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Abstract: Given a commutative ring R, the zero-divisor graph of R is an undirected simple graph with vertices the
nonzero zero-divisors of R, and two distinct vertices x and y are adjacent if and only if zy = 0. In [8], Redmond
presented different versions of zero-divisor graphs of noncommutative rings. The main aim of this paper is to analyse

these graphs for the semigroup SP,, of all strictly partial transformations on the set X, = {1,2,...,n}.
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1. Introduction
The concept of zero-divisor graphs was introduced by Beck in 1988 [2]. In this pioneering work, the author
predominantly focused on the coloring of rings and let all elements of R be vertices of the graphs. Several decades
later in [1], Anderson and Livingston presented the standard definition of zero-divisor graphs on commutative
rings with identity. In this study, the authors let R be a commutative ring and let Z(R) be its set of zero-
divisors and considered the zero-divisor of R as a simple undirected graph having vertex set Z(R)\ {0} in which
two distinct vertices x,y are adjacent if and only if xy = 0. DeMeyer et al. utilized this standard definition
on commutative semigroups with zero in [6, 7]. Further, several other studies (e.g., [4, 5, 7]) have extensively
explored the zero-divisor graph of commutative semigroups.

For any set X contained in aring R, let X* = X\{0}. Foraring R,let Z(R)={x € R:zy =0 or zz =
0 for some y,z € R*} is the set of zero-divisors of R and T(R) = {z € R : zy = 0 = zz for some y,z €
R*} is the set of two-sided zero-divisors of R. Afterwards, Redmond generalized the zero-divisor graph to

noncommutative rings in numerous ways in [8] and presented the following:

e Let R be a noncommutative ring. We define a directed graph G(R) with vertices Z(R)* = Z(R) \ {0},

where x — y is an edge between distinct vertices x and y if and only if xy = 0.

e Let R be a noncommutative ring. We define an undirected graph G(R) with vertices Z(R)* = Z(R)\{0},

where distinct vertices  and y are adjacent if and only if either zy =0 or yx = 0.

e Let R be a noncommutative ring. We define an undirected graph G(R) with vertices T(R)* = T(R)\ {0},

where distinct vertices x and y are adjacent if and only if zy = yzr = 0.

*Correspondence:emrahkorkmaz90@gmail.com
2010 AMS Mathematics Subject Classification: 20M20, 97K30

2264

0 This work is licensed under a Creative Commons Attribution 4.0 International License.



https://orcid.org/0000-0002-4085-0419

KORKMAZ/Turk J Math

o Let R be anoncommutative ring. We define an undirected graph G(R) with vertices Z(R)* = Z(R)\{0},

where distinct vertices = and y are adjacent if and only if zy = yx = 0.

The third definition coincides with the usual definition of the zero-divisor graph when R is a commutative ring.
These concepts carry over to noncommutative semigroups by taking the semigroup S with zero instead of R.

There are several papers (e.g., [12-14]) presenting the study of these definitions for noncommutative semigroups.

Notation 1.1 For o € SP,, we denote the domain of a by dom(«), the image of o by im(a) and the
codomain of a by codom(a). A partial transformation « : dom(a) C X, — im(a) C X,, is called strictly
partial provided that dom(a) # X, , that is, codom(a) # (. For a € SP,, and i € X,,, we will write ic = — if
and only if i € codom(a). The strictly partial transformation on X, will be denoted by 0 if codom(a) = X, .

For any «, 8 € P, we shall use the notation xa instead of a(x), so that the composition (xa)f is written as

z(af).

Let SP; =8P, \ {0}. For n > 2, we define the following sets:

L =L(SP,) ={ae8P,:aB=0for some €SP},

R =R(SP,) ={aeSP,:va=0 for some e SP;},

T =T(SP,) ={a€S8P,:abf=0=~a for some 3,7 € SP}},

Z =7Z(8P,) ={a€eS8P,:af=0or ya=0 for some 3,7 € SP}}

which are called the set of left zero-divisors, right zero-divisors, two-sided zero-divisors, and the set of zero-
divisors of SP,,. Let S,, T, Pn, and SP,, = P, \ 7, be the symmetric group, (full) transformations
semigroup, partial transformations semigroup and strictly partial transformations semigroup on the set X,, =
{1,...,n}, respectively. It is known that |P,| = (n+1)", |T,| = (n)" and |SP,| = (n+1)" —n™. The reader
is referred to [9, 10] and [11] for more details in semigroup theory and graph theory, respectively.

