тӥвітак

Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/

Turk J Math
(2022) 46: $2264-2271$
© TÜBİTAK

On the extended zero-divisor graph of strictly partial transformation semigroup

Emrah KORKMAZ* ${ }^{\text {(}) ~}$

Department of Mathematics, Faculty of Sciences and Arts, Çukurova University, Adana, Turkey
Received: 02.02.2022 • Accepted/Published Online: 28.04.2022 • Final Version: 04.07.2022

Abstract

Given a commutative ring R, the zero-divisor graph of R is an undirected simple graph with vertices the nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if $x y=0$. In [8], Redmond presented different versions of zero-divisor graphs of noncommutative rings. The main aim of this paper is to analyse these graphs for the semigroup $\mathcal{S} \mathcal{P}_{n}$ of all strictly partial transformations on the set $X_{n}=\{1,2, \ldots, n\}$.

Key words: Strictly partial transformation, zero-divisor graph, clique number, chromatic number

1. Introduction

The concept of zero-divisor graphs was introduced by Beck in 1988 [2]. In this pioneering work, the author predominantly focused on the coloring of rings and let all elements of R be vertices of the graphs. Several decades later in [1], Anderson and Livingston presented the standard definition of zero-divisor graphs on commutative rings with identity. In this study, the authors let R be a commutative ring and let $Z(R)$ be its set of zerodivisors and considered the zero-divisor of R as a simple undirected graph having vertex set $Z(R) \backslash\{0\}$ in which two distinct vertices x, y are adjacent if and only if $x y=0$. DeMeyer et al. utilized this standard definition on commutative semigroups with zero in $[6,7]$. Further, several other studies (e.g., $[4,5,7]$) have extensively explored the zero-divisor graph of commutative semigroups.

For any set X contained in a ring R, let $X^{\star}=X \backslash\{0\}$. For a ring R, let $Z(R)=\{x \in R: x y=0$ or $z x=$ 0 for some $\left.y, z \in R^{\star}\right\}$ is the set of zero-divisors of R and $T(R)=\{x \in R: x y=0=z x$ for some $y, z \in$ $\left.R^{\star}\right\}$ is the set of two-sided zero-divisors of R. Afterwards, Redmond generalized the zero-divisor graph to noncommutative rings in numerous ways in [8] and presented the following:

- Let R be a noncommutative ring. We define a directed graph $G(R)$ with vertices $Z(R)^{\star}=Z(R) \backslash\{0\}$, where $x \rightarrow y$ is an edge between distinct vertices x and y if and only if $x y=0$.
- Let R be a noncommutative ring. We define an undirected graph $\bar{G}(R)$ with vertices $Z(R)^{\star}=Z(R) \backslash\{0\}$, where distinct vertices x and y are adjacent if and only if either $x y=0$ or $y x=0$.
- Let R be a noncommutative ring. We define an undirected graph $\bar{G}(R)$ with vertices $T(R)^{\star}=T(R) \backslash\{0\}$, where distinct vertices x and y are adjacent if and only if $x y=y x=0$.

[^0]- Let R be a noncommutative ring. We define an undirected graph $\bar{G}(R)$ with vertices $Z(R)^{\star}=Z(R) \backslash\{0\}$, where distinct vertices x and y are adjacent if and only if $x y=y x=0$.

The third definition coincides with the usual definition of the zero-divisor graph when R is a commutative ring. These concepts carry over to noncommutative semigroups by taking the semigroup S with zero instead of R. There are several papers (e.g., [12-14]) presenting the study of these definitions for noncommutative semigroups.

Notation 1.1 For $\alpha \in \mathcal{S P}_{n}$ we denote the domain of α by $\operatorname{dom}(\alpha)$, the image of α by im(α) and the codomain of α by codom (α). A partial transformation $\alpha: \operatorname{dom}(\alpha) \subseteq X_{n} \rightarrow i m(\alpha) \subseteq X_{n}$ is called strictly partial provided that $\operatorname{dom}(\alpha) \neq X_{n}$, that is, $\operatorname{codom}(\alpha) \neq \emptyset$. For $\alpha \in \mathcal{S} \mathcal{P}_{n}$ and $i \in X_{n}$, we will write i $\alpha=-$ if and only if $i \in \operatorname{codom}(\alpha)$. The strictly partial transformation on X_{n} will be denoted by 0 if codom $(\alpha)=X_{n}$. For any $\alpha, \beta \in \mathcal{P}_{n}$, we shall use the notation $x \alpha$ instead of $\alpha(x)$, so that the composition $(x \alpha) \beta$ is written as $x(\alpha \beta)$.

