-value problems for the equations

ut − a(l(u))∆u = f, ut − a(‖∇u‖2L2(Ω))∆u = f, ut − a(
∫
Ω

u dx)∆u = h

which were studied in [10–12, 14, 15, 41] with a continuous function a whose argument l(u) was a linear
continuous functional on L2(Ω) , or a continuously differentiable function a of the argument ‖∇u‖2L2(Ω) . In
these works, the equation is nondegenerate: there exist positive constants 0 < m0 ≤M0 <∞ such that

m0 ≤ a(s) ≤M0, ∀s ∈ R. (1.2)

The nonlocal problems without condition (1.2) were studied in [1, 2, 28]. Paper [2] deals with the homogeneous
Dirichlet problem for the degenerate nonlocal equation

ut − ‖u(t)‖2γL2(Ω)∆u = f, γ ∈ R.

It is proven that for γ ≥ 0 the solution exists globally in time, in the case γ < 0 local in time existence is
established and is shown that if f ≡ 0 then every solution vanishes in finite time.

The class of nonlocal fractional equations of Kirchhoff type were studied in [37–40]. Paper [38] deals with
the following problem:

ut +M([u]2s)(−∆)su = |u|p−2u, 0 < s < 1 < p <∞.

The diffusion coefficient M(·) is a continuous function depending on the Gagliardo seminorm [u]s and could
be zero at the origin. It is assumed that M(s) ≥ msθ−1 for all s ≥ 0 and some constants m > 0 , θ > 1 .
The authors prove local in time solvability of the Dirichlet problem and find conditions of finite-time blow-up
of nonnegative solutions.

The authors of [40] study existence and multiplicity of solutions for the Schrödinger–Kirchhoff type
problems involving the fractional p–Laplacian of the form

‖u‖(θ−1)
λ [λ(−∆)spu+ V (x)|u|p−2u] = |u|p

∗
s−2u+ f(x, u) in Rn .

The main features of this paper are the facts that the Kirchhoff function is zero at zero and the potential
function satisfies the critical frequency infx∈R V (x) = 0 .

Degenerate nonlinear nonlocal evolution equations which can be understood as a porous medium equation
whose pressure law is nonlinear and nonlocal was considered in [6, 7, 16] (and see references therein). In [16],
authors studied the following evolution equation of diffusive type with nonlocal effects:
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∂tu− div
(
|u|m1∇(−∆)−s

[
|u|m2−1u

])
= f, in Rn × (0, T )

which corresponds to the well-known porous medium equation ut = div(um1∇u) when s = 0 and m2 = 1 .
They proved the existence of weak solutions for s ∈ (0, 1) and m1,m2 > 0 . For the case f ≡ 0 , decay estimates
are obtained and conditions for finite time extinction of solution are found. This equation with m1 = m2 = 1

which reads as ut = div (u∇(−∆)−su) was first introduced in the paper [7].
The boundary-value problems including the equations of type (1.1) is known as Newtonian filtration

equation which can be given in the following general form:

ut = ∆ϕ (u) + h.

Equation (1.1) is a parabolic equation with implicit degeneracy which is so called the porous medium equation
[23, 25, 36] i.e.

ut = ∆
(
|u|m−1

u
)
+ h,

where m > 1 . There exists abundant physical applications where this simple model appears in a natural
way, mainly to describe processes involving fluid flow, heat transfer or diffusion. This equation is parabolic
for u different from 0 and degenerates when u = 0 . Under condition m > 1 , above equation describes the
nonstationary flow of a compressible Newtonian fluid in a porous medium under polytropic conditions.

In the present paper, we generalize the results mentioned above to the Kirchhoff type porous medium
equation by considering the equation with nonlocal diffusion

a(‖u‖pLp(Ω))∆
(
|u|p−2

u
)

for all p ≥ 2

and such an additional term h with variable nonlinearity.
We want to emphasize that if we rearrange the diffusion part of the equation (1.1), we arrive at

ut = a
(
‖u‖pLp(Ω)

)
∆
(
|u|p−2

u
)
+ F (x, t, u, f) . (1.3)

To the best of our knowledge, there has not been any studies on porous medium equations of the type (1.3)
providing a nonlocal coefficient a(‖u‖pLp(Ω)) and forcing term F whose argument depends on |u| with variable
nonlinearity.

We apply the general solvability theorem [32], see Theorem 2.6, to prove the existence of weak solution
of (1.1). We study problem (1.1) on the domain of the operator generated by addressed problem and verify the
existence of sufficiently smooth solution of the problem under more general (weak) conditions. Essentially we
show that problem (1.1) has a solution in the space

S0 := Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩ Lα(x,t) (QT ) ∩W 1,q

(
0, T ;W−1,q (Ω)

)
∩ {u : u (x, 0) = 0},

where

S̊1,(p−2)q,q (Ω) :=

u ∈ L1 (Ω) :

n∑
i=1

∫
Ω

|u|(p−2)q |Diu|q dx

 <∞

 ∩ {u |∂Ω≡ 0} .
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Apart from linear boundary value problems, the sets generated by nonlinear problems are subsets of linear
spaces which do not have the linear structure (see [29–34] and references therein).