The paper is organized as follows: In Section 1, we summarize relevant definitions and notations. In
Section 2, we show that L = R =T = Z = SP,,. Therefore, if we consider Redmond’s generalizations for SP,, ,
then the last two definitions of Redmond’s coincide. In [14], Toker showed that SP, is the set of two-sided
zero-divisors of P,,. He has also analysed the zero-divisor graph of P,,. For this reason, we consider the simple
directed graph, denoted by I'(SP,,), (that is, with no multiple edges or loops) with vertices SP) = SP,, \ {0},
where a — [ is an edge between distinct vertices a and g if and only if @8 = 0. Then, we analyse of this
graph in terms of its properties. In Section 3, we consider the simple undirected graph, denoted by I'(SP,,),
(that is with no multiple edges or loops) with vertices SP; = SP, \ {0}, where oo — 3 is an edge between
distinct vertices o and § if and only if either a5 = 0 or Sa = 0. Then, we analyse of this graph in terms of

its properties.

2. A directed zero-divisor graph of SP,,
In this section, we consider the simple directed graph I' = I'(SP,,) = (V(T'), E(T")) with vertices SP}, where

a — 8 is an edge between distinct vertices o and 3 if and only if o = 0. For «,8 € V(I'), we will write
a < B to mean that o — § is an edge and 8 — « is an edge. We begin with some results about (left/right)

zero-divisors of SP,, that will be needed to analyse I". The following simple lemma is stated without proof.
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Lemma 2.1 Given o, € SP,,, the following statements are satisfied:
(i) af =0 if and only if im(a) C codom(B).
(ii) o? =0 if and only if im(a) C codom(c).

Lemma 2.2 Forn > 2,
L=R=T=7=8P,.

Proof It is clear that 0 € L, R, SP,,. For any 0 # o € SP,,, let

aZ(Al A ATH)’

aq e o728 —

where 1 <r <n—1. For 1 <1i<n, if we take

)i i€ codom(c) )= icim(a)
W= {— i€ X, \ codom(a) and &y = {z i€ X, \im(a)

then it is clear that 8,7 € SP},. Since im(8) C codom(«), it follows quickly from Lemma 2.1 that Sa = 0,
and so SP,, C R. Similarly, since im(a) C codom(7), it follows quickly from Lemma 2.1 that oy = 0, and so
SP,, C L. The proof of the lemma follows since T'=LNR and Z=LUR.

Let G = (V, E) is a directed graph, where V is a finite nonempty set of vertices and E C {{u,v} : u,v €
V,u # v} is the set of edges. We will write v — v to mean that {u,v} € E. For u,v € V if there exist distinct
vertices vg,v1,...,v, € V(G) such that vy = u,v, = v and v;—1 — v; is an edge in E for each in 1 < i < n,
then v — v; — -+ = v,_1 — v is called a path from u to v of length n in G. If there is a path between any
two vertices in GG, then G is called strongly connected graph. The length of the shortest path between w and v
in G denoted by dg(u,v). The diameter of the graph G is defined by diam(G) = max{dg(u,v) : u,v € V}.

Lemma 2.3 T is strongly connected and diam(T") = 2 for n > 2.

Proof We define 6;; € SP,, such that dom(;;) = {i} and i0;; = j for 1 <i<n and 1 <j <n. Itis clear
that 6,; € V(I'). Now let Q@ ={0;; e SP,:1<i<nand1l<j<n}and A € V(I') \ Q. Since there exist
i,j € X,, such that i € im(\) and j € codom(A), then it follows quickly from Lemma 2.1 that A <> 6;; is a
path. Moreover, for any i,j,k,l € X, such that ¢ # k # j, if we consider the transformations 6;;,0x € €2,
then 6;; <> 0 is a path. Hence, we prove that I' is strongly connected and diam(I') < 2. Now let a and
B be distinct nonadjacent vertices of I'. Then, it is clear that there are i,j € X,, such that ¢ ¢ im(a) and
J € codom(B). Therefore, o — 6,; — 3 is path, and so diam(I") = 2, as required.

