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Abstract: In this paper, we have characterized the nature and form of solutions of the following nonlinear delay-
differential equation:

fn(z) +

n−1∑
i=1

bif
i(z) + q(z)eQ(z)L(z, f) = P (z),

where bi ∈ C , L(z, f) are a linear delay-differential polynomial of f ; n is positive integers; q , Q and P respectively
are nonzero, nonconstant and any polynomials. Different special cases of our result will accommodate all the results of
[J. Math. Anal. Appl., 452(2017), 1128-1144; Mediterr. J. Math., 13(2016), 3015-3027; Open Math., 18(2020), 1292-
1301]. Thus our result can be considered as an improvement of all of them. We have also illustrated a handful number
of examples to show that all the cases as demonstrated in our theorem actually occur and consequently the same are
automatically applicable to the previous results.
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1. Introduction, results and examples
Throughout the paper, we denote by f a meromorphic function in the complex plane C and related to
the function, we assume that the readers are familiar with the basic terms like T (r, f) , N(r, f) , m(r, f) ,
of Nevanlinna value distribution theory of meromorphic functions (see [6, 8]). The notation S(r, f) will be
used to define any quantity satisfying S(r, f) = o(T (r, f)) as r → ∞ , possibly outside a set E of r of finite
logarithmic measure. In addition, we will respectively use the symbols ρ(f) , λ(f) and τ(f) to denote the
order, exponent of convergent and type of f . The symbol L(f) will be used to represent a linear differential
polynomial in f with polynomial coefficients. Also, throughout this paper, by card(S) , we mean the cardinality
of a set S , i.e. the number of elements in S .

Considering the nonlinear differential equation

L(f)− p(z)fn(z) = h(z),

in 2001, Yang [17] investigated about the transcendental finite order entire solutions f of the equation, where
p(z) is a nonvanishing polynomial, h(z) is entire and n ≥ 4 is an integer.
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In 2010, Yang-Laine [18] showed that the equation

f(z)2 + q(z)f(z + 1) = p(z),

where p(z) , q(z) are polynomials, admits no transcendental entire solutions of finite order.
In the last two decades researchers mainly studied (see [1, 9, 11, 17, 20], etc.) about the following three

distinct features of solutions of shift or delay-differential or differential equations:
i) existence and nonexistence conditions,
ii) order of growth, and
iii) different types of forms of solutions.

Next, let us consider the exponential polynomial f(z) , defined by the form

f(z) = P1(z)e
Q1(z) + · · ·+ Pk(z)e

Qk(z), (1.1)

where Pj ’s and Qj ’s are polynomials in z . Steinmetz [14] showed that (1.1) can be written in the normalized
form

f(z) = H0(z) +H1(z)e
ω1z

t

+ · · ·+Hm(z)eωmzt

, (1.2)

where Hj are either exponential polynomials of order < t or ordinary polynomials in z , the leading coefficients
ωj are pairwise distinct and m ≤ k .

Let co(W) be the convex hull of a set W ⊂ C which is the intersection of all convex sets containing W .
If W contains finitely many elements then co(W) is obtained as an intersection of finitely many half-planes,
then co(W) is either a compact polygon with a nonempty interior or a line segment. We denote by C(co(W)) ,
the circumference of co(W) . If co(W) is a line-segment, then C(co(W)) is equals to twice the length of this
line segment. Throughout the paper, we denote W = {ω̄1, ω̄2, . . . , ω̄m} and W0 = W ∪ {0} .

Nowadays, to find the form of exponential polynomials as solution of certain nonlinear differential-
difference equation has become an interesting topic among researchers (see [3, 4, 16]). Most probably, in
this regard, the first attempt was made by Wen–Heittokangas–Laine [15]. In 2012, they considered the equation

f(z)n + q(z)eQ(z)f(z + c) = P (z), (1.3)

where q(z) , Q(z) , P (z) are polynomials, n ≥ 2 is an integer, c ∈ C\{0} . Wen–Heittokangas–Laine [15] also
pointed out that for a nonconstant polynomial α(z) and d ∈ C , every solution f of the form (1.2) reduces to
a function which belongs to one of the following classes:

Γ1 = {eα(z) + d},

Γ0 = {eα(z)}

and classified finite order entire(meromorphic) solutions of (1.3) as follows:

Theorem 1.1 [15] Let n ≥ 2 be an integer, let c ∈ C\{0} , q(z) , Q(z) , P (z) be polynomials such that Q(z) is
not a constant and q(z) ̸≡ 0 . Then the finite order entire solutions f of Equation (1.3) satisfies the following
conclusions:
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(a) Every solution f satisfies ρ(f) = degQ and is of mean type.

(b) Every solution f satisfies λ(f) = ρ(f) if and only if P (z) ̸≡ 0 .

(c) A solution f belongs to Γ0 if and only if P (z) ≡ 0 . In particular, this is the case if n ≥ 3 .

(d) If a solution f belongs to Γ0 and if g is any other finite order entire solution of (1.3), then f = ηg ,
where ηn−1 = 1 .

(e) If f is an exponential polynomial solution of the form (1.2), then f ∈ Γ1 . Moreover, if f ∈ Γ1\Γ0 , then
ρ(f) = 1 .

Inspired by Theorem 1.1, in 2016, Liu [12] replaced f(z + c) by f (k)(z + c) in (1.3) and for two polynomials
p1(z) , p2(z) and a nonconstant polynomial α(z) , introduced two new classes of solutions:

Γ′
1 = {p1(z)eα(z) + p2(z)},

Γ′
0 = {p1(z)eα(z)}

to obtain the following theorem.

Theorem 1.2 [12] Under the same situation as in Theorem 1.1 with k ≥ 1 , the finite-order transcendental
entire solution f of

f(z)n + q(z)eQ(z)f (k)(z + c) = P (z) (1.4)

should satisfy the results (a), (b), (d) and

(1) a solution f belongs to Γ′
0 if and only if P (z) ≡ 0 . In particular, this is the case if n ≥ 3 ,

(2) if f is an exponential polynomial solution of (1.4) of the form (1.2), then f ∈ Γ′
1 .

Recently, Liu–Mao–Zheng [13] considered ∆cf(z) instead of f(z+c) in (1.3) and proved the following theorem.

Theorem 1.3 [13] Under the same situation as in Theorem 1.1, the finite order entire solutions f of the
equation

f(z)n + q(z)eQ(z)∆cf(z) = P (z), (1.5)

satisfies the results (a), (b) and

(1) λ(f) = ρ(f)− 1 if and only if P (z) ≡ 0 . In particular, this is the case if n ≥ 3 ,

(2) if n ≥ 3 or P (z) ≡ 0 , f is of the form f(z) = A(z)eωzs , where s = degQ , ω is a nonzero constant and
A(z)(̸≡ 0) is an entire function satisfying λ(A) = ρ(A) = degQ − 1 . In particular, if degQ = 1 , then
A(z) reduces to a polynomial,

(3) if f is an exponential polynomial solution of (1.5) of the form (1.2), then f is of the form

f(z) = H0(z) +H1(z)e
ω1z,

where H1(z) , H2(z) are nonconstant polynomials and ω1 is a nonzero constant satisfying eω1c = 1 .
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In 2017, Li–Yang [10] considered the following form of equation

fn(z) + an−1f
n−1(z) + · · ·+ a1f(z) + q(z)eQ(z)f(z + c) = P (z), (1.6)

where ai ∈ C and proved the following results.