In Section 4, we study a protopype of equation (1.1) by taking b(x, t, u) = Cα|τ |α(x,t)−2τ i.e.

ut − a
(
‖u‖pLp(Ω)

) n∑
i=1

Di

(
|u|p−2

Diu
)
+ Cα|u|α(x,t)−2u = f.

We prove the uniqueness of this equation under more restrictive conditions and in the case f = 0 the decay
rates for ‖u(t)‖L2(Ω) are derived.

2. Preliminaries
Although the forcing term in Equation (1.1) involves the variable power of the unknown function, the theory
of the generalized Lebesgue spaces which are so called Orlicz-Lebesgue space as well is not used in this work,
except for several basic facts which can be found in [4, 18].

Let Ω be a Lebesgue measurable subset of Rn such that |Ω| > 0 (Throughout the paper, we denote by
|Ω| the Lebesgue measure of Ω). Let α (x, t) ≥ 1 be a measurable bounded function defined on the cylinder
QT = Ω× (0, T ) i.e.

1 ≤ α− ≡ ess
QT

inf |α (x, t)| ≤ ess
QT

sup |α (x, t)| ≡ α+ <∞. (2.1)

Then on the set of all functions on QT define the functional σα and ‖·‖Lα(x,t)(QT ) by

σα (u) ≡
∫
QT

|u|α(x,t) dxdt

and

‖u‖Lα(x,t)(QT ) ≡ inf
{
λ > 0| σα

(u
λ

)
≤ 1
}
.

The generalized Lebesgue space is defined as follows:

Lα(x,t) (QT ) := {u : u is a measurable real-valued function in QT , σα (u) <∞} .

The space Lα(x,t) (QT ) becomes a Banach space under the norm ‖.‖Lα(x,t)(QT ) which is so-called Luxemburg
norm.

Lemma 2.1 Let 0 < |Ω| <∞, α1, α2 fulfill (2.1) then

Lα1(x,t) (QT ) ⊂ Lα2(x,t) (QT ) ⇐⇒ α2 (x, t) ≤ α1 (x, t) for a.e (x, t) ∈ QT .

Lemma 2.2 The dual space of Lα(x,t) (QT ) is Lα∗(x,t) (QT ) if and only if α ∈ L∞ (QT ) . The space Lα(x,t) (QT )

is reflexive if and only if
1 < α− ≤ α+ <∞

here α∗ (x, t) ≡ α(x,t)
α(x,t)−1 .
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For u ∈ Lα(x,t) (QT ) and v ∈ Lα∗(x,t) (QT ) where α , α∗ satisfy (2.1) and 1
α(x,t) + 1

α∗(x,t) = 1 , the

following inequalities hold: ∫
QT

|uv| dxdt ≤ 2 ‖u‖Lα(x,t)(QT ) ‖v‖Lα∗(x,t)(QT )

and

min{‖u‖α
−

Lα(x,t)(QT ) , ‖u‖
α+

Lα(x,t)(QT )} ≤ σα (u) ≤ max{‖u‖α
−

Lα(x,t)(QT ) , ‖u‖
α+

Lα(x,t)(QT )}. (2.2)

We introduce certain nonlinear function spaces (pn-spaces) which are complete metric spaces and directly
connected to the problem under consideration. We also give some embedding results for these spaces [30–34]
(see also references cited therein).

Definition 2.3 Let γ ≥ 0, β ≥ 1 , % = (%1,..,%n) is multiindex, m ∈ Z+, Ω ⊂ Rn (n ≥ 1) is bounded domain
with Lipschitz boundary.

Sm,γ,β (Ω) ≡

u ∈ L1 (Ω) | [u]γ+β
Sm,γ,β(Ω) ≡

∑
0≤|ϱ|≤m

∫
Ω

|u|γ |Dϱu|β dx

 <∞


in particularly,

S̊1,γ,β (Ω) ≡

u ∈ L1 (Ω) | [u]γ+β

S̊1,γ,β(Ω)
≡

n∑
i=1

∫
Ω

|u|γ |Diu|β dx

 <∞

 ∩ {u |∂Ω≡ 0}

and for p ≥ 1 ,

Lp
(
0, T ; S̊1,γ,β (Ω)

)
≡

u ∈ L1 (QT ) | [u]pLp(0,T ;S̊1,γ,β(Ω))
≡

T∫
0

[u]
p

S̊1,γ,β(Ω)
dt <∞

 .

These spaces are called pn-spaces.∗

Theorem 2.4 Let γ ≥ 0, β ≥ 1 then ϕ : R 7→ R , ϕ (t) ≡ |t|
γ
β t is a homeomorphism between S1,γ,β (Ω) and

W 1,β (Ω) .

Theorem 2.5 The following embeddings hold:

(i) Let γ, γ1 ≥ 0 and β1 ≥ 1 , β ≥ β1, γ1

β1
≥ γ

β , γ1 + β1 ≤ γ + β then we have

S̊1,γ,β (Ω) ⊆ S̊1,γ1,β1
(Ω) .