The girth of the G, denoted by gr(G), is the length of the shortest cycle in G. The girth is infinite if G
does not contain any cycles.

Lemma 2.4 gr(I') =2 for n> 2.

Proof For any two distinct 7,j € X,,, if we take 0,;,0;; € Q which is defined as in Lemma 2.3, then it is clear

that 6;; — 0;; — 6,; is a cycle of length 2 in I', and so gr(I") = 2.
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Let v be a vertex of G. The open out-neighbourhood of v is N*(v) = {u € V : {v,u} € E} and the
open in-neighbourhood of v is N~ (v) = {u € V : {u,v} € E}. The closed out-neighbourhood of v is N t[v] =
Nt (v)U{v} and the closed in-neighbourhood of v is N~ [v] = N~ (v)U{v}. The indegree degq(v") of a vertex
v is degs(vT) = [N T(v)] and the outdegree deg(v") of a vertex v is deg(v™) = N~ (v)|. Furthermore, the
mazimum indegree and the mazimum outdegree are denoted by A~ (G) and AT (G), respectively. 6~ (G) is the

minimum indegree and 01 (G) is the minimum outdegree.

Lemma 2.5 For n > 2, let a € V(I') with |im(«)| =r and |codom(a)| = k. Then,

(n+1)"" =1 im(a) € codom(a)

d
(n+1)""—2 im(a) C codom(a) o

degr(a™) = {
(k+1)"—k" =1 im(a) € codom(c)
(k+1)"—k™ -2 im(a) C codom(c).

degr(a™) = {

Proof Let a € V(T') such that |im(a)| =7 and |codom(a)| =k (for 1 <r<n—-1and 1<k<n-1).
Case 1: Let im(a) € codom(a). If B € NT(a), then o = 0, and so im(a) C codom(S). This means that

if i € im(a), then i = — and if ¢ € X, \ im(«) then i8 € X,, or i8 = — . However, there are (n+ 1)""
elements in this way including 0, and so degp(a™) = (n+1)""" —1. If § € N~ (), then Sa = 0, and so
im(B) C codom(«). This means that for j € X,,, we have j§ € codom(«) or j8 = —. It is clear that there

are (k4 1)" elements in this way including 0. But, we must exclude those elements which are chosen from
codom(a) such that codom(B) = (), as those elements do not belong to V(T'). Since there are k™ elements in
this way, we have degp(a™) = (k+1)" — k" — 1.

Case 2: Let im(a) C codom(c). By considering a? = 0, the proof is similar to above case.

Lemma 2.5 gives us immediately the proof of the next corollary.
Corollary 2.6 AT(I)=(n+1)"t -1, A-T)=n"-1, 67 (T)=n, and 5~ (T)=2"—1 for n > 2.
A nonempty subset D of V(G) is called a dominating set of G if |J N [v] = V(G). The domination

veD

number v(G) is the minimum cardinality of a dominating set of G'.

Theorem 2.7 yv(I') =n for n > 2.

Proof For 1 < i < n,let D= {a; € V(') : dom(ay;) = im(ay;) = i} and v € V(I') \ D. Since there
exists j € codom(v), it follows quickly that «;;v = 0. Furthermore, for any two distinct 4,5 € X,,, it is

clear that aj;a; = 0. This yields, |J NT[A] = V(I'), that is, D is a dominating set of I'. For 1 < i < n,
AED

let B;; € V(I') such that codom(B;;) = @ and jB; = j for all ¢ # j € X,. Then, we consider the set
A={B8i; e V(I') : 1 <i < n}. Now suppose that a € V(I') is an adjacent 3; and §;; for any two distinct
i,7 € X,. This yields, af8;; = 0 and af;; = 0 if and only if o = 0. Similarly, 8500 = 0 and S0 = 0 if and
only if v = 0. That is contradiction. Moreover, for any two distinct 4, j € X,,, it is clear that 8;; and 3;; are
nonadjacent vertices. Thus, we show that if B is a minimum dominating set of ", then |B| > |A| = n. Since

D is a dominating set of I" and |D| = n, this proves the assertion.
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The chromatic number of G is the minimum number of colours required to colour all vertices in G so

that no two adjacent vertices receive the same colour and it is denoted by x(G).

