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Abstract: Given a commutative ring R , the zero-divisor graph of R is an undirected simple graph with vertices the
nonzero zero-divisors of R , and two distinct vertices x and y are adjacent if and only if xy = 0 . In [8], Redmond
presented different versions of zero-divisor graphs of noncommutative rings. The main aim of this paper is to analyse
these graphs for the semigroup SPn of all strictly partial transformations on the set Xn = {1, 2, . . . , n} .
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1. Introduction
The concept of zero-divisor graphs was introduced by Beck in 1988 [2]. In this pioneering work, the author
predominantly focused on the coloring of rings and let all elements of R be vertices of the graphs. Several decades
later in [1], Anderson and Livingston presented the standard definition of zero-divisor graphs on commutative
rings with identity. In this study, the authors let R be a commutative ring and let Z(R) be its set of zero-
divisors and considered the zero-divisor of R as a simple undirected graph having vertex set Z(R)\{0} in which
two distinct vertices x, y are adjacent if and only if xy = 0 . DeMeyer et al. utilized this standard definition
on commutative semigroups with zero in [6, 7]. Further, several other studies (e.g., [4, 5, 7]) have extensively
explored the zero-divisor graph of commutative semigroups.

For any set X contained in a ring R , let X⋆ = X\{0} . For a ring R , let Z(R) = {x ∈ R : xy = 0 or zx =

0 for some y, z ∈ R⋆} is the set of zero-divisors of R and T (R) = {x ∈ R : xy = 0 = zx for some y, z ∈
R⋆} is the set of two-sided zero-divisors of R . Afterwards, Redmond generalized the zero-divisor graph to
noncommutative rings in numerous ways in [8] and presented the following:

• Let R be a noncommutative ring. We define a directed graph G(R) with vertices Z(R)⋆ = Z(R) \ {0} ,
where x → y is an edge between distinct vertices x and y if and only if xy = 0 .

• Let R be a noncommutative ring. We define an undirected graph G(R) with vertices Z(R)⋆ = Z(R)\{0} ,
where distinct vertices x and y are adjacent if and only if either xy = 0 or yx = 0 .

• Let R be a noncommutative ring. We define an undirected graph G(R) with vertices T (R)⋆ = T (R)\{0} ,
where distinct vertices x and y are adjacent if and only if xy = yx = 0 .
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• Let R be a noncommutative ring. We define an undirected graph G(R) with vertices Z(R)⋆ = Z(R)\{0} ,
where distinct vertices x and y are adjacent if and only if xy = yx = 0 .

The third definition coincides with the usual definition of the zero-divisor graph when R is a commutative ring.
These concepts carry over to noncommutative semigroups by taking the semigroup S with zero instead of R .
There are several papers (e.g., [12–14]) presenting the study of these definitions for noncommutative semigroups.

Notation 1.1 For α ∈ SPn we denote the domain of α by dom(α) , the image of α by im(α) and the
codomain of α by codom(α) . A partial transformation α : dom(α) ⊆ Xn → im(α) ⊆ Xn is called strictly
partial provided that dom(α) ̸= Xn , that is, codom(α) ̸= ∅ . For α ∈ SPn and i ∈ Xn , we will write iα = − if
and only if i ∈ codom(α) . The strictly partial transformation on Xn will be denoted by 0 if codom(α) = Xn .
For any α, β ∈ Pn , we shall use the notation xα instead of α(x) , so that the composition (xα)β is written as
x(αβ) .

Let SP⋆
n = SPn \ {0} . For n ≥ 2 , we define the following sets:

L = L(SPn) = {α ∈ SPn : αβ = 0 for some β ∈ SP⋆
n},

R = R(SPn) = {α ∈ SPn : γα = 0 for some γ ∈ SP⋆
n},

T = T (SPn) = {α ∈ SPn : αβ = 0 = γα for some β, γ ∈ SP⋆
n},

Z = Z(SPn) = {α ∈ SPn : αβ = 0 or γα = 0 for some β, γ ∈ SP⋆
n}

which are called the set of left zero-divisors, right zero-divisors, two-sided zero-divisors, and the set of zero-
divisors of SPn . Let Sn , Tn , Pn , and SPn = Pn \ Tn be the symmetric group, (full) transformations
semigroup, partial transformations semigroup and strictly partial transformations semigroup on the set Xn =

{1, . . . , n} , respectively. It is known that |Pn| = (n+1)n , |Tn| = (n)n and |SPn| = (n+1)n −nn . The reader
is referred to [9, 10] and [11] for more details in semigroup theory and graph theory, respectively.