Theorem 1.4 [10] Under the same situation as in Theorem 1.1, the finite order entire solutions f of Equation
(1.6) satisfies the results (a), (d) and

(1) if zero is a Borel exceptional value of f(z) , then we have an−1 = · · · = a1 = P (z) ≡ 0 ,

(2) if P (z) ≡ 0 , then we have zn−1 + an−1z
n−2 + · · · + a1 = (z + an−1/n)

n−1 . Furthermore, if there exists
i0 ∈ {1, . . . , n − 1} such that ai0 = 0 , then all of the aj(j = 1, . . . , n − 1) must be zero as well and we
have λ(f) < ρ(f) ; otherwise we have λ(f) = ρ(f) ,

(3) a solution f belongs to Γ0 if and only if P (z) ≡ 0 and there exists an i0 ∈ {1, . . . , n − 1} such that
ai0 = 0 ,

(4) when n ≥ 3 , if there exists an i0 ∈ {1, . . . , n− 1} such that ai0 = 0 and card{z : p(z) = p′(z) = p′′(z) =

0} ≥ 1 or card{z : p(z) = p′(z) = 0} ≥ 2 , where p(z) = zn + an−1z
n−1 + · · ·+ a1z , then f belongs to Γ0

and an−1 = · · · = a1 = 0 ≡ P (z) .

In the same paper, Li–Yang [10] also proved the following result.

Theorem 1.5 [10] If f is an exponential polynomial solution of the form (1.2) of Equation (1.6) for n = 2

and a1 ̸= 0 , then the following conclusions hold.

(1) When m ≥ 2 , there exists i, j ∈ {1, 2, . . . ,m} such that ωi = 2ωj .

(2) When m = 1 , then f ∈ Γ1 . Moreover, if f ∈ Γ1\Γ0 , then ρ(f) = 1 , f(z) = Ke
1
c (2kπi−log

2d+a1
d )z ,

Q(z) = 1
c (2kπi− log 2d+a1

d )z , q(z) = − 2d+a1

d and d2 + a1d = P (z) , where K, d ∈ C\{0} and k ∈ Z .

We now introduce the generalized linear delay-differential operator of f(z) ,

L(z, f) =

k∑
i=0

bif
(ri)(z + ci) ( ̸≡ 0), (1.7)

where bi, ci ∈ C , ri are nonnegative integers, c0 = 0 , r0 = 0 . In view of the above theorems it is quiet
natural to characterize the nature of exponential polynomial as solution of certain nonlinear complex equation
involving generalized linear delay-differential operator. In this regard, we consider the following nonlinear
delay-differential equation

fn(z) +

n−1∑
i=1

aif
i(z) + q(z)eQ(z)L(z, f) = P (z), (1.8)
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where ai ∈ C , n are nonnegative integers; q , Q , P respectively are nonzero, nonconstant, any polynomials.
We also introduce, for any polynomials pi(z) and nonconstant polynomials αi(z) , a new class of solution as
follows:

Γ′
2 = {p1(z)eα1(z) + p2(z)e

α2(z) + p3(z)}.

Now, we are at a state to present our main result which improves all the above mentioned results as follows:

Theorem 1.6 Under the same situation as in Theorem 1.1, the finite order entire solutions f of equation (1.8)
satisfies the following conclusions.

(i) Every solution f satisfies ρ(f) = degQ and is of mean type.

(ii) If zero is a Borel exceptional value of f(z) , then we have an−1 = · · · = a1 = P (z) ≡ 0 . Conversely, if
P (z) ≡ 0 and there exists an i0 ∈ {1, . . . , n − 1} such that ai0 = 0 , then all of aj ’s (j = 1, . . . , n − 1)

must be zero and we have λ(f) < ρ(f) ; otherwise we have λ(f) = ρ(f) .

(iii) If a solution f belongs to Γ′
0 , then an−1 = · · · = a1 = P (z) ≡ 0 . Conversely, let P (z) ≡ 0 and there

exists an i0 ∈ {1, . . . , n− 1} such that ai0 = 0 , then either λ(f) = ρ(f)− 1 for ci = cj , 1 ≤ i, j ≤ k or
f belongs to Γ′

0 .

(iv) Let n ≥ 3 . If at least one ai0 = 0 (i0 = 1, 2, . . . , n − 1) and p(z) = zn + an−1z
n−1 + · · · + a1z

such that card{z : p(z) = p′(z) = p′′(z) = 0} ≥ 1 or card{z : p(z) = p′(z) = 0} ≥ 2 , then
P (z) ≡ 0 = an−1 = · · · = a1 = 0 and f ∈ Γ′

0 . Moreover, card{z : p(z) = p′(z) = 0} ≥ 2 is not
possible.

(v) Let f be given by (1.2), which is a solution of (1.8) for n = 2 and a1 ̸= 0 . Then the following conclusions
hold:

(a) when m ≥ 2 , there exists i, j ∈ {1, 2, . . . ,m} such that ωi = 2ωj . In this case, f ∈ Γ′
2 .

(b) when m = 1 , then f takes the form f(z) = H0(z) +H1(z)e
ω1z

t , i.e. f ∈ Γ′
1 . In this case,

(I) either t = 1 , ρ(f) = 1 and H0(z) , H1(z) are polynomials and Q(z) is a polynomial of degree 1

(II) or H0(z) = −a1

2 , P (z) = −a2
1

4 , H2
1 (z) =

b0a1

2 q(z)eQt−1(z) and
L(z, f) = b0H0(z)

(III) or H0(z) = −a1

2 , P (z) = −a2
1

4 , H2
1 (z) = −q(z)eQt−1(z)A1(z) and L(z, f) = A1(z)e

ω1z
t , where

A1(z) =
k∑

i=0

biH̃1(z+ci)e
ω1(z+ci)

t−ω1z
t such that H̃1(z+ci) are the delay-differential polynomial

of H1(z) .

Remark 1.1 Note that Cases (i)–(iv) and (v) of Theorem 1.6 improve Theorems 1.4 and 1.5, respectively.
Also, since L(z, f) includes f (k)(z + c) and ∆cf(z) , Theorem 1.6 improves Theorems 1.2-1.3 as follows:

(I) Cases (i), (ii) and (iii)–(iv) of Theorem 1.6 improve Case (a), (b) and (1) of each of Theorems 1.2-1.3,
respectively.

