

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2022) 46: 2264 – 2271 © TÜBİTAK doi:10.55730/1300-0098.3267

Research Article

On the extended zero-divisor graph of strictly partial transformation semigroup

Emrah KORKMAZ*

Department of Mathematics, Faculty of Sciences and Arts, Çukurova University, Adana, Turkey

Received: 02.02.2022	•	Accepted/Published Online: 28.04.2022	•	Final Version: 04.07.2022

Abstract: Given a commutative ring R, the zero-divisor graph of R is an undirected simple graph with vertices the nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if xy = 0. In [8], Redmond presented different versions of zero-divisor graphs of noncommutative rings. The main aim of this paper is to analyse these graphs for the semigroup SP_n of all strictly partial transformations on the set $X_n = \{1, 2, ..., n\}$.

Key words: Strictly partial transformation, zero-divisor graph, clique number, chromatic number

1. Introduction

The concept of zero-divisor graphs was introduced by Beck in 1988 [2]. In this pioneering work, the author predominantly focused on the coloring of rings and let all elements of R be vertices of the graphs. Several decades later in [1], Anderson and Livingston presented the standard definition of zero-divisor graphs on commutative rings with identity. In this study, the authors let R be a commutative ring and let Z(R) be its set of zerodivisors and considered the zero-divisor of R as a simple undirected graph having vertex set $Z(R) \setminus \{0\}$ in which two distinct vertices x, y are adjacent if and only if xy = 0. DeMeyer et al. utilized this standard definition on commutative semigroups with zero in [6, 7]. Further, several other studies (e.g., [4, 5, 7]) have extensively explored the zero-divisor graph of commutative semigroups.

For any set X contained in a ring R, let $X^* = X \setminus \{0\}$. For a ring R, let $Z(R) = \{x \in R : xy = 0 \text{ or } zx = 0 \text{ for some } y, z \in R^*\}$ is the set of zero-divisors of R and $T(R) = \{x \in R : xy = 0 = zx \text{ for some } y, z \in R^*\}$ is the set of two-sided zero-divisors of R. Afterwards, Redmond generalized the zero-divisor graph to noncommutative rings in numerous ways in [8] and presented the following:

- Let R be a noncommutative ring. We define a directed graph G(R) with vertices $Z(R)^* = Z(R) \setminus \{0\}$, where $x \to y$ is an edge between distinct vertices x and y if and only if xy = 0.
- Let R be a noncommutative ring. We define an undirected graph $\overline{G}(R)$ with vertices $Z(R)^* = Z(R) \setminus \{0\}$, where distinct vertices x and y are adjacent if and only if either xy = 0 or yx = 0.
- Let R be a noncommutative ring. We define an undirected graph $\overline{G}(R)$ with vertices $T(R)^* = T(R) \setminus \{0\}$, where distinct vertices x and y are adjacent if and only if xy = yx = 0.

^{*}Correspondence:emrahkorkmaz90@gmail.com

²⁰¹⁰ AMS Mathematics Subject Classification: 20M20, 97K30

• Let R be a noncommutative ring. We define an undirected graph $\overline{G}(R)$ with vertices $Z(R)^* = Z(R) \setminus \{0\}$, where distinct vertices x and y are adjacent if and only if xy = yx = 0.

The third definition coincides with the usual definition of the zero-divisor graph when R is a commutative ring. These concepts carry over to noncommutative semigroups by taking the semigroup S with zero instead of R. There are several papers (e.g., [12–14]) presenting the study of these definitions for noncommutative semigroups.

Notation 1.1 For $\alpha \in SP_n$ we denote the domain of α by $dom(\alpha)$, the image of α by $im(\alpha)$ and the codomain of α by $codom(\alpha)$. A partial transformation $\alpha : dom(\alpha) \subseteq X_n \to im(\alpha) \subseteq X_n$ is called strictly partial provided that $dom(\alpha) \neq X_n$, that is, $codom(\alpha) \neq \emptyset$. For $\alpha \in SP_n$ and $i \in X_n$, we will write $i\alpha = -if$ and only if $i \in codom(\alpha)$. The strictly partial transformation on X_n will be denoted by 0 if $codom(\alpha) = X_n$. For any $\alpha, \beta \in P_n$, we shall use the notation $x\alpha$ instead of $\alpha(x)$, so that the composition $(x\alpha)\beta$ is written as $x(\alpha\beta)$.