The paper is organized as follows: In Section 1, we summarize relevant definitions and notations. In
Section 2, we show that L = R = T = Z = SPn . Therefore, if we consider Redmond’s generalizations for SPn ,
then the last two definitions of Redmond’s coincide. In [14], Toker showed that SPn is the set of two-sided
zero-divisors of Pn . He has also analysed the zero-divisor graph of Pn . For this reason, we consider the simple
directed graph, denoted by Γ(SPn) , (that is, with no multiple edges or loops) with vertices SP⋆

n = SPn \ {0} ,
where α → β is an edge between distinct vertices α and β if and only if αβ = 0 . Then, we analyse of this
graph in terms of its properties. In Section 3, we consider the simple undirected graph, denoted by Γ(SPn) ,
(that is with no multiple edges or loops) with vertices SP⋆

n = SPn \ {0} , where α − β is an edge between
distinct vertices α and β if and only if either αβ = 0 or βα = 0 . Then, we analyse of this graph in terms of
its properties.

2. A directed zero-divisor graph of SPn

In this section, we consider the simple directed graph Γ = Γ(SPn) = (V (Γ), E(Γ)) with vertices SP⋆
n , where

α → β is an edge between distinct vertices α and β if and only if αβ = 0 . For α, β ∈ V (Γ) , we will write
α ↔ β to mean that α → β is an edge and β → α is an edge. We begin with some results about (left/right)
zero-divisors of SPn that will be needed to analyse Γ . The following simple lemma is stated without proof.
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Lemma 2.1 Given α, β ∈ SPn , the following statements are satisfied:

(i) αβ = 0 if and only if im(α) ⊆ codom(β) .

(ii) α2 = 0 if and only if im(α) ⊆ codom(α) .

Lemma 2.2 For n ≥ 2 ,
L = R = T = Z = SPn.

Proof It is clear that 0 ∈ L, R, SPn . For any 0 ̸= α ∈ SPn , let

α =

(
A1 · · · Ar Ar+1

a1 · · · ar −

)
,

where 1 ≤ r ≤ n− 1 . For 1 ≤ i ≤ n , if we take

iβ =

{
i i ∈ codom(α)

− i ∈ Xn \ codom(α)
and iγ =

{
− i ∈ im(α)

i i ∈ Xn \ im(α)

then it is clear that β, γ ∈ SP⋆
n . Since im(β) ⊆ codom(α) , it follows quickly from Lemma 2.1 that βα = 0 ,

and so SPn ⊆ R . Similarly, since im(α) ⊆ codom(γ) , it follows quickly from Lemma 2.1 that αγ = 0 , and so
SPn ⊆ L . The proof of the lemma follows since T = L ∩R and Z = L ∪R .

Let G = (V,E) is a directed graph, where V is a finite nonempty set of vertices and E ⊆ {{u, v} : u, v ∈
V, u ̸= v} is the set of edges. We will write u → v to mean that {u, v} ∈ E . For u, v ∈ V if there exist distinct
vertices v0, v1, . . . , vn ∈ V (G) such that v0 = u, vn = v and vi−1 → vi is an edge in E for each in 1 ≤ i ≤ n ,
then u → v1 → · · · → vn−1 → v is called a path from u to v of length n in G . If there is a path between any
two vertices in G , then G is called strongly connected graph. The length of the shortest path between u and v

in G denoted by dG(u, v) . The diameter of the graph G is defined by diam(G) = max{dG(u, v) : u, v ∈ V }.

Lemma 2.3 Γ is strongly connected and diam(Γ) = 2 for n ≥ 2 .