∗ S1,γ,β (Ω) is a complete metric space with the following metric: ∀u, v ∈ S1,γ,β (Ω)

dS1,γ,β
(u, v) =

∥∥∥|u| γβ u− |v|
γ
β v

∥∥∥
W1,β(Ω)
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(ii) Let γ ≥ 0, β ≥ 1, n > β and n(γ+β)
n−β ≥ r then there is a continuous embedding

S̊1,γ,β (Ω) ⊂ Lr (Ω) .

Furthermore for n(γ+β)
n−β > r the embedding is compact.

(iii) If γ ≥ 0, β ≥ 1 and p ≥ γ + β then

W 1,p
0 (Ω) ⊂ S̊1,γ,β(Ω)

holds.

In the following, we present the general solvability theorem [32](see also for similar theorems [31, 34]).
We will employ this theorem to demonstrate the existence of a weak solution of problem (1.1).

Theorem 2.6 Let X and Y be Banach spaces with dual spaces X∗ and Y ∗ respectively, Y be a reflexive Banach
space, M0 ⊆ X be a weakly complete “reflexive” pn-space, X0 ⊆ M0 ∩ Y be a separable vector topological space.
Let the following conditions be fulfilled:

(i) ξ : S0 −→ Lq (0, T ;Y ) is a weakly compact (weakly continuous) mapping, where

S0 := Lp (0, T ;M0) ∩W 1,q (0, T ;Y ) ∩ {x (t) : x (0) = 0}

1 < max {q, q′} ≤ p <∞, q′ = q
q−1 ;

(ii) there is a linear continuous operator A :W s,m (0, T ;X0) −→W s,m (0, T ;Y ∗) , s ≥ 0, m ≥ 1 such that A
commutes with ∂

∂t and the conjugate operator A∗ has ker(A∗) = 0 ;

(iii) operators ξ and A generate, in generalized sense, a coercive pair on space Lp (0, T ;X0) , i.e. there exist
a number r > 0 and a function Ψ : R1

+ −→ R1
+ such that Ψ(τ) /τ ↗ ∞ as τ ↗ ∞ and for any

x ∈ Lp (0, T ;X0) such that [x]Lp(M0)
≥ r following inequality holds:

T∫
0

〈ξ (t, x (t)) , Ax (t)〉 dt ≥ Ψ
(
[x]Lp(M0)

)
;

(iv) there exist some constants C0 > 0, C1, C2 ≥ 0 and ν > 1 such that the inequalities

T∫
0

〈η (t) , Aη (t)〉 dt ≥ C0 ‖η‖νLq(0,T ;Y ) − C2,

t∫
0

〈
∂x

∂τ
,Ax (τ)

〉
dτ ≥ C1 ‖x‖νY (t)− C2, a.e. t ∈ [0, T ]

hold for any x ∈W 1,p (0, T ;X0) and η ∈ Lp (0, T ;X0) .
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Assume that that conditions (i)–(iv) are fulfilled. Then the Cauchy problem

dx

dτ
+ ξ (t, x (t)) = y (t) , y ∈ Lq (0, T ;Y ) ; x (0) = 0

is solvable in S0 in the following sense

T∫
0

〈
dx

dτ
+ ξ (t, x (t)) , y∗ (t)

〉
dt =

T∫
0

〈y (t) , y∗ (t)〉 , ∀y∗ ∈ Lq′ (0, T ;Y ∗) ,

for any y ∈ Lq (0, T ;Y ) satisfying the inequality

sup

 1

[x]Lp(0,T ;M0)

T∫
0

〈y (t) , Ax (t)〉 dt : x ∈ Lp (0, T ;X0)

 <∞.

3. Assumptions and the main result

Assume that following conditions are fulfilled for problem (1.1):

(H.1) Let p ≥ 2 , a(·) : R 7→ R is a continuous function and there exist positive constants 0 < m ≤ M < ∞
such that

m ≤ a(s) ≤M, ∀s ∈ R. (3.1)

(H.2) b : QT ×R→ R, is a Carathédory function that fulfills the following conditions: There exists a measurable
function α : Ω × (0, T ) −→ R , 1 < α− ≤ α (x, t) ≤ α+ < ∞ such that b (x, t, τ) satisfies the following
inequalities a.e. (x, t, τ) ∈ QT × R :

|b (x, t, τ)| ≤ b0 (x, t) |τ |α(x,t)−1
+ b1 (x, t) (3.2)

and
b (x, t, τ) τ ≥ b2 (x, t) |τ |α(x,t) − b3 (x, t) . (3.3)

Here bi, i = 0, 1, 2, 3 are nonnegative, measurable functions defined on QT and b2 (x, t) ≥ B0 > 0 a.e.
(x, t) ∈ QT .

We study problem (1.1) for the functions f ∈ Lq
(
0, T ;W−1,q (Ω)

)
+ Lα∗(x,t) (QT ) where α∗ is conjugate of α

i.e. α∗ (x, t) := α(x,t)
α(x,t)−1 and the dual space W−1,q (Ω) :=

(
W 1,p

0 (Ω)
)∗
, q := p

p−1 .