Let $S\mathcal{P}_n^{\star} = S\mathcal{P}_n \setminus \{0\}$. For $n \geq 2$, we define the following sets:

$$L = L(S\mathcal{P}_n) = \{ \alpha \in S\mathcal{P}_n : \alpha\beta = 0 \text{ for some } \beta \in S\mathcal{P}_n^* \},$$

$$R = R(S\mathcal{P}_n) = \{ \alpha \in S\mathcal{P}_n : \gamma\alpha = 0 \text{ for some } \gamma \in S\mathcal{P}_n^* \},$$

$$T = T(S\mathcal{P}_n) = \{ \alpha \in S\mathcal{P}_n : \alpha\beta = 0 = \gamma\alpha \text{ for some } \beta, \gamma \in S\mathcal{P}_n^* \},$$

$$Z = Z(S\mathcal{P}_n) = \{ \alpha \in S\mathcal{P}_n : \alpha\beta = 0 \text{ or } \gamma\alpha = 0 \text{ for some } \beta, \gamma \in S\mathcal{P}_n^* \},$$

which are called the set of left zero-divisors, right zero-divisors, two-sided zero-divisors, and the set of zerodivisors of SP_n . Let S_n , \mathcal{T}_n , \mathcal{P}_n , and $SP_n = \mathcal{P}_n \setminus \mathcal{T}_n$ be the symmetric group, (full) transformations semigroup, partial transformations semigroup and strictly partial transformations semigroup on the set $X_n =$ $\{1, \ldots, n\}$, respectively. It is known that $|\mathcal{P}_n| = (n+1)^n$, $|\mathcal{T}_n| = (n)^n$ and $|S\mathcal{P}_n| = (n+1)^n - n^n$. The reader is referred to [9, 10] and [11] for more details in semigroup theory and graph theory, respectively.

The paper is organized as follows: In Section 1, we summarize relevant definitions and notations. In Section 2, we show that $L = R = T = Z = S\mathcal{P}_n$. Therefore, if we consider Redmond's generalizations for $S\mathcal{P}_n$, then the last two definitions of Redmond's coincide. In [14], Toker showed that $S\mathcal{P}_n$ is the set of two-sided zero-divisors of \mathcal{P}_n . He has also analysed the zero-divisor graph of \mathcal{P}_n . For this reason, we consider the simple directed graph, denoted by $\Gamma(S\mathcal{P}_n)$, (that is, with no multiple edges or loops) with vertices $S\mathcal{P}_n^* = S\mathcal{P}_n \setminus \{0\}$, where $\alpha \to \beta$ is an edge between distinct vertices α and β if and only if $\alpha\beta = 0$. Then, we analyse of this graph in terms of its properties. In Section 3, we consider the simple undirected graph, denoted by $\overline{\Gamma}(S\mathcal{P}_n)$, (that is with no multiple edges or loops) with vertices $S\mathcal{P}_n^* = S\mathcal{P}_n \setminus \{0\}$, where $\alpha - \beta$ is an edge between distinct vertices α and β if and only if either $\alpha\beta = 0$ or $\beta\alpha = 0$. Then, we analyse of this graph in terms of its properties.

2. A directed zero-divisor graph of SP_n

In this section, we consider the simple directed graph $\Gamma = \Gamma(S\mathcal{P}_n) = (V(\Gamma), E(\Gamma))$ with vertices $S\mathcal{P}_n^{\star}$, where $\alpha \to \beta$ is an edge between distinct vertices α and β if and only if $\alpha\beta = 0$. For $\alpha, \beta \in V(\Gamma)$, we will write $\alpha \leftrightarrow \beta$ to mean that $\alpha \to \beta$ is an edge and $\beta \to \alpha$ is an edge. We begin with some results about (left/right) zero-divisors of $S\mathcal{P}_n$ that will be needed to analyse Γ . The following simple lemma is stated without proof.

Lemma 2.1 Given $\alpha, \beta \in SP_n$, the following statements are satisfied:

- (i) $\alpha\beta = 0$ if and only if $im(\alpha) \subseteq codom(\beta)$.
- (ii) $\alpha^2 = 0$ if and only if $im(\alpha) \subseteq codom(\alpha)$.