Let $\mathcal{S P}_{n}^{\star}=\mathcal{S P}{ }_{n} \backslash\{0\}$. For $n \geq 2$, we define the following sets:

$$
\begin{aligned}
& L=L\left(\mathcal{S P} \mathcal{D}_{n}\right)=\left\{\alpha \in \mathcal{S P}{ }_{n}: \alpha \beta=0 \text { for some } \beta \in \mathcal{S P}_{n}^{\star}\right\} \\
& R=R\left(\mathcal{S P}_{n}\right)=\left\{\alpha \in \mathcal{S P}{ }_{n}: \gamma \alpha=0 \text { for some } \gamma \in \mathcal{S P}_{n}^{\star}\right\} \\
& T=T\left(\mathcal{S P}_{n}\right)=\left\{\alpha \in \mathcal{S P}{ }_{n}: \alpha \beta=0=\gamma \alpha \text { for some } \beta, \gamma \in \mathcal{S P}_{n}^{\star}\right\}, \\
& Z=Z\left(\mathcal{S P}{ }_{n}\right)=\left\{\alpha \in \mathcal{S P}{ }_{n}: \alpha \beta=0 \text { or } \gamma \alpha=0 \text { for some } \beta, \gamma \in \mathcal{S P}_{n}^{\star}\right\}
\end{aligned}
$$

which are called the set of left zero-divisors, right zero-divisors, two-sided zero-divisors, and the set of zerodivisors of $\mathcal{S} \mathcal{P}_{n}$. Let $\mathcal{S}_{n}, \mathcal{T}_{n}, \mathcal{P}_{n}$, and $\mathcal{S} \mathcal{P}_{n}=\mathcal{P}_{n} \backslash \mathcal{T}_{n}$ be the symmetric group, (full) transformations semigroup, partial transformations semigroup and strictly partial transformations semigroup on the set $X_{n}=$ $\{1, \ldots, n\}$, respectively. It is known that $\left|\mathcal{P}_{n}\right|=(n+1)^{n},\left|\mathcal{T}_{n}\right|=(n)^{n}$ and $\left|\mathcal{S P}{ }_{n}\right|=(n+1)^{n}-n^{n}$. The reader is referred to $[9,10]$ and [11] for more details in semigroup theory and graph theory, respectively.

The paper is organized as follows: In Section 1, we summarize relevant definitions and notations. In Section 2, we show that $L=R=T=Z=\mathcal{S} \mathcal{P}_{n}$. Therefore, if we consider Redmond's generalizations for $\mathcal{S P}_{n}$, then the last two definitions of Redmond's coincide. In [14], Toker showed that $\mathcal{S P}{ }_{n}$ is the set of two-sided zero-divisors of \mathcal{P}_{n}. He has also analysed the zero-divisor graph of \mathcal{P}_{n}. For this reason, we consider the simple directed graph, denoted by $\Gamma\left(\mathcal{S P}{ }_{n}\right)$, (that is, with no multiple edges or loops) with vertices $\mathcal{S} \mathcal{P}_{n}^{\star}=\mathcal{S P}{ }_{n} \backslash\{0\}$, where $\alpha \rightarrow \beta$ is an edge between distinct vertices α and β if and only if $\alpha \beta=0$. Then, we analyse of this graph in terms of its properties. In Section 3, we consider the simple undirected graph, denoted by $\bar{\Gamma}\left(\mathcal{S P}{ }_{n}\right)$, (that is with no multiple edges or loops) with vertices $\mathcal{S P}_{n}^{\star}=\mathcal{S P}{ }_{n} \backslash\{0\}$, where $\alpha-\beta$ is an edge between distinct vertices α and β if and only if either $\alpha \beta=0$ or $\beta \alpha=0$. Then, we analyse of this graph in terms of its properties.

2. A directed zero-divisor graph of $\mathcal{S P}{ }_{n}$

In this section, we consider the simple directed graph $\Gamma=\Gamma\left(\mathcal{S P}{ }_{n}\right)=(V(\Gamma), E(\Gamma))$ with vertices $\mathcal{S P}_{n}^{\star}$, where $\alpha \rightarrow \beta$ is an edge between distinct vertices α and β if and only if $\alpha \beta=0$. For $\alpha, \beta \in V(\Gamma)$, we will write $\alpha \leftrightarrow \beta$ to mean that $\alpha \rightarrow \beta$ is an edge and $\beta \rightarrow \alpha$ is an edge. We begin with some results about (left/right) zero-divisors of $\mathcal{S} \mathcal{P}_{n}$ that will be needed to analyse Γ. The following simple lemma is stated without proof.

Lemma 2.1 Given $\alpha, \beta \in \mathcal{S} \mathcal{P}_{n}$, the following statements are satisfied:
(i) $\alpha \beta=0$ if and only if $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\beta)$.
(ii) $\alpha^{2}=0$ if and only if im $(\alpha) \subseteq \operatorname{codom}(\alpha)$.