A complete graph G is a simple graph such that every vertex is adjacent to every other vertex. A complete
graph on n vertices is denoted by K™. A subset C' of V is called a cligue in G if u — v for all distinct u,v € C'.
The clique number of G, denoted by w(G), is the greatest integer r such that G has a clique K.

For n > 2, we give a lower bound for the clique number of I' in the following theorem.

Theorem 2.8 If n>2, then w(l') > (r+1)" " =1 for 1<r<n-—1.

Proof The proof is the same in the given [14, Theorem 3.7].
For any graph G, it is proved in [3, Corollary, 6.2] that x(G) > w(G). Thus, we have the next corollary.

Corollary 2.9 If n> 2, then x(I) > (r+1)" " =1 for 1<r<n-—1.

3. Undirected zero-divisor graph of SP,,

In this section, we define the simple undirected graph T' = I'(SP,,) = (V(T), E(T)) with vertices SP},, where
«a — [ is an edge between distinct vertices a and f if and only if either af =0 or fa = 0.

Let G = (V, E) is an undirected graph, where V is a finite nonempty set of vertices and E C {(u,v) :
u,v € V,u # v} is the set of edges. We will write u — v to mean that (u,v) € E. For u,v € V if there exist
distinct vertices vg,v1, ..., v, € V such that vg = u,v, = v and v;_, —v; is an edge in F for eachin 1 <3 < n,
then w —v; — -+ —wv,_1 — v is called a path from u to v of length n in G. If there is a path between any

two vertices in G, then G is called connected graph. The length of the shortest path between u and v in G is
denoted by dg(u,v). The diameter of the graph G is defined by diam(G) = max{dg(u,v) : u,v € V}.

Lemma 3.1 T is connected and diam(T') =2 for n > 2.

Proof As defined in Lemma 2.3, let §;; € SP,, such that dom(6;;) = {i} and i6;; = j for 1 < i < n and
1 < j < n. Then, we consider the set Q= {6;; € SP,:1<i<nand1<j<n}. Itis clear that Q C V(T).
Now assume that a and 3 be distinct vertices of T.

Case 1: af =0 or fa=0. Then, a — 3 is a path.

Now suppose that af # 0 and Sa # 0.

Case 2: Let im(a) <n—1 and im(5) <n —2. Then, it is clear that there exist i,j € X,, such that i & im(«)
and j € codom(f). Now if we consider the transformation 6;; € Q, then af;; =0 and 6,;8 = 0. This yields,
a —0;; — B is a path.

Case 3: Let im(a) < m —2 and im(8) < n — 1. The result follows by using an argument similar to the
aforementioned case.

Case 4: Let im(a) =n—1 and im(8) =n — 1.

Subcase 1: For, i,j € X,,, let i € im(«) and j & im(B) such that i # j. It is clear that there exists k € X,
such that k € codom(B). Now if we consider the transformation 6, € Q, then af;; = 0 and ;8 = 0. This
yields, o — 0;, — 3 is a path.
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Subcase 2: For i € X,,, let i € im(«) and @ & im(8). If we consider the transformation 6;; € 2, then af;; =0
and (6;; = 0. This yields, a — 8;; — 3 is a path.
Thus, we prove that I' is connected and diam(f) < 2. If we take 0;; and 0j; in €2, then it is clear that 0;;
and 6;; are nonadjacent vertices in I', and so diam(T") = 2.

The girth of the G, denoted by gr(G), is the length of the shortest cycle in G. The girth is infinite if G

does not contain any cycles.

Lemma 3.2 gr(T) =3 for n > 2.
Proof Since T is a simple undirected graph, it is clear that gr(T') > 3. Let 4,4, and k be three distinct elements
of X,,. If we consider the set 2 C V(T') as defined in Lemma 3.1, then we have a cycle 6;; — 0i; — Ori — 0,
and so gr(T) = 3.

The degree of a vertex v of V, denoted degz(v), is the number of adjacent vertices to v in G. The

maximum vertex degree and minimum vertex degree in G are denoted by A(G) and §(G), respectively.

Lemma 3.3 For n >2, let a € V(T) with |im(a)| =7 and |codom(a)| = k. Then,

de 7(04) _ n+ 1)77,—7“ + (kﬁ + 1)” — k" — (k + l)n—r -1 Zm(()é) Z COdOm(a)
Sy (n+1)" "+ (k+1)" — k" — (k+1)"" =2 im(a) C codom(a).