Lemma 2.2 For $n \geq 2$,

$$L = R = T = Z = \mathcal{SP}_n.$$

Proof It is clear that $0 \in L, R, SP_n$. For any $0 \neq \alpha \in SP_n$, let

$$\alpha = \left(\begin{array}{ccc} A_1 & \cdots & A_r & A_{r+1} \\ a_1 & \cdots & a_r & - \end{array}\right),$$

where $1 \le r \le n-1$. For $1 \le i \le n$, if we take

$$i\beta = \begin{cases} i & i \in codom(\alpha) \\ - & i \in X_n \setminus codom(\alpha) \end{cases} \text{ and } i\gamma = \begin{cases} - & i \in im(\alpha) \\ i & i \in X_n \setminus im(\alpha) \end{cases}$$

then it is clear that $\beta, \gamma \in S\mathcal{P}_n^*$. Since $im(\beta) \subseteq codom(\alpha)$, it follows quickly from Lemma 2.1 that $\beta \alpha = 0$, and so $S\mathcal{P}_n \subseteq R$. Similarly, since $im(\alpha) \subseteq codom(\gamma)$, it follows quickly from Lemma 2.1 that $\alpha \gamma = 0$, and so $S\mathcal{P}_n \subseteq L$. The proof of the lemma follows since $T = L \cap R$ and $Z = L \cup R$.

Let G = (V, E) is a directed graph, where V is a finite nonempty set of vertices and $E \subseteq \{\{u, v\} : u, v \in V, u \neq v\}$ is the set of edges. We will write $u \to v$ to mean that $\{u, v\} \in E$. For $u, v \in V$ if there exist distinct vertices $v_0, v_1, \ldots, v_n \in V(G)$ such that $v_0 = u, v_n = v$ and $v_{i-1} \to v_i$ is an edge in E for each in $1 \leq i \leq n$, then $u \to v_1 \to \cdots \to v_{n-1} \to v$ is called a path from u to v of length n in G. If there is a path between any two vertices in G, then G is called strongly connected graph. The length of the shortest path between u and v in G denoted by $d_G(u, v)$. The diameter of the graph G is defined by diam $(G) = \max\{d_G(u, v) : u, v \in V\}$.

Lemma 2.3 Γ is strongly connected and diam $(\Gamma) = 2$ for $n \ge 2$.

Proof We define $\theta_{ij} \in S\mathcal{P}_n$ such that $dom(\theta_{ij}) = \{i\}$ and $i\theta_{ij} = j$ for $1 \leq i \leq n$ and $1 \leq j \leq n$. It is clear that $\theta_{ij} \in V(\Gamma)$. Now let $\Omega = \{\theta_{ij} \in S\mathcal{P}_n : 1 \leq i \leq n \text{ and } 1 \leq j \leq n\}$ and $\lambda \in V(\Gamma) \setminus \Omega$. Since there exist $i, j \in X_n$ such that $i \notin im(\lambda)$ and $j \in codom(\lambda)$, then it follows quickly from Lemma 2.1 that $\lambda \leftrightarrow \theta_{ij}$ is a path. Moreover, for any $i, j, k, l \in X_n$ such that $i \neq k \neq j$, if we consider the transformations $\theta_{ij}, \theta_{kl} \in \Omega$, then $\theta_{ij} \leftrightarrow \theta_{kl}$ is a path. Hence, we prove that Γ is strongly connected and $diam(\Gamma) \leq 2$. Now let α and β be distinct nonadjacent vertices of Γ . Then, it is clear that there are $i, j \in X_n$ such that $i \notin im(\alpha)$ and $j \in codom(\beta)$. Therefore, $\alpha \to \theta_{ij} \to \beta$ is path, and so $diam(\Gamma) = 2$, as required.

The girth of the G, denoted by gr(G), is the length of the shortest cycle in G. The girth is infinite if G does not contain any cycles.

Lemma 2.4 $\operatorname{gr}(\Gamma) = 2$ for $n \geq 2$.

Proof For any two distinct $i, j \in X_n$, if we take $\theta_{ii}, \theta_{jj} \in \Omega$ which is defined as in Lemma 2.3, then it is clear that $\theta_{ii} \to \theta_{jj} \to \theta_{ii}$ is a cycle of length 2 in Γ , and so $\operatorname{gr}(\Gamma) = 2$.