(II) Case (v)–(b) of Theorem 1.6 improves, respectively, Case (2) and Case (3) of Theorem 1.2 and
Theorem 1.3.
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This following three examples clarify Cases (ii)-(iii).

Example 1.1 Take L(z, f) = f ′′(z+ c) . Then the function f = e2z satisfies the equation f2− 1
4e

2zL(z, f) = 0

such that e2c = 1 . Clearly, 0 = λ(f) = ρ(f)− 1 . This example clarifies Theorem 1.2 as well.

Example 1.2 Let L(z, f) = ∆cf(z) . Then the function f = eαz satisfies the equation f2 − 1
2e

αzL(z, f) = 0

such that eαc = 3 . Clearly, 0 = λ(f) = ρ(f)− 1 . This example also satisfies Theorem 1.3.

Example 1.3 Let L(z, f) = f(z + 1) + f ′(z + 1) − f ′′(z + 1) . Then the function f = (z + 1)ez satisfies the
equation f2 − (z + 1)ez−1L(z, f) = 0 . Note that, here c1 = c2 = c3 = 1 and f ∈ Γ′

0 .

The next example satisfies Case (iv).

Example 1.4 Let L(z, f) = f(z + log 2) + f ′′(z + πi) . Then the function f = eiz satisfies the equation
f3+qe2izL(z, f) = 0 , where q = 1

e−π−2i . Note that, here p(z) = z3 and card{z : p(z) = p′(z) = p′′(z) = 0} = 1 .
Also, a2 = a1 = 0 ≡ P (z) and f ∈ Γ′

0 .

By the following example, it is clear that the Case (v)–(a) occurs significantly.

Example 1.5 Take L(z, f) = f ′(z + log 4) − 4f(z + log 3) and m = 2 . Then the function f = e2z − ez + 1

satisfies the equation f2 − 2f + 1
4e

2zL(z, f) = −1 . Note that here f ∈ Γ′
2 .

The following two examples show that the Case (v)–(b)–(I) actually holds.

Example 1.6 We take L(z, f) = f(z + c) . Then the function f = d + eαz satisfies the equation f2 − df −
eαzL(z, f) = 0 such that eαc = 1 . Here, P (z) ≡ 0 .
Also, the same function satisfies f2 − 3df + eαzL(z, f) = −2d2 such that eαc = −1 . Here, f ∈ Γ′

1 . Here,
P (z) ̸≡ 0 . This example is true for Theorem 1.5 as well.

Example 1.7 Put L(z, f) = f(z+log 2)+ f ′(z+πi)+ f ′′(z+2πi) and m = 1 . Then the function f = 2+3ez

satisfies the equation f2 − 3f − 3
2e

zL(z, f) = −2 . Here, P (z) ̸≡ 0 .
Also, let L(z, f) = f(z+log 3)−f ′(z+log 4)+f ′′(z+log 2) and m = 1 . Then the function f = 3+ ez satisfies
the equation f2 − 3f − ezL(z, f) = 0 . Here, P (z) ≡ 0 .

Next example shows that the Case (v)–(b)–(II) actually occurs.

Example 1.8 Let L(z, f) = 3f(z)+f ′(z+log 2)−3f ′′(z+2πi) and m = 1 . Then the function f = −a1

2 +2e3z

satisfies the equation f2 + a1f + 8
3a1

e6zL(z, f) = −a2
1

4 . Note that here b0 = 3 , H0 = −a1

2 and so, L(z, f) =

− 3a1

2 = b0H0 .

Next example shows that the Case (v)–(b)–(III) actually occurs.
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Example 1.9 Let L(z, f) = f(z)−f(z+log 2)+ 1
2f

′(z+log 2)+ 2
9f

′(z+log 3)− 1
9f

′′(z+log 3) and m = 1 . Then

the function f = −a1

2 + ze2z satisfies the equation f2 + a1f − ze2zL(z, f) = −a2
1

4 . Note that here, q(z) = −z ,

Q(z) = 2z , Qt−1(z) = 0 . Also, A1(z) =
∑5

i=0

(
biH̃1(z + ci)e

2ci
)
= z . So, H2

1 (z) = z2 = −q(z)eQt−1(z)A1(z)

and L(z, f) = A1(z)e
2z =

∑5
i=0

(
biH̃1(z + ci)e

2ci
)
e2z = ze2z .

2. Lemmas
We give the following well-known results which are important to prove our theorems.

Lemma 2.1 [5] Let f be a nonconstant meromorphic function and c1 , c2 be two complex numbers such that
c1 ̸= c2 . Let f(z) be a meromorphic function with finite order ρ , then for each ϵ > 0 ,

m

(
r,
f(z + c1)

f(z + c2)

)
= S(r, f(z)).

Lemma 2.2 [8, Corollary 2.3.4] Let f be a transcendental meromorphic function and k ≥ 1 be an integer.

Then m
(
r, f(k)(z)

f(z)

)
= S(r, f(z)) .

Combining Lemmas 2.1 and 2.2 we have the following lemma:

Lemma 2.3 Let f(z) be a transcendental meromorphic function of finite order and let c ∈ C , k ≥ 1 be an

integer. Then m
(
r, f(k)(z+c)

f(z)

)
= S(r, f(z)) .

Proof

m

(
r,
f (k)(z + c)

f(z)

)
= m

(
r,
f (k)(z + c)

f(z + c)
.
f(z + c)

f(z)

)

≤ m

(
r,
f (k)(z + c)

f(z + c)

)
+m

(
r,
f(z + c)

f(z)

)
= S(r, f(z + c)) + S(r, f(z)) = S(r, f(z)).

2

Lemma 2.4 [10] Let f be a nonconstant meromorphic function of hyper order less than 1 and c ∈ C . Then

N(r, 1/f(z + c)) = N(r, 0; f(z)) + S(r, f).

Lemma 2.5 [19] Suppose fj(z) (j = 1, 2, ..., n + 1) and gk(z) (k = 1, 2, ..., n) (n ≥ 1) are entire functions
satisfying the following conditions:

(i)
∑n

j=1 fj(z)e
gj(z) ≡ fn+1(z) ,

(ii) The order of fj(z) is less than the order of egk(z) for 1 ≤ j ≤ n + 1 , 1 ≤ k ≤ n and furthermore, the
order of fj(z) is less than the order of egh(z)−gk(z) for n ≥ 2 and 1 ≤ j ≤ n+ 1 , 1 ≤ h < k ≤ n . Then
fj(z) ≡ 0 , (j = 1, 2, ..., n+ 1) .
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Lemma 2.6 [2, 6] Let f be a meromorphic function and suppose that

R(z) = anf(z)
n + · · ·+ a0(z)

has small meromorphic coefficients aj(z) , an ̸= 0 in the sense of T (r, aj) = S(r, f) . Moreover, assume that

N

(
r,

1

R

)
+N(r, f) = S(r, f).