Proof We define θij ∈ SPn such that dom(θij) = {i} and iθij = j for 1 ≤ i ≤ n and 1 ≤ j ≤ n . It is clear
that θij ∈ V (Γ) . Now let Ω = {θij ∈ SPn : 1 ≤ i ≤ n and 1 ≤ j ≤ n} and λ ∈ V (Γ) \ Ω . Since there exist
i, j ∈ Xn such that i ̸∈ im(λ) and j ∈ codom(λ) , then it follows quickly from Lemma 2.1 that λ ↔ θij is a
path. Moreover, for any i, j, k, l ∈ Xn such that i ̸= k ̸= j , if we consider the transformations θij , θkl ∈ Ω ,
then θij ↔ θkl is a path. Hence, we prove that Γ is strongly connected and diam(Γ) ≤ 2 . Now let α and
β be distinct nonadjacent vertices of Γ . Then, it is clear that there are i, j ∈ Xn such that i ̸∈ im(α) and
j ∈ codom(β) . Therefore, α → θij → β is path, and so diam(Γ) = 2 , as required.

The girth of the G , denoted by gr(G) , is the length of the shortest cycle in G . The girth is infinite if G

does not contain any cycles.

Lemma 2.4 gr(Γ) = 2 for n ≥ 2 .

Proof For any two distinct i, j ∈ Xn , if we take θii, θjj ∈ Ω which is defined as in Lemma 2.3, then it is clear
that θii → θjj → θii is a cycle of length 2 in Γ , and so gr(Γ) = 2 .
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Let v be a vertex of G . The open out-neighbourhood of v is N+(v) = {u ∈ V : {v, u} ∈ E} and the
open in-neighbourhood of v is N−(v) = {u ∈ V : {u, v} ∈ E} . The closed out-neighbourhood of v is N+[v] =

N+(v)∪{v} and the closed in-neighbourhood of v is N−[v] = N−(v)∪{v} . The indegree degG(v+) of a vertex
v is degG(v+) = |N+(v)| and the outdegree degG(v+) of a vertex v is degG(v−) = |N−(v)| . Furthermore, the
maximum indegree and the maximum outdegree are denoted by △−(G) and △+(G) , respectively. δ−(G) is the
minimum indegree and δ+(G) is the minimum outdegree.

Lemma 2.5 For n ≥ 2 , let α ∈ V (Γ) with |im(α)| = r and |codom(α)| = k . Then,

degΓ(α+) =

{
(n+ 1)n−r − 1 im(α) ̸⊆ codom(α)

(n+ 1)n−r − 2 im(α) ⊆ codom(α)
and

degΓ(α−) =

{
(k + 1)n − kn − 1 im(α) ̸⊆ codom(α)

(k + 1)n − kn − 2 im(α) ⊆ codom(α).

Proof Let α ∈ V (Γ) such that |im(α)| = r and |codom(α)| = k (for 1 ≤ r ≤ n− 1 and 1 ≤ k ≤ n− 1).
Case 1: Let im(α) ̸⊆ codom(α) . If β ∈ N+(α) , then αβ = 0 , and so im(α) ⊆ codom(β) . This means that
if i ∈ im(α) , then iβ = − and if i ∈ Xn \ im(α) then iβ ∈ Xn or iβ = − . However, there are (n + 1)n−r

elements in this way including 0 , and so degΓ(α+) = (n + 1)n+r − 1 . If β ∈ N−(α) , then βα = 0 , and so
im(β) ⊆ codom(α) . This means that for j ∈ Xn , we have jβ ∈ codom(α) or jβ = − . It is clear that there
are (k + 1)n elements in this way including 0 . But, we must exclude those elements which are chosen from
codom(α) such that codom(β) = ∅ , as those elements do not belong to V (Γ) . Since there are kn elements in
this way, we have degΓ(α−) = (k + 1)n − kn − 1 .
Case 2: Let im(α) ⊆ codom(α) . By considering α2 = 0 , the proof is similar to above case.

Lemma 2.5 gives us immediately the proof of the next corollary.