Let v be a vertex of G. The open out-neighbourhood of v is $\mathcal{N}^+(v) = \{u \in V : \{v, u\} \in E\}$ and the open in-neighbourhood of v is $\mathcal{N}^-(v) = \{u \in V : \{u, v\} \in E\}$. The closed out-neighbourhood of v is $\mathcal{N}^+[v] = \mathcal{N}^+(v) \cup \{v\}$ and the closed in-neighbourhood of v is $\mathcal{N}^-[v] = \mathcal{N}^-(v) \cup \{v\}$. The indegree $\deg_G(v^+)$ of a vertex v is $\deg_G(v^+) = |\mathcal{N}^+(v)|$ and the outdegree $\deg_G(v^+)$ of a vertex v is $\deg_G(v^-) = |\mathcal{N}^-(v)|$. Furthermore, the maximum indegree and the maximum outdegree are denoted by $\Delta^-(G)$ and $\Delta^+(G)$, respectively. $\delta^-(G)$ is the minimum indegree.

Lemma 2.5 For $n \ge 2$, let $\alpha \in V(\Gamma)$ with $|im(\alpha)| = r$ and $|codom(\alpha)| = k$. Then,

$$\deg_{\Gamma}(\alpha^{+}) = \begin{cases} (n+1)^{n-r} - 1 & im(\alpha) \not\subseteq codom(\alpha)\\ (n+1)^{n-r} - 2 & im(\alpha) \subseteq codom(\alpha) \end{cases} and$$
$$\deg_{\Gamma}(\alpha^{-}) = \begin{cases} (k+1)^{n} - k^{n} - 1 & im(\alpha) \not\subseteq codom(\alpha)\\ (k+1)^{n} - k^{n} - 2 & im(\alpha) \subseteq codom(\alpha). \end{cases}$$

Proof Let $\alpha \in V(\Gamma)$ such that $|im(\alpha)| = r$ and $|codom(\alpha)| = k$ (for $1 \le r \le n-1$ and $1 \le k \le n-1$).

<u>Case 1:</u> Let $im(\alpha) \not\subseteq codom(\alpha)$. If $\beta \in \mathcal{N}^+(\alpha)$, then $\alpha\beta = 0$, and so $im(\alpha) \subseteq codom(\beta)$. This means that if $i \in im(\alpha)$, then $i\beta = -$ and if $i \in X_n \setminus im(\alpha)$ then $i\beta \in X_n$ or $i\beta = -$. However, there are $(n+1)^{n-r}$ elements in this way including 0, and so $\deg_{\Gamma}(\alpha^+) = (n+1)^{n+r} - 1$. If $\beta \in \mathcal{N}^-(\alpha)$, then $\beta\alpha = 0$, and so $im(\beta) \subseteq codom(\alpha)$. This means that for $j \in X_n$, we have $j\beta \in codom(\alpha)$ or $j\beta = -$. It is clear that there are $(k+1)^n$ elements in this way including 0. But, we must exclude those elements which are chosen from $codom(\alpha)$ such that $codom(\beta) = \emptyset$, as those elements do not belong to $V(\Gamma)$. Since there are k^n elements in this way, we have $\deg_{\Gamma}(\alpha^-) = (k+1)^n - k^n - 1$.

<u>Case 2</u>: Let $im(\alpha) \subseteq codom(\alpha)$. By considering $\alpha^2 = 0$, the proof is similar to above case.

Lemma 2.5 gives us immediately the proof of the next corollary.

Corollary 2.6 $\Delta^+(\Gamma) = (n+1)^{n-1} - 1$, $\Delta^-(\Gamma) = n^n - 1$, $\delta^+(\Gamma) = n$, and $\delta^-(\Gamma) = 2^n - 1$ for $n \ge 2$.

A nonempty subset D of V(G) is called a *dominating set* of G if $\bigcup_{v \in D} \mathcal{N}^+[v] = V(G)$. The *domination* number $\gamma(G)$ is the minimum cardinality of a dominating set of G.

Theorem 2.7 $\gamma(\Gamma) = n$ for $n \ge 2$.