Then

R(z) = an

(
f +

an−1

nan

)
.

The following lemma gives the Nevanlinna characteristic and counting functions of an exponential polynomial.

Lemma 2.7 [14] Let f(z) be given by (1.2). Then

T (r, f) = C(co(W0))
rt

2π
+ o(rt).

If H0(z) ̸≡ 0 , then
m(r, 1/f) = o(rt),

while if H0(z) ≡ 0 , then

N(r, 1/f) = C(co(W ))
rt

2π
+ o(rt).

Next, we proof the following lemmas which are the core parts of our paper.

Lemma 2.8 Let f be given by (1.2) which is a solution of (1.8) for n = 2 and ωi ̸= 2ωj . If the points
0, ω1, ω2, . . . , ωm are collinear, then m = 1 .

Proof Assume on the contrary to the assertion that m ≥ 2 . Take ωi = ξiω , for each i ∈ {1, 2, . . . ,m} , where
the constants ξi ∈ R\{0} are distinct, ξ0 = 0 and ω ∈ C\{0} . Moreover, we may suppose that ξi > ξj for
i > j . Equation (1.8) can be written as

m∑
i,j=0

Hi(z)Hj(z)e
(ξi+ξj)ωzt

+ a1

m∑
l=0

Hl(z)e
ξlωzt

+q(z)eQt−1(z)

[
A0(z)e

vtz
t

+

m∑
h=1

Ah(z)e
(vt+ξhω)zt

]
= P (z), (2.1)

where Qt−1(z) = Q(z) − vtz
t with degQt−1(z) ≤ t − 1 and A0(z) =

∑k
i=0 biH

(ri)
0 (z + ci) , Ah(z) =∑k

i=0 biH̃h(z+ ci)e
ωh(z+ci)

t−ωhz
t , h = 1, 2, . . . ,m such that H̃h(z+ ci) are the delay-differential polynomial of

Hh(z) .
Now we consider following two cases to derive contradiction.
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Case 1. Let ξm > 0 . Note that max{ξi + ξj : i, j = 0, 1, . . . ,m} = 2ξm . Since L(z, f) ̸≡ 0 , then at least
one of Ah(z) , h = 0, 1, . . . ,m is not vanishing.
Case 1.1. Let all Ah(z) = 0 , h = 1, 2, . . . ,m . Then A0(z) ̸≡ 0 ., i.e. H0(z) ̸≡ 0 . If 2ξmω ̸= vt , applying
Lemma 2.5 on (2.1), we obtain H2

m(z) ≡ 0 , a contradiction. Next, let 2ξmω = vt . Since, ωi ̸= 2ωj , applying
Lemma 2.5 on (2.1), we obtain H2

1 (z) ≡ 0 , a contradiction.
Case 1.2. Let at least one of Ah(z) ̸= 0 , for h = 1, 2, . . . ,m .
Case 1.2.1. Let A0(z) ̸= 0 . Then by Lemma 2.5, from (2.1), there exists one h0 ∈ {0, 1, . . . ,m} such that
2ξmω = vt + ξh0ω . Otherwise, we have H2

m(z) ≡ 0 , a contradiction.
Case 1.2.1.1. If h0 = m , then we have vt = ξmω . Since 2ξi ̸= ξj , j = 0, 1, . . . ,m and 2ξ1 ̸∈ {ξi + ξj :

0 ≤ i, j ≤ m, (i, j) ̸= (1, 1)} and 2ξ1 ̸∈ {ξm + ξi : i = 0, 1, . . . ,m} . By Lemma 2.5, we obtain H2
1 (z) ≡ 0 , a

contradiction.
Case 1.2.1.2. If h0 ∈ {0, 1, . . . ,m − 1} , since 0 = ξ0 < ξ1 < ξ2 < · · · < ξm−1 < ξm and 2ξi ̸= ξj ,
i, j = 0, 1, . . . ,m , then for m > h0 ,

2ξm − ξh0
+ ξm > max{2ξm − ξh0

+ ξi : i = 0, 1, . . . ,m− 1}.

Also, 2ξm = max{ξi + ξj : i, j = 0, 1, . . . ,m} . In view of Lemma 2.5, we obtain q(z)eQt−1(z)Am ≡ 0 , i.e.
q(z) ≡ 0 , a contradiction.
Case 1.2.2. Let A0(z) = 0 and H0(z) ̸= 0 . Then (2.1) becomes

m∑
i,j=0

Hi(z)Hj(z)e
(ξi+ξj)ωzt

+ a1

m∑
l=0

Hl(z)e
ξlωzt

+q(z)eQt−1(z)
m∑

h=1

Ah(z)e
(vt+ξhω)zt

= P (z). (2.2)

Then similar as Case 1.2.1, by Lemma 2.5, from (2.2), we have there exists one h0 ∈ {1, 2, . . . ,m} such that
2ξmω = vt + ξh0

ω and proceeding similarly as done in Case 1.2.1, we can get a contradiction.
Case 1.2.3. Let A0(z) = 0 and H0(z) = 0 . Then (2.1) becomes

m∑
i,j=1

Hi(z)Hj(z)e
(ξi+ξj)ωzt

+ a1

m∑
l=1

Hl(z)e
ξlωzt

+q(z)eQt−1(z)
m∑

h=1

Ah(z)e
(vt+ξhω)zt

= P (z). (2.3)

Next, similar as Case 1.2.1, by Lemma 2.5, from (2.3), we have there exists one h0 ∈ {1, 2, . . . ,m} such that
2ξmω = vt + ξh0

ω and adopting the same method as done in Case 1.2.1, we get a contradiction.

Case 2. ξm < 0 . Note that min{ξi + ξj : i, j = 0, 1, . . . ,m} = 2ξ1. Similar as Case 1, we divide the
following cases.
Case 2.1. Let all Ah(z) = 0 , h = 1, 2, . . . ,m . Then A0(z) ̸≡ 0 ., i.e. H0(z) ̸≡ 0 . If 2ξ1ω ̸= vt , applying
Lemma 2.5 on (2.1), we obtain H2

1 (z) ≡ 0 , a contradiction. Next, let 2ξ1ω = vt . Since, ωi ̸= 2ωj , applying
Lemma 2.5 on (2.1), we obtain H2

m(z) ≡ 0 , a contradiction.
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Case 2.2. Let at least one of Ah(z) ̸= 0 for h = 1, 2, . . . ,m .
Case 2.2.1. Let A0(z) ̸= 0 . Then by Lemma 2.5, there exists one h0 ∈ {0, 1, . . . ,m} such that 2ξ1ω = vt+ξh0ω .
Otherwise, we have H2

1 (z) ≡ 0 , a contradiction.
Case 2.2.1.1. If h0 = 1 , then we have vt = ξ1ω .
Since, 2ξi ̸= ξj and 2ξm ̸∈ {ξi + ξj : 0 ≤ i, j ≤ m, (i, j) ̸= (m,m)} and 2ξm ̸∈ {ξ1 + ξi : i = 0, 2, . . . ,m} . By
Lemma 2.5, we obtain H2

m(z) ≡ 0 , a contradiction.
Case 2.2.1.2. If h0 ∈ {0, 2, 3, . . . ,m} , since 0 = ξ0 < ξ1 < ξ2 < · · · < ξm−1 < ξm and 2ξi ̸= ξj ,
i, j = 0, 1, . . . ,m , then

2ξ1 − ξh0
+ ξ1 < min{2ξ1 − ξh0

+ ξi : i = 0, 2, 3, . . . ,m}.