Lemma 2.2 For $n \geq 2$,

$$
L=R=T=Z=\mathcal{S} \mathcal{P}_{n}
$$

Proof It is clear that $0 \in L, R, \mathcal{S} \mathcal{P}_{n}$. For any $0 \neq \alpha \in \mathcal{S P}{ }_{n}$, let

$$
\alpha=\left(\begin{array}{cccc}
A_{1} & \cdots & A_{r} & A_{r+1} \\
a_{1} & \cdots & a_{r} & -
\end{array}\right)
$$

where $1 \leq r \leq n-1$. For $1 \leq i \leq n$, if we take

$$
i \beta=\left\{\begin{array}{ll}
i & i \in \operatorname{codom}(\alpha) \\
- & i \in X_{n} \backslash \operatorname{codom}(\alpha)
\end{array} \text { and } i \gamma= \begin{cases}- & i \in \operatorname{im}(\alpha) \\
i & i \in X_{n} \backslash \operatorname{im}(\alpha)\end{cases}\right.
$$

then it is clear that $\beta, \gamma \in \mathcal{S P}{ }_{n}^{\star}$. Since $\operatorname{im}(\beta) \subseteq \operatorname{codom}(\alpha)$, it follows quickly from Lemma 2.1 that $\beta \alpha=0$, and so $\mathcal{S P}_{n} \subseteq R$. Similarly, since $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\gamma)$, it follows quickly from Lemma 2.1 that $\alpha \gamma=0$, and so $\mathcal{S P}{ }_{n} \subseteq L$. The proof of the lemma follows since $T=L \cap R$ and $Z=L \cup R$.

Let $G=(V, E)$ is a directed graph, where V is a finite nonempty set of vertices and $E \subseteq\{\{u, v\}: u, v \in$ $V, u \neq v\}$ is the set of edges. We will write $u \rightarrow v$ to mean that $\{u, v\} \in E$. For $u, v \in V$ if there exist distinct vertices $v_{0}, v_{1}, \ldots, v_{n} \in V(G)$ such that $v_{0}=u, v_{n}=v$ and $v_{i-1} \rightarrow v_{i}$ is an edge in E for each in $1 \leq i \leq n$, then $u \rightarrow v_{1} \rightarrow \cdots \rightarrow v_{n-1} \rightarrow v$ is called a path from u to v of length n in G. If there is a path between any two vertices in G, then G is called strongly connected graph. The length of the shortest path between u and v in G denoted by $d_{G}(u, v)$. The diameter of the graph G is defined by $\operatorname{diam}(G)=\max \left\{d_{G}(u, v): u, v \in V\right\}$.

Lemma 2.3Γ is strongly connected and $\operatorname{diam}(\Gamma)=2$ for $n \geq 2$.
Proof We define $\theta_{i j} \in \mathcal{S P}{ }_{n}$ such that $\operatorname{dom}\left(\theta_{i j}\right)=\{i\}$ and $i \theta_{i j}=j$ for $1 \leq i \leq n$ and $1 \leq j \leq n$. It is clear that $\theta_{i j} \in V(\Gamma)$. Now let $\Omega=\left\{\theta_{i j} \in \mathcal{S P}{ }_{n}: 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq n\right\}$ and $\lambda \in V(\Gamma) \backslash \Omega$. Since there exist $i, j \in X_{n}$ such that $i \notin i m(\lambda)$ and $j \in \operatorname{codom}(\lambda)$, then it follows quickly from Lemma 2.1 that $\lambda \leftrightarrow \theta_{i j}$ is a path. Moreover, for any $i, j, k, l \in X_{n}$ such that $i \neq k \neq j$, if we consider the transformations $\theta_{i j}, \theta_{k l} \in \Omega$, then $\theta_{i j} \leftrightarrow \theta_{k l}$ is a path. Hence, we prove that Γ is strongly connected and $\operatorname{diam}(\Gamma) \leq 2$. Now let α and β be distinct nonadjacent vertices of Γ. Then, it is clear that there are $i, j \in X_{n}$ such that $i \notin i m(\alpha)$ and $j \in \operatorname{codom}(\beta)$. Therefore, $\alpha \rightarrow \theta_{i j} \rightarrow \beta$ is path, and so $\operatorname{diam}(\Gamma)=2$, as required.

The girth of the G, denoted by $\operatorname{gr}(G)$, is the length of the shortest cycle in G. The girth is infinite if G does not contain any cycles.

Lemma $2.4 \operatorname{gr}(\Gamma)=2$ for $n \geq 2$.
Proof For any two distinct $i, j \in X_{n}$, if we take $\theta_{i i}, \theta_{j j} \in \Omega$ which is defined as in Lemma 2.3, then it is clear that $\theta_{i i} \rightarrow \theta_{j j} \rightarrow \theta_{i i}$ is a cycle of length 2 in Γ, and so $\operatorname{gr}(\Gamma)=2$.