Let us denote S0 by

S0 := Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩ Lα(x,t) (QT ) ∩W 1,q

(
0, T ;W−1,q (Ω)

)
∩ {u : u (x, 0) = 0}.

The solution of the problem (1.1) is understood in the following sense:
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Definition 3.1 A function u : QT → R is called a weak solution of problem (1.1) if

(i) u ∈ S0 ;

(ii) for every test-function η ∈ Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩ Lα(x,t) (QT ) ∩W 1,q

(
0, T ;W−1,q (Ω)

)
∫
QT

utη dz +

n∑
i=1

∫
QT

(
a(‖u‖pp) |u|

p−2
Diu

)
Diη dz +

∫
QT

a (x, t, u) η dz =

∫
QT

fη dz; (3.4)

Prior to formulating the main theorem of this section, we introduce following function

β (x, t) :=

{
pα∗(x,t)
p−α(x,t) if α+ < p,

∞ otherwise.

Theorem 3.2 Let the conditions (H.1)–(H.2) be fulfilled. If b0 ∈ Lβ(x,t) (QT ) , b1 ∈ Lα∗(x,t) (QT ) , b2 ∈
L∞ (QT ) , b3 ∈ L1 (QT ) then for all f ∈ Lq

(
0, T ;W−1,q (Ω)

)
+Lα∗(x,t) (QT ) problem (1.1) has a weak solution

in the space S0 and ∂u/∂t belongs to Lq
(
0, T ;W−1,q (Ω)

)
.

We introduce the following mappings in order to apply Theorem 2.6 to prove Theorem 3.2.

ξ : S0 −→ Lq
(
0, T ;W−1,q (Ω)

)
+ Lα∗(x,t) (QT ) ,

ξ (u) := −a(‖u‖pp)
n∑

i=1

Di

(
|u|p−2

Diu
)
+ b (x, t, u) ,

A : Lp
(
0, T ;W 1,p

0 (Ω)
)
∩ Lα(x,t) (QT ) ⊂ S0 −→ Lp

(
0, T ;W 1,p

0 (Ω)
)
∩ Lα(x,t) (QT ) ,

A(u) := u.

We prove several lemmas to show that all conditions of Theorem 2.6 are fulfilled under the conditions of Theorem
3.2.

Lemma 3.3 Under the conditions of Theorem 3.2, ξ and A generate a “coercive pair” on

Lp
(
0, T ;W 1,p

0 (Ω)
)
∩ Lα(x,t) (QT ) .

Proof Since A ≡ Id, being “coercive pair” equals to order coercivity of ξ on Lp
(
0, T ;W 1,p

0 (Ω)
)
∩Lα(x,t) (QT ) .

For u ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)
∩ Lα(x,t) (QT ) , we have the following equation:

〈ξ (u) , u〉QT
=

n∑
i=1

 T∫
0

a(‖u‖pp)
∫
Ω

|u|p−2 |Diu|2 dxdt

+

∫
QT

b (x, t, u)u dz.
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By using (3.1) and (3.3), we have

〈ξ (u) , u〉QT
≥ m

n∑
i=1

 T∫
0

∫
Ω

|u|p−2 |Diu|2 dz

+

∫
QT

|b2 (x, t)| |u|α(x,t) dz

−
∫
QT

|b3 (x, t)| dz

(3.5)

Using (3.3) and Definition 2.3 we obtain

〈ξ (u) , u〉QT
≥ m [u]

p

Lp(0,T ;S̊1,(p−2),2(Ω))
+B0

∫
QT

|u|
α(x,t)

dz − ‖b3‖L1(QT ) . (3.6)

If we consider the embedding

S̊1,(p−2),2 (Ω) ⊂ S̊1,(p−2)q,q (Ω)

to estimate pseudo-norm in (3.6), we get

〈ξ (u) , u〉QT
≥ mC [u]

p

Lp(0,T ;S̊1,(p−2)q,q(Ω))
+B0

∫
QT

|u|
α(x,t)

dz − ‖b3‖L1(QT ) . (3.7)

Using (2.2) to estimate the integral right-hand side of (3.7), we obtain

〈ξ (u) , u〉QT
≥ C0

(
[u]

p

Lp(0,T ;S̊1,(p−2)q,q(Ω))
+ ‖u‖α

−

Lα(x,t)(QT )

)
− C1. (3.8)

Here, C1 = C1

(
‖b3‖L1(QT ) , B0

)
, C0 = C0 (p,m,B0, |Ω|) are positive constants. So from (3.8) the proof is

completed. 2

Lemma 3.4 Under the conditions of Theorem 3.2, ξ is bounded from S0 into Lq
(
0, T ;W−1,q (Ω)

)
+Lα∗(x,t) (QT ) .

Proof We define the mappings

ξ1 (u) := −a(‖u‖pp)
n∑

i=1

Di

(
|u|p−2

Diu
)
,

ξ2 (u) := b (x, t, u) .