Also, min{ξi + ξj : i, j = 0, 1, . . . ,m} = 2ξ1 . By Lemma 2.5, we obtain q(z)eQt−1A1(z) ≡ 0 , i.e. q(z) ≡ 0 , a
contradiction.
Case 2.2.2. Let A0(z) = 0 and H0(z) ̸= 0 . Then in this case, we get Equation (2.2). Similar as Case 2.2.1,
by Lemma 2.5, there exists one h0 ∈ {2, 3, . . . ,m} such that 2ξ1ω = vt + ξh0

ω and proceeding similarly as
adopted in Case 2.2.1, we can get a contradiction.
Case 2.2.3. Let A0(z) = 0 and H0(z) = 0 . Then, we have Equation (2.3). Similar as Case 2.2.1, by Lemma
2.5, there exists one h0 ∈ {2, 3, . . . ,m} such that 2ξ1ω = vt + ξh0ω . Next, adopting the same method as
executing in Case 2.2.1, we get a contradiction. 2

Lemma 2.9 If m ≥ 2 and ωi ̸= 2ωj for any i ̸= j , then f of the form (1.2) is not a solution of (1.8) for
n = 2 .

Proof Suppose on the contrary to the assertion that, m ≥ 2 . Substituting f of the form (1.2) into (1.8), we
get

F (z) = f2(z) + a1f(z)− P (z)

= G(z) +

m∑
i, j = 0

ωi + ωj ̸= 0

Hi(z)Hj(z)e
(ωi+ωj)z

t

+ a1

m∑
l=1

Hl(z)e
ωlz

t

, (2.4)

where G(z) = H0(z)(H0(z) + a1)− P (z) is either an exponential polynomial of degree < t or a polynomial in
z .
Therefore, also

F (z) = −q(z)eQ(z)L(z, f) = −q(z)eQ(z)
m∑

h=0

Ah(z)e
ωhz

t

(2.5)

such that Ah(z) is defined as in(2.1).
Now we set

X1 = {ω1, . . . , ωm, ωi + ωj : ωi + ωj ̸= 0, i, j = 1, . . . ,m},

X2 = {ω1, . . . , ωm, 2ω1, . . . , 2ωm},

X3 = {2ω1, . . . , 2ωm}.
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Clearly, by the theory of convexity, we have ωi + ωj = 1
2 · 2ωi + (1 − 1

2 ) · 2ωj , i.e. co(X1) = co(X2) . Since,
X3 ⊂ X2 , we have co(X3) ≤ co(X2) , respectively.
Next, we consider the following cases to show a contradiction.

Case 1. If all Ah(z) = 0 for h = 1, . . . ,m , then we have A0(z) ̸= 0 , which implies H0(z) ̸= 0 . Then
(2.5) becomes F (z) = −q(z)eQ(z)A0(z) . Then applying Lemma 2.7, we get

N

(
r,

1

F (z)

)
= N

(
r,

1

A0(z)

)
= o(rt). (2.6)

Subcase 1.1. Let G(z) ≡ 0 . Applying Lemma 2.7 on (2.4), we have

N

(
r,

1

F (z)

)
= C(co(X1))

rt

2π
+ o(rt). (2.7)

Therefore, (2.6) and (2.7) yields a contradiction.

Subcase 1.2. Let G(z) ̸≡ 0 . Applying Lemma 2.7 on (2.4), we have m
(
r, 1

F (z)

)
= o(rt) and then

m

(
r,

1

F (z)

)
+N

(
r,

1

F (z)

)
= T (r, F (z)) +O(1) = 2T (r, f(z)) + S(r, f)

= 2

(
C(co(W0))

rt

2π
+ o(rt)

)
+ S(r, f)

=⇒ N

(
r,

1

F (z)

)
= 2C(co(W0))

rt

2π
+ o(rt). (2.8)

Therefore, using (2.6) and (2.8), we get a contradiction.

Case 2. Let there exists some h0 ∈ {1, 2, . . . ,m} such that Ah0
(z) ̸= 0 . Now, we denote the following

set as

V = {ωh0
: h0 ∈ {1, 2, . . . ,m} for which Ah0

(z) ̸= 0} and V0 = V ∪ {0}.

Since, V ⊆ W and V0 ⊆ W0 , then C(co(V )) ≤ C(co(W )) and C(co(V0)) ≤ C(co(W0)) , respectively.
Case 2.1. Let A0(z) ≡ 0 and H0(z) ≡ 0 . Then using Lemma 2.7 on (2.5), we have

N

(
r,

1

F (z)

)
= N

(
r,

1

L(z, f)

)
+O(log r) = C(co(V ))

rt

2π
+ o(rt). (2.9)

Case 2.1.1. If G(z) ̸≡ 0 . Then similar as Subcase 1.2, we have Equation (2.8). From (2.8) and (2.9), we obtain
a contradiction by C(co(W0)) ≥ C(co(V0)) ≥ C(co(V )) = 2C(co(W0)) .
Case 2.1.2. If G(z) ≡ 0 , using Lemma 2.7 on (2.4), we have Equation (2.7). Using (2.7) and (2.9), from
C(co(W )) ≥ C(co(V )) = C(co(X1)) = C(co(X2)) ≥ C(co(X3)) = 2C(co(W )) , we get a contradiction.
Case 2.2. Let A0(z) ≡ 0 and H0(z) ̸≡ 0 . Then proceeding similarly as done in Case 2.1, we get a contradiction.