Let v be a vertex of G. The open out-neighbourhood of v is $\mathcal{N}^{+}(v)=\{u \in V:\{v, u\} \in E\}$ and the open in-neighbourhood of v is $\mathcal{N}^{-}(v)=\{u \in V:\{u, v\} \in E\}$. The closed out-neighbourhood of v is $\mathcal{N}^{+}[v]=$ $\mathcal{N}^{+}(v) \cup\{v\}$ and the closed in-neighbourhood of v is $\mathcal{N}^{-}[v]=\mathcal{N}^{-}(v) \cup\{v\}$. The indegree $\operatorname{deg}_{G}\left(v^{+}\right)$of a vertex v is $\operatorname{deg}_{G}\left(v^{+}\right)=\left|\mathcal{N}^{+}(v)\right|$ and the outdegree $\operatorname{deg}_{G}\left(v^{+}\right)$of a vertex v is $\operatorname{deg}_{G}\left(v^{-}\right)=\left|\mathcal{N}^{-}(v)\right|$. Furthermore, the maximum indegree and the maximum outdegree are denoted by $\Delta^{-}(G)$ and $\Delta^{+}(G)$, respectively. $\delta^{-}(G)$ is the minimum indegree and $\delta^{+}(G)$ is the minimum outdegree.

Lemma 2.5 For $n \geq 2$, let $\alpha \in V(\Gamma)$ with $|i m(\alpha)|=r$ and $|\operatorname{codom}(\alpha)|=k$. Then,

$$
\begin{aligned}
& \operatorname{deg}_{\Gamma}\left(\alpha^{+}\right)=\left\{\begin{array}{ll}
(n+1)^{n-r}-1 & \text { im }(\alpha) \nsubseteq \operatorname{codom}(\alpha) \\
(n+1)^{n-r}-2 & \text { im }(\alpha) \subseteq \operatorname{codom}(\alpha)
\end{array}\right. \text { and } \\
& \operatorname{deg}_{\Gamma}\left(\alpha^{-}\right)= \begin{cases}(k+1)^{n}-k^{n}-1 & i m(\alpha) \nsubseteq \operatorname{codom}(\alpha) \\
(k+1)^{n}-k^{n}-2 & i m(\alpha) \subseteq \operatorname{codom}(\alpha)\end{cases}
\end{aligned}
$$

Proof Let $\alpha \in V(\Gamma)$ such that $|i m(\alpha)|=r$ and $|\operatorname{codom}(\alpha)|=k($ for $1 \leq r \leq n-1$ and $1 \leq k \leq n-1)$.
Case 1: Let $\operatorname{im}(\alpha) \nsubseteq \operatorname{codom}(\alpha)$. If $\beta \in \mathcal{N}^{+}(\alpha)$, then $\alpha \beta=0$, and so $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\beta)$. This means that if $i \in i m(\alpha)$, then $i \beta=-$ and if $i \in X_{n} \backslash i m(\alpha)$ then $i \beta \in X_{n}$ or $i \beta=-$. However, there are $(n+1)^{n-r}$ elements in this way including 0 , and so $\operatorname{deg}_{\Gamma}\left(\alpha^{+}\right)=(n+1)^{n+r}-1$. If $\beta \in \mathcal{N}^{-}(\alpha)$, then $\beta \alpha=0$, and so $i m(\beta) \subseteq \operatorname{codom}(\alpha)$. This means that for $j \in X_{n}$, we have $j \beta \in \operatorname{codom}(\alpha)$ or $j \beta=-$. It is clear that there are $(k+1)^{n}$ elements in this way including 0 . But, we must exclude those elements which are chosen from $\operatorname{codom}(\alpha)$ such that $\operatorname{codom}(\beta)=\emptyset$, as those elements do not belong to $V(\Gamma)$. Since there are k^{n} elements in this way, we have $\operatorname{deg}_{\Gamma}\left(\alpha^{-}\right)=(k+1)^{n}-k^{n}-1$.
Case 2: Let $i m(\alpha) \subseteq \operatorname{codom}(\alpha)$. By considering $\alpha^{2}=0$, the proof is similar to above case.
Lemma 2.5 gives us immediately the proof of the next corollary.
Corollary $2.6 \Delta^{+}(\Gamma)=(n+1)^{n-1}-1, \Delta^{-}(\Gamma)=n^{n}-1, \quad \delta^{+}(\Gamma)=n$, and $\delta^{-}(\Gamma)=2^{n}-1$ for $n \geq 2$.
A nonempty subset D of $V(G)$ is called a dominating set of G if $\bigcup_{v \in D} \mathcal{N}^{+}[v]=V(G)$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G.