We need to show that, these mappings are both bounded from Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩ Lα(x,t) (QT ) into

Lq
(
0, T ;W−1,q (Ω)

)
+ Lα∗(x,t) (QT ) .

Let us show that ξ1 is bounded: For u ∈ Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
and v ∈ Lp

(
0, T ;W 1,p

0 (Ω)
)
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∣∣∣〈ξ1 (u) , v〉QT

∣∣∣ ≤ n∑
i=1

 T∫
0

a(‖u‖pp)
∫
Ω

|u|p−2 |Diu| |Div| dxdt


Applying Hölder’s inequality and by (3.1) we find,

∣∣∣〈ξ1 (u) , v〉QT

∣∣∣ ≤M
 n∑

i=1

 T∫
0

∫
Ω

|u|(p−2)q |Diu|q dxdt


1
q
 n∑

i=1

 T∫
0

∫
Ω

|Div|p dxdt


1
p

=M [u]
p−1

Lp(0,T ;S̊1,(p−2)q,q(Ω))
‖v‖Lp(0,T ;W 1,p

0 (Ω)) .

By the last inequality, boundedness of ξ1 is obtained.
Similarly, from (3.2) and Theorem 2.5, for all u ∈ S0 , we have the following estimate

σα∗ (ξ2 (u)) = σα∗ (b (x, t, u))

=

T∫
0

∫
Ω

|b (x, t, u)|α
∗(x,t)

dz

≤ C2

(
σα (u) + [u]

p

Lp(0,T ;S̊1,(p−2)q,q(Ω))

)
+ C3,

here C2 = C2

(
α+, α−, ‖b0‖Lβ(x,t)(QT )

)
, C3 = C3 (σβ (b0) , σα∗ (b1) , |Ω|) > 0 are constants. That yields ξ2 :

Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩ Lα(x,t) (QT ) → Lα∗(x,t) (QT ) is bounded. 2

Lemma 3.5 Under the conditions of Theorem 3.2, ξ is weakly compact from S0 into Lq
(
0, T ;W−1,q (Ω)

)
+

Lα∗(x,t) (QT ) .

Proof We first prove the weak compactness of ξ1 where ξ1 (u) := −a(‖u‖pp)
∑n

i=1Di

(
|u|p−2

Diu
)

. Let

{um (x, t)}∞m=1 ⊂ S0 be bounded and um
S0⇀ ũ0 . It is sufficient to find a subsequence of

{
umj

}∞
m=1

⊂ {um}∞m=1

which satisfies ξ1
(
umj

) Lq(0,T ;W−1,q(Ω))
⇀ ξ1 (ũ0) .

For a.e. t ∈ (0, T ) , um (·, t) ∈ S̊1,(p−2)q,q (Ω) and by using the one-to-one correspondence between the
classes (Theorem 2.4)

S̊1,(p−2)q,q (Ω)
φ←→

φ−1
W 1,q

0 (Ω)

with the homeomorphism

ϕ (τ) ≡ |τ |p−2
τ, ϕ−1 (τ) ≡ |τ |−

p−2
p−1 τ,

for all m ≥ 1 we have

2240



SERT/Turk J Math

|um|p−2
um ∈ Lq

(
0, T ;W 1,q

0 (Ω)
)

is bounded.

Due to the fact Lq
(
0, T ;W 1,q

0 (Ω)
)

is a reflexive space, there exists a subsequence
{
umj

}∞
m=1

⊂ {um}∞m=1 such

that

∣∣umj

∣∣p−2
umj

Lq(0,T ;W 1,q
0 (Ω))

⇀ ζ. (3.9)

Now, we show that ζ = |ũ0|p−2
ũ0. According to compact embedding [34],

Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩W 1,q

(
0, T ;W−1,q (Ω)

)
↪→ Lp (QT ) (3.10)

we have

∃
{
umjk

}∞

m=1
⊂
{
umj

}∞
m=1

, umjk

Lp(QT )→ ũ0

which implies

umjk

QT→
a.e

ũ0

by the continuity of ϕ (·) , we get

∣∣∣umjk

∣∣∣p−2

umjk

QT→
a.e
|ũ0|p−2

ũ0

that yields ζ = |ũ0|p−2
ũ0.

By the the compact embedding (3.10) and continuity of a(·) we have

a(‖umjk
(t)‖pp)→ a(‖ũ0(t)‖pp) a.e. in (0, T ) . (3.11)

Thus by using (3.9) and (3.11) together with the boundedness of ξ1 from Lemma 3.4, we deduce that for each

v ∈ Lp
(
0, T ;W 1,p

0 (Ω)
)

〈ξ1
(
umjk

)
, v〉QT

=

n∑
i=1

∫ T

0

a(‖umjk
‖pp)〈−Di

(∣∣∣umjk

∣∣∣p−2

Diumjk

)
, v〉Ω dt

−→
mj↗∞

n∑
i=1

∫ T

0

a(‖ũ0(t)‖pp)〈−Di

(
|ũ0|p−2

Diũ0

)
, v〉Ω dt = 〈ξ1 (ũ0) , v〉QT

whence, the result is obtained.
We shall show the weak compactness of ξ2 :

b : Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩ Lα(x,t) (QT )→ Lα∗(x,t) (QT )

is bounded by Lemma 3.4, thus for m ≥ 1, ξ2 (um) = {b (x, t, um)}∞m=1 ⊂ Lα∗(x,t) (QT ) .
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From Lemma 2.2, Lα∗(x,t) (QT ) (1 < (α∗)
−
< ∞) is a reflexive space, so {um}∞m=1 has a subsequence{

umj

}∞
m=1

such that

b
(
x, t, umj

) Lα∗(x,t)(QT )
⇀ ψ.