Case 2.3. Let A0(z) ̸= 0 , which implies H0(z) ̸≡ 0 . Then using Lemma 2.7 on (2.5), we have m
(
r, 1

L(z,f)

)
=
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o(rt) and then

N

(
r,

1

F (z)

)
= N

(
r,

1

L(z, f)

)
+O(log r)

= T (r, L(z, f)) + o(rt) = C(co(V0))
rt

2π
+ o(rt). (2.10)

Case 2.3.1. If G(z) ̸≡ 0 . Then, from (2.8) and (2.10), we get C(co(W0)) ≥ C(co(V0)) = 2C(co(W0)) , a
contradiction.
Case 2.3.2. If G(z) ≡ 0 . Using (2.7) and (2.10), we get

C(co(V0)) = C(co(X1)). (2.11)

Now, since m ≥ 2 , by Lemma 2.8, co(W0) cannot be a line-segment. Therefore, co(W0) must be a polygon
with nonempty interior. If 0 is not a boundary point of co(W0) , then we have co(W0) = co(W ) . Then we have
C(co(W )) = C(co(W0)) ≥ C(co(V0)) = C(co(X1)) = C(co(X2)) ≥ C(co(X3)) = 2C(co(W )) , a contradiction.
So, 0 is a boundary point of co(W0) . We choose the other nonzero corner points of co(W0) among the points
ω1, . . . , ωm are u1, . . . , ut , t ≤ m such that 0 ≤ arg(ui) ≤ arg(ui+1) ≤ 2π for 1 ≤ i ≤ t− 1 . Hence,

C(co(W0)) = |u1|+ |u2 − u1|+ · · ·+ |ut − ut−1|+ |ut|. (2.12)

Let X4 = {u1, 2u1, 2u2, . . . , 2ut, ut} . Therefore, the points 2u1, 2u2, . . . , 2ut are the corner points of co(X4) .
However, since t ≤ m , co(X4) may have more corner points. Then, using (2.12), we have

C(co(X3)) > C(co(X4)) > |2u1 − u1|+ |2u2 − 2u1|+ · · ·+ |2ut − 2ut−1|+ |ut − 2ut|

= |u1|+ 2|u2 − u1|+ · · ·+ 2|ut − ut−1|+ |ut|

> |u1|+ |u2 − u1|+ · · ·+ |ut − ut−1|+ |ut|

= C(co(W0)).

Therefore,
C(co(X1)) = C(co(X2)) ≥ C(co(X3)) > C(co(W0)) ≥ C(co(V0)),

which contradicts (2.11).
Hence, the proof is completed. 2

Lemma 2.10 Let f be given by (1.2), which is a solution of (1.8) for n = 2 , then f takes the form,

f(z) = H0(z) +H1(z)e
ω1z

t

,

i.e. f ∈ Γ′
1 . In this case,

(I) either t = 1 , ρ(f) = 1 and H0(z) , H1(z) are polynomials and Q(z) is a polynomial of degree 1

(II) or H0(z) = −a1

2 , P (z) = −a2
1

4 , H2
1 (z) =

b0a1

2 q(z)eQt−1(z) and L(z, f) = b0H0(z)

(III) or H0(z) = −a1

2 , P (z) = −a2
1

4 , H2
1 (z) = −q(z)eQt−1(z)A1(z) and L(z, f) = A1(z)e

ω1z
t , where A1(z) =∑k

i=0 biH̃1(z + ci)e
ω1(z+ci)

t−ω1z
t such that H̃1(z + ci) are the delay-differential polynomial of H1(z) .
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Proof For n = 2 , (1.8) becomes

f2(z) + a1f(z) + q(z)eQ(z)L(z, f) = P (z). (2.13)

By Lemma 2.9, we have m = 1 , i.e. (1.2) becomes

f(z) = H0(z) +H1(z)e
ω1z

t

, (2.14)

where H0(z) , H1(z)( ̸≡ 0) are either exponential polynomials of order < t or ordinary polynomials in z .
Substituting (2.14) in (2.13), we have

H1(z)(2H0(z) + a1)e
ω1z

t

+H2
1 (z)e

2ω1z
t

+ q(z)eQt−1(z)A0(z)e
vtz

t

+q(z)eQt−1(z)A1(z)e
(vt+ω1)z

t

= P (z)−H0(z)(H0(z) + a1), (2.15)

where Qt−1(z) = Q(z) − vtz
t with degQt−1(z) ≤ q − 1 and A0(z) =

∑k
i=0 biH

(ri)
0 (z + ci) , A1(z) =∑k

i=0 biH̃1(z+ci)e
ω1(z+ci)

t−ω1z
t such that H̃h(z+ci) are the delay-differential polynomial of Hh(z) for h = 1, 2 .

Since, L(z, f) ̸≡ 0 , then at least one of A0(z) and A1(z) is nonvanishing. Next, we divide the following cases
to prove our result.

Case 1. Let A1(z) ≡ 0 . Then A0(z) ̸≡ 0 , which implies H0(z) ̸≡ 0 .
If vt ̸= ω1, 2ω1 or vt = ω1 , applying Lemma 2.5 on (2.15), we have H2

1 (z) ≡ 0 , a contradiction.
If vt = 2ω1 , then, applying Lemma 2.5 on (2.15), we have

H1(2H0(z) + a1) = 0,

H2
1 (z) + q(z)eQt−1(z)A0(z) = 0,

P (z)−H0(z)(H0(z) + a1) = 0.

Since, H1(z) ̸≡ 0 . Therefore, solving these three equations, we have H0(z) = −a1

2 , P (z) = −a2
1

4 and

H2
1 (z) =

b0a1

2 q(z)eQt−1 . Therefore, in this case L(z, f) = b0H0(z) .
Case 2. Let A0(z) ≡ 0 . Then A1(z) ̸≡ 0 .
Subcase 2.1. Let H0(z) ≡ 0 . If vt = ±ω1 , using Lemma 2.5 on (2.15), we have H1 ≡ 0 , a contradiction.
Subcase 2.2. Let H0(z) ̸≡ 0 . If vt = −ω1 , in view of Lemma 2.5, from on (2.15), we have H1 ≡ 0 , a

contradiction. If vt = ω1 , similar as Case 1, we have H0(z) = −a1

2 , P (z) = −a2
1

4 and H2
1 (z) = −q(z)eQt−1A1 .

Also, in this case L(z, f) = A1e
ω1z

t .
Case 3. Let A0(z) ̸≡ 0 and A1(z) ̸≡ 0 , which implies H0(z) ̸≡ 0 .
If vt = −ω1 or vt ̸= ±ω1 , using Lemma 2.5 on (2.15), we have H1 ≡ 0 , a contradiction. If vt = 2ω1 , by Lemma
2.5, from (2.15), we have A1 ≡ 0 , a contradiction.
If vt = ω1 , applying Lemma 2.5 on (2.15), we have

H1(z)(2H0(z) + a1) + q(z)eQt−1(z)
k∑

i=0

biH
(ri)
0 (z + ci) = 0, (2.16)
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H2
1 (z) + q(z)eQt−1(z)

k∑
i=0

biH̃1(z + ci)e
ω1(z+ci)

t−ω1z
t

= 0, (2.17)

P (z)−H0(z)(H0(z) + a1) = 0. (2.18)

Now, we show that H0(z) is a polynomial. If possible let, H0(z) is transcendental. Then from (2.18), we have

2T (r,H0(z)) + S(r,H0(z)) = T (r, P ) = O(log r),

a contradiction.
Next, from (2.16), we have

H1(z) = β(z)eQt−1(z), (2.19)

where β(z) = − q(z)
∑k

i=0 biH
(ri)
0 (z+ci)

2H0(z)+a1
. Since, f is entire, then β(z) is a polynomial. Substituting (2.19) in