Theorem $2.7 \gamma(\Gamma)=n$ for $n \geq 2$.
Proof For $1 \leq i \leq n$, let $\mathcal{D}=\left\{\alpha_{i i} \in V(\Gamma): \operatorname{dom}\left(\alpha_{i i}\right)=i m\left(\alpha_{i i}\right)=i\right\}$ and $\gamma \in V(\Gamma) \backslash \mathcal{D}$. Since there exists $j \in \operatorname{codom}(\gamma)$, it follows quickly that $\alpha_{j j} \gamma=0$. Furthermore, for any two distinct $i, j \in X_{n}$, it is clear that $\alpha_{i i} \alpha_{j j}=0$. This yields, $\bigcup_{\lambda \in \mathcal{D}} \mathcal{N}^{+}[\lambda]=V(\Gamma)$, that is, \mathcal{D} is a dominating set of Γ. For $1 \leq i \leq n$, let $\beta_{i i} \in V(\Gamma)$ such that $\operatorname{codom}\left(\beta_{i i}\right)=i$ and $j \beta_{i i}=j$ for all $i \neq j \in X_{n}$. Then, we consider the set $\mathcal{A}=\left\{\beta_{i i} \in V(\Gamma): 1 \leq i \leq n\right\}$. Now suppose that $\alpha \in V(\Gamma)$ is an adjacent $\beta_{i i}$ and $\beta_{j j}$ for any two distinct $i, j \in X_{n}$. This yields, $\alpha \beta_{i i}=0$ and $\alpha \beta_{j j}=0$ if and only if $\alpha=0$. Similarly, $\beta_{i i} \alpha=0$ and $\beta_{j j} \alpha=0$ if and only if $\alpha=0$. That is contradiction. Moreover, for any two distinct $i, j \in X_{n}$, it is clear that $\beta_{i i}$ and $\beta_{j j}$ are nonadjacent vertices. Thus, we show that if \mathcal{B} is a minimum dominating set of Γ, then $|\mathcal{B}| \geq|\mathcal{A}|=n$. Since \mathcal{D} is a dominating set of Γ and $|\mathcal{D}|=n$, this proves the assertion.

The chromatic number of G is the minimum number of colours required to colour all vertices in G so that no two adjacent vertices receive the same colour and it is denoted by $\chi(G)$.

A complete graph G is a simple graph such that every vertex is adjacent to every other vertex. A complete graph on n vertices is denoted by K^{n}. A subset C of V is called a clique in G if $u \rightarrow v$ for all distinct $u, v \in C$. The clique number of G, denoted by $\omega(G)$, is the greatest integer r such that G has a clique K^{r}.
For $n \geq 2$, we give a lower bound for the clique number of Γ in the following theorem.

Theorem 2.8 If $n \geq 2$, then $\omega(\Gamma) \geq(r+1)^{n-r}-1$ for $1 \leq r \leq n-1$.
Proof The proof is the same in the given [14, Theorem 3.7].
For any graph G, it is proved in [3, Corollary, 6.2] that $\chi(G) \geq \omega(G)$. Thus, we have the next corollary.

Corollary 2.9 If $n \geq 2$, then $\chi(\Gamma) \geq(r+1)^{n-r}-1$ for $1 \leq r \leq n-1$.

3. Undirected zero-divisor graph of $\mathcal{S P}{ }_{n}$

In this section, we define the simple undirected graph $\bar{\Gamma}=\bar{\Gamma}\left(\mathcal{S P}{ }_{n}\right)=(V(\bar{\Gamma}), E(\bar{\Gamma}))$ with vertices $\mathcal{S P}_{n}^{\star}$, where $\alpha-\beta$ is an edge between distinct vertices α and β if and only if either $\alpha \beta=0$ or $\beta \alpha=0$.

Let $\bar{G}=(\bar{V}, \bar{E})$ is an undirected graph, where \bar{V} is a finite nonempty set of vertices and $\bar{E} \subseteq\{(u, v)$: $u, v \in \bar{V}, u \neq v\}$ is the set of edges. We will write $u-v$ to mean that $(u, v) \in \bar{E}$. For $u, v \in \bar{V}$ if there exist distinct vertices $v_{0}, v_{1}, \ldots, v_{n} \in \bar{V}$ such that $v_{0}=u, v_{n}=v$ and $v_{i-1}-v_{i}$ is an edge in \bar{E} for each in $1 \leq i \leq n$, then $u-v_{1}-\cdots-v_{n-1}-v$ is called a path from u to v of length n in \bar{G}. If there is a path between any two vertices in \bar{G}, then \bar{G} is called connected graph. The length of the shortest path between u and v in \bar{G} is denoted by $d_{\bar{G}}(u, v)$. The diameter of the graph \bar{G} is defined by $\operatorname{diam}(\bar{G})=\max \left\{d_{\bar{G}}(u, v): u, v \in \bar{V}\right\}$.