Proof For $1 \leq i \leq n$, let $\mathcal{D} = \{\alpha_{ii} \in V(\Gamma) : dom(\alpha_{ii}) = im(\alpha_{ii}) = i\}$ and $\gamma \in V(\Gamma) \setminus \mathcal{D}$. Since there exists $j \in codom(\gamma)$, it follows quickly that $\alpha_{jj}\gamma = 0$. Furthermore, for any two distinct $i, j \in X_n$, it is clear that $\alpha_{ii}\alpha_{jj} = 0$. This yields, $\bigcup_{\lambda \in \mathcal{D}} \mathcal{N}^+[\lambda] = V(\Gamma)$, that is, \mathcal{D} is a dominating set of Γ . For $1 \leq i \leq n$, let $\beta_{ii} \in V(\Gamma)$ such that $codom(\beta_{ii}) = i$ and $j\beta_{ii} = j$ for all $i \neq j \in X_n$. Then, we consider the set $\mathcal{A} = \{\beta_{ii} \in V(\Gamma) : 1 \leq i \leq n\}$. Now suppose that $\alpha \in V(\Gamma)$ is an adjacent β_{ii} and β_{jj} for any two distinct $i, j \in X_n$. This yields, $\alpha\beta_{ii} = 0$ and $\alpha\beta_{jj} = 0$ if and only if $\alpha = 0$. Similarly, $\beta_{ii}\alpha = 0$ and $\beta_{jj}\alpha = 0$ if and only if $\alpha = 0$. That is contradiction. Moreover, for any two distinct $i, j \in X_n$, it is clear that β_{ii} and β_{jj} are nonadjacent vertices. Thus, we show that if \mathcal{B} is a minimum dominating set of Γ , then $|\mathcal{B}| \geq |\mathcal{A}| = n$. Since \mathcal{D} is a dominating set of Γ and $|\mathcal{D}| = n$, this proves the assertion.

The chromatic number of G is the minimum number of colours required to colour all vertices in G so that no two adjacent vertices receive the same colour and it is denoted by $\chi(G)$.

A complete graph G is a simple graph such that every vertex is adjacent to every other vertex. A complete graph on n vertices is denoted by K^n . A subset C of V is called a *clique* in G if $u \to v$ for all distinct $u, v \in C$. The *clique number* of G, denoted by $\omega(G)$, is the greatest integer r such that G has a clique K^r . For $n \geq 2$, we give a lower bound for the clique number of Γ in the following theorem.

Theorem 2.8 If $n \ge 2$, then $\omega(\Gamma) \ge (r+1)^{n-r} - 1$ for $1 \le r \le n-1$.

Proof The proof is the same in the given [14, Theorem 3.7].

For any graph G, it is proved in [3, Corollary, 6.2] that $\chi(G) \geq \omega(G)$. Thus, we have the next corollary.

Corollary 2.9 If $n \ge 2$, then $\chi(\Gamma) \ge (r+1)^{n-r} - 1$ for $1 \le r \le n-1$.

3. Undirected zero-divisor graph of SP_n

In this section, we define the simple undirected graph $\overline{\Gamma} = \overline{\Gamma}(\mathcal{SP}_n) = (V(\overline{\Gamma}), E(\overline{\Gamma}))$ with vertices \mathcal{SP}_n^* , where $\alpha - \beta$ is an edge between distinct vertices α and β if and only if either $\alpha\beta = 0$ or $\beta\alpha = 0$.

Let $\overline{G} = (\overline{V}, \overline{E})$ is an *undirected graph*, where \overline{V} is a finite nonempty set of vertices and $\overline{E} \subseteq \{(u, v) : u, v \in \overline{V}, u \neq v\}$ is the set of edges. We will write u - v to mean that $(u, v) \in \overline{E}$. For $u, v \in \overline{V}$ if there exist distinct vertices $v_0, v_1, \ldots, v_n \in \overline{V}$ such that $v_0 = u, v_n = v$ and $v_{i-1} - v_i$ is an edge in \overline{E} for each in $1 \leq i \leq n$, then $u - v_1 - \cdots - v_{n-1} - v$ is called a *path* from u to v of length n in \overline{G} . If there is a path between any two vertices in \overline{G} , then \overline{G} is called *connected graph*. The length of the shortest path between u and v in \overline{G} is denoted by $d_{\overline{G}}(u, v)$. The *diameter* of the graph \overline{G} is defined by $diam(\overline{G}) = \max\{d_{\overline{G}}(u, v) : u, v \in \overline{V}\}$.

Lemma 3.1 $\overline{\Gamma}$ is connected and diam $(\overline{\Gamma}) = 2$ for $n \ge 2$.

Proof As defined in Lemma 2.3, let $\theta_{ij} \in SP_n$ such that $dom(\theta_{ij}) = \{i\}$ and $i\theta_{ij} = j$ for $1 \leq i \leq n$ and $1 \leq j \leq n$. Then, we consider the set $\Omega = \{\theta_{ij} \in SP_n : 1 \leq i \leq n \text{ and } 1 \leq j \leq n\}$. It is clear that $\Omega \subsetneq V(\overline{\Gamma})$. Now assume that α and β be distinct vertices of $\overline{\Gamma}$.