(2.17), we have

β2(z) + q(z)

k∑
i=0

biβ̃(z + ci)e
Qt−1(z+ci)−Qt−1(z)+ω1(z+ci)

t−ω1z
t

= 0, (2.20)

where β̃(z + ci) is a delay-differential polynomial in H0(z) and Qt−1(z) .
Note that deg(ω1(z + ci)

t − ω1z
t) = t− 1 and deg(Qt−1(z + ci)−Qt−1(z)) ≤ t− 2 . If t ≥ 2 , applying Lemma

2.5 on (2.20), we have q(z) = 0 , a contradiction. Therefore, t = 1 , i.e. H1(z) is a polynomial. Hence, f(z)

reduces to the form
f(z) = H0(z) +H1(z)e

ω1z,

where H0(z) and H1(z) are polynomials. So, f ∈ Γ′
1 . 2

3. Proof of the Theorem 1.6 (i)

Suppose that f be a finite order nonvanishing entire solution of (1.8). Using Lemma 2.5, we have f is
transcendental. Otherwise, we will get L(z, f) ≡ 0 , which yields a contradiction. In view of Lemma 2.3,
from (1.8), we get

n T (r, f) + S(r, f) = m

(
r, fn(z) +

n−1∑
i=1

aif
i(z)

)

= m(r, P (z))− q(z)eQ(z)L(z, f))

= m(r, eQ(z)) +m(r, L(z, f)) +O(1)

= m(r, eQ(z)) +m

(
r,
L(z, f)

f(z)

)
+m(r, f(z)) +O(1)

= T (r, eQ(z)) + T (r, f(z)) + S(r, f)

=⇒ (n− 1) T (r, f) ≤ T (r, eQ(z)) + S(r, f). (3.1)
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Therefore, for n ≥ 2 , ρ(f) ≤ degQ(z) . If ρ(f) < degQ(z) , then comparing order of growth of (1.8), we get a
contradiction. So, ρ(f) = degQ(z) . Now, from the definition of type, we have

τ(f) = limr→∞
T (r, f)

rρ(f)
= limr→∞

T (r, f)

rdegQ(z)
∈ (0,∞),

i.e. f is of mean type.

4. Proof of the Theorem 1.6 (ii)

First, we prove that if zero is a Borel exceptional value of f(z) , then we have an−1 = · · · = a1 = 0 ≡ P (z) .
Adopting the similar process as done in the proof of Theorem 1.2(b) in [10], using Lemmas 2.3, 2.4, 2.6 and
replacing f(z+ c) by L(z, f) , we can prove our result. In this regards, only the equation (10) of [10] is replaced
by the following lines

N

(
r,

1

G(z)

)
= N

(
r,

1

q(z)eQ(z)L(z, f)

)
≤ N

(
r,

1

q(z)

)
+N

(
r,

1

L(z, f)

)
+ S(r, f)

≤ (k + 1) N

(
r,

1

f(z)

)
+ S(r, f) = S(r, f).

Next, we prove the converse part of Theorem 1.6 (ii). For this, using Lemmas 2.3, 2.6 and replacing
f(z + c) by L(z, f) , we proceed similar up to equation (17) in the proof of Theorem 1.2(c) in [10]. Here, the
equations (15), (16) and (17) of [10], respectively, will be

T

(
r,
L(z, f)

f(z)

)
= S(r, f), (4.1)

(
f(z) +

an−1

n− 1

)n−1

= fn−1(z) +

n−1∑
i=1

aif
i−1(z) = −q(z)eQ(z)L(z, f)

f(z)
(4.2)

and

ai+1 =
(n− 1)!

i!(n− 1− i)!

(
an−1

n− 1

)n−1−i

, i = 0, 1, ..., n− 2. (4.3)

Case 1. If there exists i0 ∈ {1, . . . , n− 1} such that ai0 = 0 , then from (4.3), we have all ai must be equal to
zero for i = 1, 2, . . . , n− 1 . Therefore, (4.2) becomes

f(z)n−1 = −q(z)eQ(z)L(z, f)

f(z)
.
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By using (4.1), for each ϵ > 0 , we have

(n− 1)N

(
r,

1

f(z)

)
= N

r,
1

q(z)L(z,f)
f(z)


≤ N

(
r,

1

q(z)

)
+N

r,
1

L(z,f)
f(z)

+ S(r, f) = S(r, f).

Therefore, λ(f) < ρ(f) .
Case 2. If there exists no i0 ∈ {1, . . . , n− 1} such that ai0 = 0 , then from (4.1) and (4.2), we have

N

(
r,

1

f(z) + an−1

n−1

)
≤ N

(
r,

1

q(z)

)
+N

r,
1

L(z,f)
f(z)

+ S(r, f) = S(r, f).

Using the second main theorem, we have

T (r, f) ≤ N

(
r,

1

f(z) + an−1

n−1

)
+N

(
r,

1

f(z)

)
+N (r, f(z))

= N

(
r,

1

f(z)

)
+ S(r, f).

Therefore, ρ(f) ≤ λ(f) but we know that λ(f) ≤ ρ(f) . Therefore, λ(f) = ρ(f) .

5. Proof of the Theorem 1.6 (iii)

Suppose that f be a nonvanishing finite order entire solution of (1.8). Similar as Theorem 1.6 (i), f is
transcendental.

First suppose that f belongs to Γ′
0 , which means that 0 is a Borel exceptional value of f . Thus, from

Theorem 1.6 (ii), we have an−1 = · · · = a1 = 0 ≡ P (z) .
Next, we suppose that P (z) ≡ 0 and there exists an i0 ∈ {1, . . . , n− 1} such that ai0 = 0 , then from the

converse part of Theorem 1.6 (ii), we have all of the ai(i = 1, . . . , n− 1) must be zero as well and λ(f) < ρ(f) .
From Hadamard factorization theorem, we can see that

f(z) = h(z)eα(z), (5.1)

where α(z) is a polynomial and h(z) is the canonical product of zeros of f with degα(z) = ρ(f) = degQ(z) = t

and ρ(h) = λ(h) = λ(f) < ρ(f) .
Substituting (5.1) in (1.8) with all ai = 0 , we have

hn(z)enα(z) + q(z)eQ(z)+α(z)

(
k∑

i=0

Li(z, h)e
∆ci

α(z)

)
= 0, (5.2)
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where

Li(z, h) = bi

[
h(z + ci)Mki

(α′(z + ci), α
′′(z + ci), . . . , α

(ki)(z + ci))

+h′(z + ci)Mki−1(α
′(z + ci), α

′′(z + ci), . . . , α
(ki−1)(z + ci))

+ · · ·+ h(ki−1)(z + ci)M1(α
′(z + ci)) + h(ki)(z + ci)

]
.