Lemma 3.1 $\bar{\Gamma}$ is connected and $\operatorname{diam}(\bar{\Gamma})=2$ for $n \geq 2$.
Proof As defined in Lemma 2.3, let $\theta_{i j} \in \mathcal{S P}{ }_{n}$ such that $\operatorname{dom}\left(\theta_{i j}\right)=\{i\}$ and $i \theta_{i j}=j$ for $1 \leq i \leq n$ and $1 \leq j \leq n$. Then, we consider the set $\Omega=\left\{\theta_{i j} \in \mathcal{S} \mathcal{P}_{n}: 1 \leq i \leq n\right.$ and $\left.1 \leq j \leq n\right\}$. It is clear that $\Omega \subsetneq V(\bar{\Gamma})$.
Now assume that α and β be distinct vertices of $\bar{\Gamma}$.
Case 1: $\alpha \beta=0$ or $\beta \alpha=0$. Then, $\alpha-\beta$ is a path.
Now suppose that $\alpha \beta \neq 0$ and $\beta \alpha \neq 0$.
Case 2: Let $i m(\alpha) \leq n-1$ and $i m(\beta) \leq n-2$. Then, it is clear that there exist $i, j \in X_{n}$ such that $i \notin i m(\alpha)$ and $j \in \operatorname{codom}(\beta)$. Now if we consider the transformation $\theta_{i j} \in \Omega$, then $\alpha \theta_{i j}=0$ and $\theta_{i j} \beta=0$. This yields, $\alpha-\theta_{i j}-\beta$ is a path.
Case 3: Let $i m(\alpha) \leq n-2$ and $\operatorname{im}(\beta) \leq n-1$. The result follows by using an argument similar to the aforementioned case.
Case 4: Let $\operatorname{im}(\alpha)=n-1$ and $\operatorname{im}(\beta)=n-1$.
Subcase 1: For, $i, j \in X_{n}$, let $i \notin i m(\alpha)$ and $j \notin i m(\beta)$ such that $i \neq j$. It is clear that there exists $k \in X_{n}$ such that $k \in \operatorname{codom}(\beta)$. Now if we consider the transformation $\theta_{i k} \in \Omega$, then $\alpha \theta_{i k}=0$ and $\theta_{i k} \beta=0$. This yields, $\alpha-\theta_{i k}-\beta$ is a path.

Subcase 2: For $i \in X_{n}$, let $i \notin i m(\alpha)$ and $i \notin i m(\beta)$. If we consider the transformation $\theta_{i i} \in \Omega$, then $\alpha \theta_{i i}=0$ and $\beta \theta_{i i}=0$. This yields, $\alpha-\theta_{i i}-\beta$ is a path.
Thus, we prove that $\bar{\Gamma}$ is connected and $\operatorname{diam}(\bar{\Gamma}) \leq 2$. If we take $\theta_{i j}$ and $\theta_{j i}$ in Ω, then it is clear that $\theta_{i j}$ and $\theta_{j i}$ are nonadjacent vertices in $\bar{\Gamma}$, and so $\operatorname{diam}(\bar{\Gamma})=2$.

The girth of the \bar{G}, denoted by $\operatorname{gr}(\bar{G})$, is the length of the shortest cycle in \bar{G}. The girth is infinite if \bar{G} does not contain any cycles.

Lemma 3.2 $\operatorname{gr}(\bar{\Gamma})=3$ for $n \geq 2$.
Proof Since $\bar{\Gamma}$ is a simple undirected graph, it is clear that $\operatorname{gr}(\bar{\Gamma}) \geq 3$. Let i, j, and k be three distinct elements of X_{n}. If we consider the set $\Omega \subsetneq V(\bar{\Gamma})$ as defined in Lemma 3.1, then we have a cycle $\theta_{i i}-\theta_{j j}-\theta_{k k}-\theta_{i i}$, and so $\operatorname{gr}(\bar{\Gamma})=3$.

The degree of a vertex v of \bar{V}, denoted $\operatorname{deg}_{\bar{G}}(v)$, is the number of adjacent vertices to v in \bar{G}. The maximum vertex degree and minimum vertex degree in \bar{G} are denoted by $\triangle(\bar{G})$ and $\delta(\bar{G})$, respectively.

Lemma 3.3 For $n \geq 2$, let $\alpha \in V(\bar{\Gamma})$ with $|\operatorname{im}(\alpha)|=r$ and $|\operatorname{codom}(\alpha)|=k$. Then,

$$
\operatorname{deg}_{\bar{\Gamma}}(\alpha)= \begin{cases}(n+1)^{n-r}+(k+1)^{n}-k^{n}-(k+1)^{n-r}-1 & \quad i m(\alpha) \nsubseteq \operatorname{codom}(\alpha) \\ (n+1)^{n-r}+(k+1)^{n}-k^{n}-(k+1)^{n-r}-2 & i m(\alpha) \subseteq \operatorname{codom}(\alpha) .\end{cases}
$$