We deduce from the compact embedding (3.10) that

∃
{
umjk

}∞

m=1
⊂
{
umj

}∞
m=1

, umjk

Lp(QT )→ ũ0

thus

umjk

QT→
a.e

ũ0.

Accordingly, the continuity of b (x, t, .) for almost (x, t) ∈ QT implies that

b(x, t, umjk
)
QT→
a.e

b (x, t, ũ0) ,

so, we arrive at ψ = b (x, t, ũ0) i.e. ξ2(umjk
)
Lq(0,T ;W−1,q(Ω))+Lα∗(x,t)(QT )

⇀ ξ2 (ũ0) .

As a conclusion, we show that ξ is weakly compact from S0 into Lq
(
0, T ;W−1,q (Ω)

)
+ Lα∗(x,t) (QT ) .

2

Now, we give the proof of main theorem of this section.

Proof of Theorem 3.2. Since A = Id, obviously it is a linear bounded map and satisfies the conditions (ii) of
Theorem 2.6. Furthermore for any u ∈W 1,p

0 (QT ) the following inequalities are valid:

T∫
0

〈u, u〉Ω dt =

T∫
0

‖u‖2L2(Ω) dt ≥ K ‖u‖
2
Lq(0,T ;W−1,q(Ω))

and

t∫
0

〈
∂u

∂τ
, u

〉
Ω

dτ =
1

2
‖u(t)‖2L2(Ω) ≥ K

1

2
‖u(t)‖2W−1,q(Ω) ,

a.e. t ∈ [0, T ] (constant K > 0 comes from embedding inequality). Thus condition (iv) of Theorem 2.6 is
satisfied as well. Consequently from Lemmas 3.3–3.5, it follows that the mappings ξ and A fulfill all the
conditions of Theorem 2.6. Employing this theorem to problem (1.1), we find that (1.1) is solvable in S0 for
any f ∈ Lq

(
0, T ;W−1,q (Ω)

)
+ Lα∗(x,t) (QT ) satisfying the following inequality

sup

 1

[u]Lp(0,T ;S̊1,(p−2)q,q(Ω)) + ‖u‖Lα(x,t)(QT )

T∫
0

〈f, u〉Ω dt : u ∈ Q0

 <∞

where Q0 := Lp
(
0, T ;W 1,p

0 (Ω)
)
∩ Lα(x,t) (QT ) .
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Considering the norm definition of f in Lq
(
0, T ;W−1,q (Ω)

)
+ Lα∗(x,t) (QT ) , we conclude that (1.1) is

solvable in S0 for any f ∈ Lq
(
0, T ;W−1,q (Ω)

)
+ Lα∗(x,t) (QT ) . In order to complete the proof, it remains to

remark that (1.1) can be written in the form

∂u

∂t
= f (x, t)− F (x, t, u,Diu) ,

and under the conditions of Theorem 3.2, right hand belongs to Lq
(
0, T ;W−1,q (Ω)

)
which implies ∂u/∂t ∈

Lq
(
0, T ;W−1,q (Ω)

)
.

Remark 3.6 We note that if the function α (x, t) in (3.2) satisfies the inequality α+ < p then the existence
of a solution of the problem (1.1) can be shown under more general (weaker) conditions. This is verified in the
following theorem.

Theorem 3.7 Assume that (H.1) and (3.2) are satisfied with 1 < α− ≤ α (x, t) ≤ α+ < p . If b0 ∈

Lβ1(x,t) (QT ) , b1 ∈ Lα∗(x,t) (QT ) where β1 (x, t) := pα∗(x,t)
p−α(x,t) then for f ∈ Lq

(
0, T ;W−1,q (Ω)

)
problem (1.1)

has a generalized solution in the space Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩W 1,q

(
0, T ;W−1,q (Ω)

)
.

Proof We deduce from inequality (3.2) that

〈ξ (u) , u〉QT
≥

n∑
i=1

 T∫
0

a(‖u‖pp)
∫
Ω

|u|p−2 |Diu|2 dz

− ∫
QT

|b0 (x, t)| |u|α(x,t) dz

−
∫
QT

|b1 (x, t)| dz.

Estimating the second integral above by Young’s inequality and using Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
⊂ Lp (QT ) , we

attain the following inequality which gives the coercivity of ξ ,

〈ξ (u) , u〉QT
≥ C [u]

p

Lp(0,T ;S̊1,(p−2)q,q(Ω))
− C̃.

here C = C (p,m, |Ω|) and C̃ = C̃
(
ε, ‖b0‖Lβ1(x,t)(QT ) , ‖b1‖Lα∗(x,t)(QT )

)
.