Clearly, ρ(Li(z, h)) < t . Rewriting (5.2), we have

hn(z)enαt−1(z)enutz
t

+ q(z)eαt−1(z)+Qt−1(z)

(
k∑

i=0

Li(z, h)e
∆ci

α(z)

)
e(ut+vt)z

t

= 0 (5.3)

such that α(z) = utz
t + αt−1(z) and Q(z) = vtz

t +Qt−1(z) , where ut , vt are nonzero constants and αt−1(z) ,
Qt−1(z) are of degree ≤ t− 1 .
In view of Lemma 2.5, we can easily say that (5.3) is possible only when (n − 1)ut = vt . Therefore, (5.3)
becomes

hn(z) + q(z)e(1−n)αt−1(z)+Qt−1(z)

(
k∑

i=0

Li(z, h)e
∆ci

α(z)

)
= 0. (5.4)

Here, the following cases arise.

Case 1: Let ρ(h) < t− 1 > 0 . If deg{(1− n)αt−1(z) +Qt−1(z)} = t− 1 , applying Lemma 2.5, we have
q(z) = 0 , a contradiction. If deg{(1 − n)αt−1(z) + Qt−1(z)} < t − 1 , from deg{∆ciα(z)} = t − 1 , by using
Lemma 2.5, again we have q(z) = 0 , a contradiction.

Case 2: Let ρ(h) ≥ t− 1 > ρ(h)− 1 , t− 1 > 0 . By logarithmic derivative lemma [5, Corollary 2.5], for
each ϵ > 0 , we have

m

(
r,
Li(z, h)

h(z)

)
= O(rρ(h)−1+ϵ) +O(log r). (5.5)

Since, h is entire, using (5.4) and (5.5), we have

T

(
r,

k∑
i=0

Li(z, h)

h
e∆ci

α(z)

)

= m

(
r,

k∑
i=0

Li(z, h)

h
e∆ci

α(z)

)
+N

(
r,

k∑
i=0

Li(z, h)

h
e∆ci

α(z)

)

≤
k∑

i=0

T
(
r, e∆ci

α(z)
)
+O(rρ(h)−1+ϵ) +O(log r). (5.6)
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Therefore, using (5.4) and (5.6), we obtain for each ϵ > 0

(n− 1)N

(
r,

1

h(z)

)
≤ N

(
r,

1∑k
i=0

Li(z,h)
h e∆ci

α(z)

)
+O(log r)

≤ T

(
r,

k∑
i=0

Li(z, h)

h
e∆ci

α(z)

)
+O(log r)

≤
k∑

i=0

T
(
r, e∆ci

α(z)
)
+O(rρ(h)−1+ϵ) +O(log r). (5.7)

Now, if ci = cj for all 1 ≤ i, j ≤ k , say, c , then (5.7) becomes

(n− 1)N

(
r,

1

h(z)

)
≤ T

(
r, e∆cα(z)

)
+O(rρ(h)−1+ϵ) +O(log r).

Thus, from the above equation, we have λ(h) ≤ t − 1 . But in this case, λ(h) = ρ(h) ≥ t − 1 . Therefore,
λ(f) = λ(h) = t− 1 = ρ(f)− 1 .

If t−1 = 0 , we get ρ(h) = λ(h) < ρ(f) = t = 1 . If h(z) is transcendental, then h(z) has infinitely many

zeros. Now noting that ∆ciα(z) is of degree t− 1 , from (5.7), we get N
(
r, 1

h(z)

)
= O(log r) , a contradiction.

Therefore, h(z) will be a polynomial. So, f belongs to Γ′
0 .

Case 3: Let ρ(h) ≥ t . Then from (5.7), we obtain λ(h) < ρ(h) , a contradiction. So, h(z) will be a
polynomial. Therefore, f belongs to Γ′

0 .

6. Proof of the Theorem 1.6 (iv)

Suppose that f is a nonvanishing finite order entire solution of (1.8). Similarly, f is transcendental. If possible,
let P (z) ̸≡ 0 . By the assumption, card{z : p(z) = p′(z) = p′′(z) = 0} ≥ 1 or card{z : p(z) = p′(z) = 0} ≥ 2 ,
where p(z) = zn + an−1z

n−1 + · · · + a1z , we mean that p(z) has at least one zero with multiplicity at least
three or at least 2 zeros with multiplicities at least two. In view of Lemma 2.3 and the second main theorem,
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we have

n T (r, f) = T (r, fn(z) + an−1f
n−1(z) + · · ·+ a1f(z))

≤ N

(
r,

1

fn + an−1fn−1 + · · ·+ a1f − P (z)

)
+N

(
r,

1

fn + an−1fn−1 + · · ·+ a1f

)
+N(r, fn + an−1f

n−1 + · · ·+ a1f)

≤ N

(
r,

1

q(z)L(z, f)

)
+ (n− 2) T (r, f) + S(r, f)

≤ T (r, q(z)L(z, f)) + (n− 2) T (r, f) + S(r, f)

≤ N (r, q(z)L(z, f)) +m (r, q(z)L(z, f)) + (n− 2) T (r, f) + S(r, f)

≤ m

(
r, q(z)

L(z, f)

f(z)

)
+m(r, f(z)) + (n− 2) T (r, f) + S(r, f)

≤ T (r, f) + (n− 2) T (r, f) + S(r, f)

≤ (n− 1) T (r, f) + S(r, f),

a contradiction. Therefore, P (z) ≡ 0 .
Since, at least one ai0 = 0 (i0 = 1, 2, . . . , n− 1) , using Theorem 1.6 (iii), we have f ∈ Γ′

0 .
Note that, since, P (z) ≡ 0 and at least one ai0 = 0 (i0 = 1, 2, . . . , n− 1) , from Theorem 1.6 (ii), we have all of
aj ’s (j = 1, . . . , n− 1) must be zero. Therefore p(z) is of the form zn , which implies card{z : p(z) = p′(z) =

0} ≥ 2 is not possible.

7. Proof of the Theorem 1.6 (v)

From Theorem 1.6 (i), we have ρ(f) = deg(Q(z)) . Using Lemmas 2.8–2.10, we can prove the result.

8. Concluding remarks

From the paper we know that, taking the notion of convexity in background, the key idea was to use the
value distribution theory of exponential polynomials introduced by Steinmetz [14], that makes this direction of
research more interesting. Particularly, it was shown that any exponential polynomial solution must reduce to
a specific form.

In view of the discussions in the paper, the existence of solutions of another equation namely

fn(z) +

n−1∑
i=1

aif
i(z) +

n−1∑
j=1

qj(z)e
Qj(z)Lj(z, f) = P (z),

where n ≥ 2 , Li(z, f) ’s are defined as in (1.7), would also be of highly interesting.
Further, in this regard, the matter of concern will be weather it is possible to find out the conclusions

(i)–(v) in Theorem 1.6. In that case, the value of m in (1.2) as a solution f of the above equation also deserves
attention. The possibility to find out any other conclusions under some new conditions might also be explored.
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