Proof Let $\alpha \in V(\bar{\Gamma})$ such that $|i m(\alpha)|=r$ and $|\operatorname{codom}(\alpha)|=k$ (for $1 \leq r \leq n-1$ and $1 \leq k \leq n-1$).
Case 1: Let $\operatorname{im}(\alpha) \nsubseteq \operatorname{codom}(\alpha)$. For $\beta \in \mathcal{S} \mathcal{P}_{n}$, if $\alpha \beta=0$, then $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\beta)$. For $\gamma \in \mathcal{S P}_{n}$, if $\gamma \alpha=0$, then $\operatorname{im}(\gamma) \subseteq \operatorname{codom}(\alpha)$. Using a similar method as in the proof of Lemma 2.5 , it can be easily obtained that there are $(n+1)^{n-r}-(k+1)^{n}-k^{n}$ adjacent vertices of α in $V(\bar{\Gamma})$. Now we must exclude those elements which are counted twice. For $\lambda \in \mathcal{S} \mathcal{P}_{n}$, if $\alpha \lambda=0=\lambda \alpha$, then $\operatorname{im}(\alpha) \subseteq \operatorname{codom}(\lambda)$ and $\operatorname{im}(\lambda) \subseteq \operatorname{codom}(\alpha)$. This means that if $i \in \operatorname{im}(\alpha)$, then $i \lambda=-$ and if $i \in X_{n} \backslash \operatorname{im}(\alpha)$, then $i \lambda \in \operatorname{codom}(\alpha)$ or $i \lambda=-$. However, there are $(k+1)^{n-r}$ elements in this way including 0 . Thus, $\operatorname{deg}_{\bar{\Gamma}}(\alpha)=(n+1)^{n-r}+(k+1)^{n}-k^{n}-(k+1)^{n-r}-1$, as required.
Case 2: Let $i m(\alpha) \subseteq \operatorname{codom}(\alpha)$.
The proof can be obtained by using an argument similar to the aforementioned case in view of the fact that we consider α is adjacent itself.
Lemma 3.3 gives us immediately the proof of the next corollary.
Corollary $3.4 \Delta(\bar{\Gamma})=(n+1)^{n-1}+n^{n}-(n-1)^{n}-n^{n-1}-1$ and $\delta(\bar{\Gamma})=n+2^{n}-3$ for $n \geq 2$.
A nonempty subset D of \bar{V} is called a dominating set of \bar{G} if every vertex $v \in \bar{V}$ is either in D or is adjacent to a vertex in D. The dominating number $\gamma(\bar{G})$ of a graph \bar{G} is the minimum cardinality of a dominating set in \bar{G}.

Theorem 3.5 $\gamma(\bar{\Gamma})=n$ for $n \geq 2$.

Proof For $1 \leq i \leq n$, let $\mathcal{D}=\left\{\alpha_{i i} \in V(\bar{\Gamma}): \operatorname{dom}\left(\alpha_{i i}\right)=i m\left(\alpha_{i i}\right)=i\right\}$ and $\lambda \in V(\bar{\Gamma}) \backslash D$. Since there exists $j \in X_{n}$ such that $j \in \operatorname{codom}(\lambda)$, it follows quickly that $\alpha_{j j} \lambda=0$. Furthermore, for any two distinct $i, j \in X_{n}$, it is clear that $\alpha_{i i} \alpha_{j j}=0$. This yields, D is a dominating set of $\bar{\Gamma}$. For $1 \leq i \leq n$, let $\beta_{i i} \in V(\bar{\Gamma})$ such that $\operatorname{codom}\left(\beta_{i i}\right)=i$ and $j \beta_{i i}=j$ for all $i \neq j \in X_{n}$. Then, we consider the set $\mathcal{A}=\left\{\beta_{i i} \in V(\bar{\Gamma}): 1 \leq i \leq n\right\}$. Now suppose that $\alpha \in V(\bar{\Gamma})$ is an adjacent $\beta_{i i}$ and $\beta_{j j}$ for any two distinct $i, j \in X_{n}$. This yields, $\alpha \beta_{i i}=0$ and $\alpha \beta_{j j}=0$ if and only if $\alpha=0$. Similarly, $\beta_{i i} \alpha=0$ and $\beta_{j j} \alpha=0$ if and only if $\alpha=0$. That is a contradiction. Moreover, for any two distinct $i, j \in X_{n}$, it is clear that $\beta_{i i}$ and $\beta_{j j}$ are nonadjacent. Thus, we show that if \mathcal{B} is a minimum dominating set of $\bar{\Gamma}$, then $|\mathcal{B}| \geq|\mathcal{A}|=n$. Since \mathcal{D} is a dominating set of $\bar{\Gamma}$ and $|\mathcal{D}|=n$, this proves the assertion.

Recall that we use $u-v$ to mean that $(u, v) \in E(\bar{G})$. By taking into account of this, the chromatic number, clique, and clique number for \bar{G} are defined as in Section 2.
For $n \geq 2$, we give a better lower bound for the clique number of $\bar{\Gamma}$ in the following theorem.