Case 1: $\alpha\beta = 0$ or $\beta\alpha = 0$. Then, $\alpha - \beta$ is a path.

Now suppose that $\alpha\beta \neq 0$ and $\beta\alpha \neq 0$.

<u>Case 2</u>: Let $im(\alpha) \leq n-1$ and $im(\beta) \leq n-2$. Then, it is clear that there exist $i, j \in X_n$ such that $i \notin im(\alpha)$ and $j \in codom(\beta)$. Now if we consider the transformation $\theta_{ij} \in \Omega$, then $\alpha \theta_{ij} = 0$ and $\theta_{ij}\beta = 0$. This yields, $\alpha - \theta_{ij} - \beta$ is a path.

<u>Case 3:</u> Let $im(\alpha) \leq n-2$ and $im(\beta) \leq n-1$. The result follows by using an argument similar to the aforementioned case.

<u>Case 4:</u> Let $im(\alpha) = n - 1$ and $im(\beta) = n - 1$.

<u>Subcase 1:</u> For, $i, j \in X_n$, let $i \notin im(\alpha)$ and $j \notin im(\beta)$ such that $i \neq j$. It is clear that there exists $k \in X_n$ such that $k \in codom(\beta)$. Now if we consider the transformation $\theta_{ik} \in \Omega$, then $\alpha \theta_{ik} = 0$ and $\theta_{ik}\beta = 0$. This yields, $\alpha - \theta_{ik} - \beta$ is a path.

<u>Subcase 2</u>: For $i \in X_n$, let $i \notin im(\alpha)$ and $i \notin im(\beta)$. If we consider the transformation $\theta_{ii} \in \Omega$, then $\alpha \theta_{ii} = 0$ and $\beta \theta_{ii} = 0$. This yields, $\alpha - \theta_{ii} - \beta$ is a path.

Thus, we prove that $\overline{\Gamma}$ is connected and diam $(\overline{\Gamma}) \leq 2$. If we take θ_{ij} and θ_{ji} in Ω , then it is clear that θ_{ij} and θ_{ji} are nonadjacent vertices in $\overline{\Gamma}$, and so diam $(\overline{\Gamma}) = 2$.

The girth of the \overline{G} , denoted by $\operatorname{gr}(\overline{G})$, is the length of the shortest cycle in \overline{G} . The girth is infinite if \overline{G} does not contain any cycles.

Lemma 3.2 gr($\overline{\Gamma}$) = 3 for $n \ge 2$.

Proof Since $\overline{\Gamma}$ is a simple undirected graph, it is clear that $\operatorname{gr}(\overline{\Gamma}) \geq 3$. Let i, j, and k be three distinct elements of X_n . If we consider the set $\Omega \subsetneq V(\overline{\Gamma})$ as defined in Lemma 3.1, then we have a cycle $\theta_{ii} - \theta_{jj} - \theta_{kk} - \theta_{ii}$, and so $\operatorname{gr}(\overline{\Gamma}) = 3$.

The degree of a vertex v of \overline{V} , denoted $\deg_{\overline{G}}(v)$, is the number of adjacent vertices to v in \overline{G} . The maximum vertex degree and minimum vertex degree in \overline{G} are denoted by $\Delta(\overline{G})$ and $\delta(\overline{G})$, respectively.

Lemma 3.3 For $n \ge 2$, let $\alpha \in V(\overline{\Gamma})$ with $|im(\alpha)| = r$ and $|codom(\alpha)| = k$. Then,

$$\deg_{\overline{\Gamma}}(\alpha) = \begin{cases} (n+1)^{n-r} + (k+1)^n - k^n - (k+1)^{n-r} - 1 & im(\alpha) \not\subseteq codom(\alpha) \\ (n+1)^{n-r} + (k+1)^n - k^n - (k+1)^{n-r} - 2 & im(\alpha) \subseteq codom(\alpha). \end{cases}$$