Corollary 2.6 ∆+(Γ) = (n+ 1)n−1 − 1 , ∆−(Γ) = nn − 1 , δ+(Γ) = n , and δ−(Γ) = 2n − 1 for n ≥ 2 .

A nonempty subset D of V (G) is called a dominating set of G if
∪

v∈D

N+[v] = V (G) . The domination

number γ(G) is the minimum cardinality of a dominating set of G .

Theorem 2.7 γ(Γ) = n for n ≥ 2 .

Proof For 1 ≤ i ≤ n , let D = {αii ∈ V (Γ) : dom(αii) = im(αii) = i} and γ ∈ V (Γ) \ D . Since there
exists j ∈ codom(γ) , it follows quickly that αjjγ = 0 . Furthermore, for any two distinct i, j ∈ Xn , it is
clear that αiiαjj = 0 . This yields,

∪
λ∈D

N+[λ] = V (Γ) , that is, D is a dominating set of Γ . For 1 ≤ i ≤ n ,

let βii ∈ V (Γ) such that codom(βii) = i and jβii = j for all i ̸= j ∈ Xn . Then, we consider the set
A = {βii ∈ V (Γ) : 1 ≤ i ≤ n} . Now suppose that α ∈ V (Γ) is an adjacent βii and βjj for any two distinct
i, j ∈ Xn . This yields, αβii = 0 and αβjj = 0 if and only if α = 0 . Similarly, βiiα = 0 and βjjα = 0 if and
only if α = 0 . That is contradiction. Moreover, for any two distinct i, j ∈ Xn , it is clear that βii and βjj are
nonadjacent vertices. Thus, we show that if B is a minimum dominating set of Γ , then |B| ≥ |A| = n . Since
D is a dominating set of Γ and |D| = n , this proves the assertion.
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The chromatic number of G is the minimum number of colours required to colour all vertices in G so
that no two adjacent vertices receive the same colour and it is denoted by χ(G) .

A complete graph G is a simple graph such that every vertex is adjacent to every other vertex. A complete
graph on n vertices is denoted by Kn . A subset C of V is called a clique in G if u → v for all distinct u, v ∈ C .
The clique number of G , denoted by ω(G) , is the greatest integer r such that G has a clique Kr .
For n ≥ 2 , we give a lower bound for the clique number of Γ in the following theorem.

Theorem 2.8 If n ≥ 2 , then ω(Γ) ≥ (r + 1)n−r − 1 for 1 ≤ r ≤ n− 1 .

Proof The proof is the same in the given [14, Theorem 3.7].
For any graph G , it is proved in [3, Corollary, 6.2] that χ(G) ≥ ω(G) . Thus, we have the next corollary.

Corollary 2.9 If n ≥ 2 , then χ(Γ) ≥ (r + 1)n−r − 1 for 1 ≤ r ≤ n− 1 .

3. Undirected zero-divisor graph of SPn

In this section, we define the simple undirected graph Γ = Γ(SPn) = (V (Γ), E(Γ)) with vertices SP⋆
n , where

α− β is an edge between distinct vertices α and β if and only if either αβ = 0 or βα = 0 .
Let G = (V ,E) is an undirected graph, where V is a finite nonempty set of vertices and E ⊆ {(u, v) :

u, v ∈ V , u ̸= v} is the set of edges. We will write u − v to mean that (u, v) ∈ E . For u, v ∈ V if there exist
distinct vertices v0, v1, . . . , vn ∈ V such that v0 = u, vn = v and vi−1−vi is an edge in E for each in 1 ≤ i ≤ n ,
then u − v1 − · · · − vn−1 − v is called a path from u to v of length n in G . If there is a path between any
two vertices in G , then G is called connected graph. The length of the shortest path between u and v in G is
denoted by dG(u, v) . The diameter of the graph G is defined by diam(G) = max{dG(u, v) : u, v ∈ V }.

Lemma 3.1 Γ is connected and diam(Γ) = 2 for n ≥ 2 .