From the embedding

Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
⊂ Lp (QT ) ⊂ Lα(x,t) (QT ) ,

weak compactness and boundedness of f : Lp
(
0, T ; S̊1,(p−2)q,q (Ω)

)
∩W 1,q

(
0, T ;W−1,q (Ω)

)
→ Lq

(
0, T ;W−1,q (Ω)

)
follows from Lemmas 3.4 and 3.5. Thus by the virtue of the proof of Theorem 3.2, we get the desired result. 2
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4. A model equation
Let assume that

b(x, t, τ) = Cα|τ |α(x,t)−2τ with Cα > 0 constant

where α(x, t) is a measurable function in QT with values in an interval [α−, α+] ⊂ (1,∞) .
We consider the model version of (1.1) ut − a(‖u‖pp)

n∑
i=1

Di

(
|u|p−2

Diu
)
+ Cα|u|α(x,t)−2u = f,

u (x, 0) = 0 = u0(x), u |ΓT
= 0

(4.1)

Suppose that following conditions are fulfilled:

{
p ≡ 2 and there exists a constant L > 0 such that for all s1, s2 ≥ 0

|a(s1)− a(s2)| ≤ L|s1 − s2|.
(4.2)

Note that in the case of p = 2 , the sum
n∑

i=1

Di

(
|u|p−2

Diu
)
≡ ∆u and S̊1,(p−2)q,q (Ω) ≡W 1,2

0 (Ω) .

Theorem 4.1 Assume that (H.1) holds and f ∈ L2(0, T ;W−1,2(Ω)) + Lα∗(x,t)(QT ) . If (4.2) is satisfied then
problem (4.1) has at most one weak solution u ∈ S0 .

Proof Theorem 3.2 provide that (4.1) has a solution in S0 . Suppose that u1, u2 ∈ S0 are two different
solutions of problem (4.1).

Let us take w = u1−u2 for the test-function in identities (3.4) for ui in the cylinder QT ∩{t ≤ τ ≤ t+h} ,
t, t+ h ∈ [0, T ] . Subtracting the results and dividing by h we arrive at the equality

1

2h

∫ t+h

t

d

dt

(
‖w‖22

)
dτ +

1

h

∫ t+h

t

∫
Ω

[
a(‖u1‖22)∇u1 − a(‖u2‖22)∇u2

]
· ∇w dz

+
Cα

h

∫ t+h

0

∫
Ω

(
|u1|α(x,t)−2u1 − |u2|α(x,t)−2u2

)
w dz = 0.

By the Lebesgue differentiation theorem, each term of this equality has the limit as h→ 0 : for a.e. t ∈ (0, T )

1

2

d

dt

(
‖w‖22

)
+

∫
Ω

[
a(‖u1‖22)∇u1 − a(‖u2‖22)∇u2

]
· ∇w dx

+ Cα

∫
Ω

(
|u1|α(x,t)−2u1 − |u2|α(x,t)−2u2

)
w dx = 0.

(4.3)

Notice that for α− > 1

(
|u1|α(z)−2u1 − |u2|α(z)−2u2

)
w = w

∫ 1

0

d

dθ
|θu1 + (1− θ)u2|α(z)−2

(θu1 + (1− θ)u2) dθ

= w2(α(z)− 1)

∫ 1

0

|θu1 + (1− θ)u2|α(z)−2 dθ ≥ 0.

(4.4)
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Thus from (4.4) and (4.3), we get

1

2

d

dt

(
‖w‖22

)
+

∫
Ω

[
a(‖u1‖22)∇u1 − a(‖u2‖22)∇u2

]
· ∇w dx ≤ 0. (4.5)

Since

∫
Ω

[
a(‖u1‖22)∇u1 − a(‖u2‖22)∇u2

]
· ∇(u1 − u2) dx

= a(‖u1‖22)
∫
Ω

∇(u1 − u2) · ∇(u1 − u2) dx−
[
a(‖u2‖22)− a(‖u1‖22)

] ∫
Ω

∇u2 · ∇(u1 − u2) dx.

Substituting this into (4.5), we obtain

1

2

d

dt

(
‖w‖22

)
+ a(‖u1‖22)‖∇w‖22 ≤

[
a(‖u2‖22)− a(‖u1‖22)

] ∫
Ω

∇u2 · ∇(u1 − u2) dx (4.6)

So by the Cauchy-Schwarz inequality and using (4.2) and (3.1), we get

1

2

d

dt

(
‖w‖22

)
+m‖∇w‖22 ≤ L(‖u1‖22 − ‖u2‖22)‖∇u2‖2‖∇w‖2. (4.7)

By (4.7), we have

1

2

d

dt

(
‖w‖22

)
+m‖∇w‖22 ≤ L(‖u1‖2 + ‖u2‖2)‖w‖2‖∇u2‖2‖∇w‖2. (4.8)

Then applying Young’s inequality to the right hand side of (4.8), we obtain

1

2

d

dt

(
‖w‖22

)
+m‖∇w‖22 ≤

m

2
‖∇w‖22 +

1

2m
(L(‖u1‖2 + ‖u2‖2)‖∇u2‖)2‖w‖22. (4.9)

It follows that

1

2

d

dt

(
‖w‖22

)
≤ C(t)‖w‖22 (4.10)

where C(t) ∈ L1(0, T ) . Since ‖w(0)‖2 = 0 , the assertion follows after integration in t . 2

Now, we show that if we take f ≡ 0 in problem (4.1) then the solutions are trivial.