Proof Let $\alpha \in V(\overline{\Gamma})$ such that $|im(\alpha)| = r$ and $|codom(\alpha)| = k$ (for $1 \leq r \leq n-1$ and $1 \leq k \leq n-1$). <u>Case 1</u>: Let $im(\alpha) \not\subseteq codom(\alpha)$. For $\beta \in S\mathcal{P}_n$, if $\alpha\beta = 0$, then $im(\alpha) \subseteq codom(\beta)$. For $\gamma \in S\mathcal{P}_n$, if $\gamma\alpha = 0$, then $im(\gamma) \subseteq codom(\alpha)$. Using a similar method as in the proof of Lemma 2.5, it can be easily obtained that there are $(n+1)^{n-r} - (k+1)^n - k^n$ adjacent vertices of α in $V(\overline{\Gamma})$. Now we must exclude those elements which are counted twice. For $\lambda \in S\mathcal{P}_n$, if $\alpha\lambda = 0 = \lambda\alpha$, then $im(\alpha) \subseteq codom(\lambda)$ and $im(\lambda) \subseteq codom(\alpha)$. This means that if $i \in im(\alpha)$, then $i\lambda = -$ and if $i \in X_n \setminus im(\alpha)$, then $i\lambda \in codom(\alpha)$ or $i\lambda = -$. However, there are $(k+1)^{n-r}$ elements in this way including 0. Thus, $\deg_{\overline{\Gamma}}(\alpha) = (n+1)^{n-r} + (k+1)^n - k^n - (k+1)^{n-r} - 1$, as required.

<u>Case 2:</u> Let $im(\alpha) \subseteq codom(\alpha)$.

The proof can be obtained by using an argument similar to the aforementioned case in view of the fact that we consider α is adjacent itself.

Lemma 3.3 gives us immediately the proof of the next corollary.

Corollary 3.4 $\Delta(\overline{\Gamma}) = (n+1)^{n-1} + n^n - (n-1)^n - n^{n-1} - 1$ and $\delta(\overline{\Gamma}) = n + 2^n - 3$ for $n \ge 2$.

A nonempty subset D of \overline{V} is called a *dominating set* of \overline{G} if every vertex $v \in \overline{V}$ is either in D or is adjacent to a vertex in D. The *dominating number* $\gamma(\overline{G})$ of a graph \overline{G} is the minimum cardinality of a dominating set in \overline{G} .

Theorem 3.5
$$\gamma(\overline{\Gamma}) = n \text{ for } n \geq 2$$

Proof For $1 \leq i \leq n$, let $\mathcal{D} = \{\alpha_{ii} \in V(\overline{\Gamma}) : dom(\alpha_{ii}) = im(\alpha_{ii}) = i\}$ and $\lambda \in V(\overline{\Gamma}) \setminus D$. Since there exists $j \in X_n$ such that $j \in codom(\lambda)$, it follows quickly that $\alpha_{jj}\lambda = 0$. Furthermore, for any two distinct $i, j \in X_n$, it is clear that $\alpha_{ii}\alpha_{jj} = 0$. This yields, D is a dominating set of $\overline{\Gamma}$. For $1 \leq i \leq n$, let $\beta_{ii} \in V(\overline{\Gamma})$ such that $codom(\beta_{ii}) = i$ and $j\beta_{ii} = j$ for all $i \neq j \in X_n$. Then, we consider the set $\mathcal{A} = \{\beta_{ii} \in V(\overline{\Gamma}) : 1 \leq i \leq n\}$. Now suppose that $\alpha \in V(\overline{\Gamma})$ is an adjacent β_{ii} and β_{jj} for any two distinct $i, j \in X_n$. This yields, $\alpha\beta_{ii} = 0$ and $\alpha\beta_{jj} = 0$ if and only if $\alpha = 0$. Similarly, $\beta_{ii}\alpha = 0$ and $\beta_{jj}\alpha = 0$ if and only if $\alpha = 0$. That is a contradiction. Moreover, for any two distinct $i, j \in X_n$, it is clear that β_{ii} and β_{jj} are nonadjacent. Thus, we show that if \mathcal{B} is a minimum dominating set of $\overline{\Gamma}$, then $|\mathcal{B}| \geq |\mathcal{A}| = n$. Since \mathcal{D} is a dominating set of $\overline{\Gamma}$ and $|\mathcal{D}| = n$, this proves the assertion.

Recall that we use u - v to mean that $(u, v) \in E(\overline{G})$. By taking into account of this, the *chromatic* number, clique, and clique number for \overline{G} are defined as in Section 2.

For $n \geq 2$, we give a better lower bound for the clique number of $\overline{\Gamma}$ in the following theorem.

Theorem 3.6 If $n \ge 2$, then $\omega(\overline{\Gamma}) \ge (r+1)^{n-r} + \frac{r(r+1)}{2} - 1$ for $1 \le r \le n-1$.