Proof As defined in Lemma 2.3, let θij ∈ SPn such that dom(θij) = {i} and iθij = j for 1 ≤ i ≤ n and
1 ≤ j ≤ n . Then, we consider the set Ω = {θij ∈ SPn : 1 ≤ i ≤ n and 1 ≤ j ≤ n}. It is clear that Ω ⊊ V (Γ) .
Now assume that α and β be distinct vertices of Γ .
Case 1: αβ = 0 or βα = 0 . Then, α− β is a path.
Now suppose that αβ ̸= 0 and βα ̸= 0 .
Case 2: Let im(α) ≤ n− 1 and im(β) ≤ n− 2 . Then, it is clear that there exist i, j ∈ Xn such that i ̸∈ im(α)

and j ∈ codom(β) . Now if we consider the transformation θij ∈ Ω , then αθij = 0 and θijβ = 0 . This yields,
α− θij − β is a path.
Case 3: Let im(α) ≤ n − 2 and im(β) ≤ n − 1 . The result follows by using an argument similar to the
aforementioned case.
Case 4: Let im(α) = n− 1 and im(β) = n− 1 .
Subcase 1: For, i, j ∈ Xn , let i ̸∈ im(α) and j ̸∈ im(β) such that i ̸= j . It is clear that there exists k ∈ Xn

such that k ∈ codom(β) . Now if we consider the transformation θik ∈ Ω , then αθik = 0 and θikβ = 0 . This
yields, α− θik − β is a path.
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Subcase 2: For i ∈ Xn , let i ̸∈ im(α) and i ̸∈ im(β) . If we consider the transformation θii ∈ Ω , then αθii = 0

and βθii = 0 . This yields, α− θii − β is a path.
Thus, we prove that Γ is connected and diam(Γ) ≤ 2 . If we take θij and θji in Ω , then it is clear that θij

and θji are nonadjacent vertices in Γ , and so diam(Γ) = 2 .

The girth of the G , denoted by gr(G) , is the length of the shortest cycle in G . The girth is infinite if G

does not contain any cycles.

Lemma 3.2 gr(Γ) = 3 for n ≥ 2 .

Proof Since Γ is a simple undirected graph, it is clear that gr(Γ) ≥ 3 . Let i, j, and k be three distinct elements
of Xn . If we consider the set Ω ⊊ V (Γ) as defined in Lemma 3.1, then we have a cycle θii − θjj − θkk − θii ,
and so gr(Γ) = 3 .

The degree of a vertex v of V , denoted degG(v) , is the number of adjacent vertices to v in G . The
maximum vertex degree and minimum vertex degree in G are denoted by △(G) and δ(G) , respectively.

Lemma 3.3 For n ≥ 2 , let α ∈ V (Γ) with |im(α)| = r and |codom(α)| = k . Then,

degΓ(α) =
{
(n+ 1)n−r + (k + 1)n − kn − (k + 1)n−r − 1 im(α) ̸⊆ codom(α)

(n+ 1)n−r + (k + 1)n − kn − (k + 1)n−r − 2 im(α) ⊆ codom(α).

Proof Let α ∈ V (Γ) such that |im(α)| = r and |codom(α)| = k (for 1 ≤ r ≤ n− 1 and 1 ≤ k ≤ n− 1).
Case 1: Let im(α) ̸⊆ codom(α) . For β ∈ SPn , if αβ = 0 , then im(α) ⊆ codom(β) . For γ ∈ SPn , if γα = 0 ,
then im(γ) ⊆ codom(α) . Using a similar method as in the proof of Lemma 2.5, it can be easily obtained that
there are (n+1)n−r− (k+1)n−kn adjacent vertices of α in V (Γ) . Now we must exclude those elements which
are counted twice. For λ ∈ SPn , if αλ = 0 = λα , then im(α) ⊆ codom(λ) and im(λ) ⊆ codom(α) . This
means that if i ∈ im(α) , then iλ = − and if i ∈ Xn \ im(α) , then iλ ∈ codom(α) or iλ = − . However, there
are (k+1)n−r elements in this way including 0 . Thus, degΓ(α) = (n+1)n−r + (k+1)n − kn − (k+1)n−r − 1 ,
as required.
Case 2: Let im(α) ⊆ codom(α) .
The proof can be obtained by using an argument similar to the aforementioned case in view of the fact that we
consider α is adjacent itself.
Lemma 3.3 gives us immediately the proof of the next corollary.