Proof Let a € V(T) such that |im(a)| =7 and |codom(a)| =k (for 1<r<n—1and 1<k<n-1).
Case 1: Let im(a) € codom(«). For € SP,,, if af =0, then im(a) C codom(B). For v € SP,,, if ya =0,
then im(vy) C codom(c). Using a similar method as in the proof of Lemma 2.5, it can be easily obtained that

there are (n+1)"""—(k+1)" — k™ adjacent vertices of a in V(I'). Now we must exclude those elements which
are counted twice. For A € SP,,, if al = 0 = Aa, then im(a) C codom(A) and im(A) C codom(«). This
means that if i € im(«), then 1A = — and if ¢ € X, \ im(«), then i\ € codom(a) or iA = —. However, there
are (k+1)""" elements in this way including 0. Thus, degp(o) = (n+1)"""+ (k+1)" —k" —(k+1)""" -1,
as required.

Case 2: Let im(a) C codom(c).

The proof can be obtained by using an argument similar to the aforementioned case in view of the fact that we
consider « is adjacent itself.

Lemma 3.3 gives us immediately the proof of the next corollary.

Corollary 3.4 AD)=n+1)"t+n"—(n—-1)"-n""1t—~1 and §(T) =n+2" -3 for n > 2.

A nonempty subset D of V is called a dominating set of G if every vertex v € V is either in D or
is adjacent to a vertex in D. The dominating number (G) of a graph G is the minimum cardinality of a

dominating set in G.

Theorem 3.5 y(I') =n for n > 2.
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Proof For 1 <i<n,let D= {a; € V() :dom(a;) =im(a;) =i} and A € V(T')\ D. Since there exists
Jj € X,, such that j € codom(}A), it follows quickly that c;;A = 0. Furthermore, for any two distinct 4, j € X,
it is clear that oy;a;; = 0. This yields, D is a dominating set of T.For1<i<n,let B € V(f) such that
codom(B;;) =i and jB;; = j for all i # j € X,,. Then, we consider the set A= {B; € V(I'): 1 <i <n}. Now
suppose that o € V(T') is an adjacent (;; and Bj; for any two distinct 4,5 € X,,. This yields, af;; = 0 and
af;; =0 if and only if o = 0. Similarly, 8500 =0 and ;0 = 0 if and only if o = 0. That is a contradiction.
Moreover, for any two distinct 4, j € X,,, it is clear that §;; and f;; are nonadjacent. Thus, we show that if B
is a minimum dominating set of T', then |B| > |A| = n. Since D is a dominating set of I' and |D| = n, this
proves the assertion.

Recall that we use u — v to mean that (u,v) € E(G). By taking into account of this, the chromatic

number, clique, and clique number for G are defined as in Section 2.

For n > 2, we give a better lower bound for the clique number of T in the following theorem.

Theorem 3.6 If n > 2, then w(T) > (r—i—l)”_’“—i—W—l for1<r<n-1.

Proof Let A = {ki,ks,...,k;} C X, for 1 <r <n-—1. Let gj; € SP, such that dom(8;;) = j and jB;; =1
for all 7,j € A with ¢« < j. Now we consider the sets:
B = {aeS8P,:AC codom(a) and @ #im(a) C A},

It is clear that B # () # C and if « € BUC, then a € V(T'). For any two distinct 8,A € BUC, it is easy
to see that im(8) C codom(\) and im(\) C codom(3). This yields, 8 and A are adjacent vertices in V/(T')

from Lemma 2.1. Thus, T has a clique K'BYCl. Since |[BUC| = |B|U|C| = (r+1)"" -1+ w, it follows

quickly that w(T) > (r +1)" " + @ —1for 1 <r <n-—1, as required.
For any graph G, it is proved in [3, Corollary, 6.2] that x(G) > w(G). Hence, we have the following

corollary.

Corollary 3.7 If n > 2, then x(T') > (r+1)""" + T(TTH) —1lforl<r<mn-1.

Together, our study contributes to the research conducted on zero divisor graphs by revealing the

properties of the extended zero-divisor graphs of SP,,.
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