Theorem 4.2 Let f ≡ 0 and (H.1) is satisfied then problem (4.1) has only trivial solution.

Proof Let us take the weak solution u ∈ S0 of problem (4.1) for the test-function in the integral identity
(3.4) then for all t, t+ h ∈ [0, T ] , h > 0 ,

1

2h
‖u(t)‖22

∣∣t+h

t
+

1

h

∫ t+h

t

a(‖u(s)‖pp)

(
n∑

i=1

∫
Ω

|u(s)|p−2|Diu(s)|2 dx

)
ds = −Cα

h

∫ t+h

t

∫
Ω

|u|α(x,s) dxds.
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Letting h→ 0+ and using the Lebesgue differentiation theorem we conclude that for a.e. t ∈ (0, T )

1

2

d

dt

(
‖u(t)‖22

)
+ a(‖u(t)‖pp)

n∑
i=1

∫
Ω

|u(t)|p−2|Diu(t)|2 dx = −Cα

∫
Ω

|u(z)|α(z) dx. (4.11)

It follows from (4.11) that every weak solution satisfies the following relation,

1

2

d

dt

(
‖u(t)‖22

)
+ a(‖u‖pp)

n∑
i=1

∫
Ω

|u|p−2|Diu|2 dx+ Cα

∫
Ω

|u|α(z) dx = 0. (4.12)

Dropping the nonnegative terms on the left-hand side of (4.12), we obtain the inequality

d

dt

(
‖u(t)‖22

)
≤ 0.

Since ‖u(·, 0)‖2 = 0 , integration of the last inequality yields ‖u(t)‖22 = 0 for all t ≥ 0 . 2

By taking sufficiently smooth initial data u(x, 0) = u0 different from zero, we derive exponential and
power decay of ‖u(t)‖L2(Ω) . We note that in this case, the solvability results can be obtained by the virtue of
methods using in [19, 26, 33] and Theorem 2.6. Since our goal of studying the model problem (4.1) is to provide
a more understandable and explicit way for the established results, in this article we skip this part for the sake
of brevity.

Theorem 4.3 Let f ≡ 0 and (H.1) is fulfilled. Suppose u is a solution of problem (4.1) with initial function

u0 ∈W 1,p(Ω) ∩ Lα+

(Ω) , ‖u0‖2 > 0 .

(a) If p > 2 , then there exists a constant C ′ such that

‖u(t)‖p−2
2 ≤ 2‖u0‖p−2

2

2 + C ′(p− 2)t
for all t > 0 .

(b) If p = 2 , then there exists a constant C̃ such that

‖u(t)‖22 ≤ ‖u0‖22e−C̃t for all t > 0 .

Proof From (4.12), we have

1

2

d

dt

(
‖u‖22

)
+ a(‖u‖pp)

n∑
i=1

∫
Ω

|u|p−2|Diu|2 dx+ Cα

∫
Ω

|u|α(z) dx = 0. (4.13)

By using (3.1) and Poincaré inequality we have the following estimate

a(‖u‖pp)
n∑

i=1

∫
Ω

|u|p−2|Diu|2 dx = a(‖u‖pp)
n∑

i=1

∫
Ω

|Di(|u|p/2)|2 dx

≥ mC̃
∫
Ω

|u|p dx ≥ C∗‖u‖p2.

(4.14)
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Substitution into (4.13) leads to the inequality

1

2

d

dt

(
‖u‖22

)
+ C∗‖u‖p2 ≤ 0. (4.15)

By denoting y(t) = ‖u(t)‖22 , last inequality can be written as:

y′(t) + C∗
0y

p
2 (t) ≤ 0. (4.16)

By (4.16) y′(t) ≤ 0 , whence y(t) ≤ ‖u0‖22 for all t ∈ (0, T ) .

Let us consider the function z(t) =
y(t)

R
≤ 1 , R = 1 + ‖u0‖22 . From (4.16) z(t) satisfies the differential

inequality

z′(t) + C ′z
p
2 (t) ≤ 0 in (0, T ) , z(0) < 1, (4.17)

with the coefficient C ′ = C∗
0R

p−2
2 .

If p > 2 , the straightforward integration of inequality (4.17) over the interval (0, t) gives

z1−
p
2 (t) ≥ (z(0))1−

p
2 +

C ′

2
(p− 2)t,

which yields (a).
In the case p = 2 , the inequality (4.16) for y(t) is linear and can be immediately integrated. 2
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