Corollary 3.4 ∆(Γ) = (n+ 1)n−1 + nn − (n− 1)n − nn−1 − 1 and δ(Γ) = n+ 2n − 3 for n ≥ 2 .

A nonempty subset D of V is called a dominating set of G if every vertex v ∈ V is either in D or
is adjacent to a vertex in D . The dominating number γ(G) of a graph G is the minimum cardinality of a
dominating set in G .

Theorem 3.5 γ(Γ) = n for n ≥ 2 .
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Proof For 1 ≤ i ≤ n , let D = {αii ∈ V (Γ) : dom(αii) = im(αii) = i} and λ ∈ V (Γ) \D . Since there exists
j ∈ Xn such that j ∈ codom(λ) , it follows quickly that αjjλ = 0 . Furthermore, for any two distinct i, j ∈ Xn ,
it is clear that αiiαjj = 0 . This yields, D is a dominating set of Γ . For 1 ≤ i ≤ n , let βii ∈ V (Γ) such that
codom(βii) = i and jβii = j for all i ̸= j ∈ Xn . Then, we consider the set A = {βii ∈ V (Γ) : 1 ≤ i ≤ n} . Now
suppose that α ∈ V (Γ) is an adjacent βii and βjj for any two distinct i, j ∈ Xn . This yields, αβii = 0 and
αβjj = 0 if and only if α = 0 . Similarly, βiiα = 0 and βjjα = 0 if and only if α = 0 . That is a contradiction.
Moreover, for any two distinct i, j ∈ Xn , it is clear that βii and βjj are nonadjacent. Thus, we show that if B

is a minimum dominating set of Γ , then |B| ≥ |A| = n . Since D is a dominating set of Γ and |D| = n , this
proves the assertion.

Recall that we use u − v to mean that (u, v) ∈ E(G) . By taking into account of this, the chromatic
number, clique, and clique number for G are defined as in Section 2.
For n ≥ 2 , we give a better lower bound for the clique number of Γ in the following theorem.

Theorem 3.6 If n ≥ 2 , then ω(Γ) ≥ (r + 1)n−r + r(r+1)
2 − 1 for 1 ≤ r ≤ n− 1 .

Proof Let A = {k1, k2, . . . , kr} ⊆ Xn for 1 ≤ r ≤ n− 1 . Let βji ∈ SPn such that dom(βji) = j and jβji = i

for all i, j ∈ A with i ≤ j . Now we consider the sets:

B = {α ∈ SPn : A ⊆ codom(α) and ∅ ̸= im(α) ⊆ A},

C = {βji ∈ SPn : 1 ≤ i ≤ j ≤ r}.

It is clear that B ̸= ∅ ̸= C and if α ∈ B ∪ C , then α ∈ V (Γ) . For any two distinct β, λ ∈ B ∪ C , it is easy
to see that im(β) ⊆ codom(λ) and im(λ) ⊆ codom(β) . This yields, β and λ are adjacent vertices in V (Γ)

from Lemma 2.1. Thus, Γ has a clique K |B∪C| . Since |B ∪C| = |B| ∪ |C| = (r+ 1)n−r − 1 + r(r+1)
2 , it follows

quickly that ω(Γ) ≥ (r + 1)n−r + r(r+1)
2 − 1 for 1 ≤ r ≤ n− 1 , as required.

For any graph G , it is proved in [3, Corollary, 6.2] that χ(G) ≥ ω(G) . Hence, we have the following
corollary.

Corollary 3.7 If n ≥ 2 , then χ(Γ) ≥ (r + 1)n−r + r(r+1)
2 − 1 for 1 ≤ r ≤ n− 1 .

Together, our study contributes to the research conducted on zero divisor graphs by revealing the
properties of the extended zero-divisor graphs of SPn .
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