Proof Let $A = \{k_1, k_2, \ldots, k_r\} \subseteq X_n$ for $1 \leq r \leq n-1$. Let $\beta_{ji} \in S\mathcal{P}_n$ such that $dom(\beta_{ji}) = j$ and $j\beta_{ji} = i$ for all $i, j \in A$ with $i \leq j$. Now we consider the sets:

$$B = \{ \alpha \in S\mathcal{P}_n : A \subseteq codom(\alpha) \text{ and } \emptyset \neq im(\alpha) \subseteq A \},\$$

$$C = \{ \beta_{ji} \in S\mathcal{P}_n : 1 \le i \le j \le r \}.$$

It is clear that $B \neq \emptyset \neq C$ and if $\alpha \in B \cup C$, then $\alpha \in V(\overline{\Gamma})$. For any two distinct $\beta, \lambda \in B \cup C$, it is easy to see that $im(\beta) \subseteq codom(\lambda)$ and $im(\lambda) \subseteq codom(\beta)$. This yields, β and λ are adjacent vertices in $V(\overline{\Gamma})$ from Lemma 2.1. Thus, $\overline{\Gamma}$ has a clique $K^{|B\cup C|}$. Since $|B\cup C| = |B| \cup |C| = (r+1)^{n-r} - 1 + \frac{r(r+1)}{2}$, it follows quickly that $\omega(\overline{\Gamma}) \geq (r+1)^{n-r} + \frac{r(r+1)}{2} - 1$ for $1 \leq r \leq n-1$, as required.

For any graph G, it is proved in [3, Corollary, 6.2] that $\chi(G) \ge \omega(G)$. Hence, we have the following corollary.

Corollary 3.7 If $n \ge 2$, then $\chi(\overline{\Gamma}) \ge (r+1)^{n-r} + \frac{r(r+1)}{2} - 1$ for $1 \le r \le n-1$.

Together, our study contributes to the research conducted on zero divisor graphs by revealing the properties of the extended zero-divisor graphs of SP_n .

References

- Anderson DF, Livingston PS. The zero-divisor graph of a commutative ring. Journal of Algebra 1999; 217 (2): 434-447. doi: 10.1006/jabr.1998.7840
- [2] Beck I. Coloring of commutative rings. Journal of Algebra 1988; 116 (1): 208-226. doi: 10.1016/0021-8693(88)90202-5
- [3] Chartrand G, Zhang P. Chromatic Graph Theory. Boca Raton, FL, USA: CRC Press, 2009.
- [4] Das KC, Akguneş N, Çevik AS. On a graph of monogenic semigroup. Journal of Inequalities and Applications 2013;
 44: 1-13. doi: 10.1186/1029-242X-2013-44 noncommutative

- [5] Lu DC, Wu TS. The zero-divisor graphs of posets and an application to semigroups. Graphs Comb. 2010; 26 (6): 793-804. doi: 10.1007/s00373-010-0955-4
- [6] DeMeyer F, DeMeyer L. Zero divisor graphs of semigroups. Journal of Algebra 2005; 283 (1): 190-198. doi: 10.1016/j.jalgebra.2004.08.028
- [7] DeMeyer F, McKenzie T, Schneider K. The zero-divisor graph of a commutative semigroup. Semigroup Forum 2002;
 65 (2): 206-214. doi: 10.1007/s002330010128
- [8] Redmond SP. The zero-divisor graph of a noncommutative ring. International Journal of Commutative Rings 2002; 1 (4): 203-211.
- [9] Ganyushkin O, Mazorchuk V. Classical Finite Transformation Semigroups. London, UK: Springer-Verlag, 2009.
- [10] Howie JM. Fundamentals of Semigroup Theory. New York, NY, USA: Oxford University Press, 1995.
- [11] Thulasiraman K, Arumugan S, Brandstädt A, Nishizeki T. Handbook of Graph Theory, Combinatorial Optimization, and Algorithms. Boca Raton, CRC Press, 2015.
- Wright SE, Lengths of paths and cycles in zero-divisor graphs and digraphs of semigroups. Commun. Algebra 2007; 35 (6): 1987-1991. doi: 10.1080/00927870701247146
- [13] Toker K. Zero-divisor graphs of Catalan monoid. Hacettepe Journal of Mathematics and Statistics 2021 50 (2): 387-396. doi: 10.15672/hujms.702478
- [14] Toker K. Zero-divisor graphs of partial transformation semigroups. Turkish Journal of Mathematics 2021 45 (5): 2331-2340. doi: 10.3906/mat-2012-94