Theorem 3.6 If $n \geq 2$, then $\omega(\bar{\Gamma}) \geq(r+1)^{n-r}+\frac{r(r+1)}{2}-1$ for $1 \leq r \leq n-1$.
Proof Let $A=\left\{k_{1}, k_{2}, \ldots, k_{r}\right\} \subseteq X_{n}$ for $1 \leq r \leq n-1$. Let $\beta_{j i} \in \mathcal{S P}{ }_{n}$ such that $\operatorname{dom}\left(\beta_{j i}\right)=j$ and $j \beta_{j i}=i$ for all $i, j \in A$ with $i \leq j$. Now we consider the sets:

$$
\begin{aligned}
B & =\left\{\alpha \in \mathcal{S P} \mathcal{P}_{n}: A \subseteq \operatorname{codom}(\alpha) \text { and } \emptyset \neq i m(\alpha) \subseteq A\right\} \\
C & =\left\{\beta_{j i} \in \mathcal{S P} \mathcal{P}_{n}: 1 \leq i \leq j \leq r\right\}
\end{aligned}
$$

It is clear that $B \neq \emptyset \neq C$ and if $\alpha \in B \cup C$, then $\alpha \in V(\bar{\Gamma})$. For any two distinct $\beta, \lambda \in B \cup C$, it is easy to see that $i m(\beta) \subseteq \operatorname{codom}(\lambda)$ and $i m(\lambda) \subseteq \operatorname{codom}(\beta)$. This yields, β and λ are adjacent vertices in $V(\bar{\Gamma})$ from Lemma 2.1. Thus, $\bar{\Gamma}$ has a clique $K^{|B \cup C|}$. Since $|B \cup C|=|B| \cup|C|=(r+1)^{n-r}-1+\frac{r(r+1)}{2}$, it follows quickly that $\omega(\bar{\Gamma}) \geq(r+1)^{n-r}+\frac{r(r+1)}{2}-1$ for $1 \leq r \leq n-1$, as required.

For any graph G, it is proved in [3, Corollary, 6.2] that $\chi(G) \geq \omega(G)$. Hence, we have the following corollary.

Corollary 3.7 If $n \geq 2$, then $\chi(\bar{\Gamma}) \geq(r+1)^{n-r}+\frac{r(r+1)}{2}-1$ for $1 \leq r \leq n-1$.
Together, our study contributes to the research conducted on zero divisor graphs by revealing the properties of the extended zero-divisor graphs of $\mathcal{S} \mathcal{P}_{n}$.

References

[1] Anderson DF, Livingston PS. The zero-divisor graph of a commutative ring. Journal of Algebra 1999; 217 (2): 434-447. doi: 10.1006/jabr.1998.7840
[2] Beck I. Coloring of commutative rings. Journal of Algebra 1988; 116 (1): 208-226. doi: 10.1016/0021-8693(88)902025
[3] Chartrand G, Zhang P. Chromatic Graph Theory. Boca Raton, FL, USA: CRC Press, 2009.
[4] Das KC, Akguneş N, Çevik AS. On a graph of monogenic semigroup. Journal of Inequalities and Applications 2013; 44: 1-13. doi: 10.1186/1029-242X-2013-44 noncommutative
[5] Lu DC, Wu TS. The zero-divisor graphs of posets and an application to semigroups. Graphs Comb. 2010; 26 (6): 793-804. doi: 10.1007/s00373-010-0955-4
[6] DeMeyer F, DeMeyer L. Zero divisor graphs of semigroups. Journal of Algebra 2005; 283 (1): 190-198. doi: 10.1016/j.jalgebra.2004.08.028
[7] DeMeyer F, McKenzie T, Schneider K. The zero-divisor graph of a commutative semigroup. Semigroup Forum 2002; 65 (2): 206-214. doi: 10.1007/s002330010128
[8] Redmond SP. The zero-divisor graph of a noncommutative ring. International Journal of Commutative Rings 2002; 1 (4): 203-211.
[9] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer-Verlag, 2009.
[10] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
[11] Thulasiraman K, Arumugan S, Brandstädt A, Nishizeki T. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms. Boca Raton, CRC Press, 2015.
[12] Wright SE, Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups. Commun. Algebra 2007; 35 (6): 1987-1991. doi: 10.1080/00927870701247146
[13] Toker K. Zero-divisor graphs of Catalan monoid. Hacettepe Journal of Mathematics and Statistics 202150 (2): 387-396. doi: 10.15672/hujms. 702478
[14] Toker K. Zero-divisor graphs of partial transformation semigroups. Turkish Journal of Mathematics 202145 (5): 2331-2340. doi: 10.3906/mat-2012-94

[^0]: *Correspondence:emrahkorkmaz90@gmail.com
 2010 AMS Mathematics Subject Classification: 20M20, 97K30

