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Abstract: Given modules AR and RB , RB is called absolutely AR -pure if for every extension RC of RB , A⊗B →
A ⊗ C is a monomorphism. The class Fl−1(AR) ={RB : RB is absolutely AR -pure} is called the absolutely pure
domain of a module AR . If RB is divisible, then all short exact sequences starting with B is RD-pure, whence B is
absolutey A -pure for every RD -flat module AR . Thus the class of divisible modules is the smallest possible absolutely
pure domain of an RD -flat module. In this paper, we consider RD -flat modules whose absolutely pure domains contain
only divisible modules, and we referred to these RD-flat modules as rd -indigent. Properties of absolutely pure domains
of RD -flat modules and of rd -indigent modules are studied. We prove that every ring has an rd -indigent module, and
characterize rd -indigent abelian groups. Furthermore, over (commutative) SRDP rings, we give some characterizations
of the rings whose nonprojective simple modules are rd -indigent.
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1. Introduction and preliminaries
Throughout, R will denote an associative ring with identity, and modules will be unital right R -modules, unless
otherwise stated. For any ring R , we denote by R -Mod, the category of left R -modules. For a module A , the
module HomZ(A,Q/Z) is called the character module of A and denoted by A+ .

Some recent works on module theory have focused on relative injectivity rather than considering classical
injectivity (see [2, 4]). Given modules AR and BR , A is called B -subinjective if all homomorphisms B → A

extends to some E(B) → A , where E(B) is the injective envelope of B . The subinjectivity domain In−1(A)

of A contains exactly all modules B such that A is B -subinjective. It is clear that if a module B is
injective, then A is B -subinjective and so, In−1(A) contains all injective modules. Hence, the modules whose
subinjectivity domains contain only injective modules are defined to be indigent in [4]. Presently, it is not
known whether indigent module exists for an arbitrary ring, but an affirmative answer is known for Noetherian
rings ([13, Proposition 3.4]). Following ideas on subinjectivity domains, in [14], the pure-injective modules
whose subinjectivity domains contain only absolutely pure modules are defined to be pi-indigent. In contrast
to indigent modules, such pure-injective modules exist over any ring. The dual concepts of these units were
studied in [12, 18].

In [13], Durg̃un is interested in the flat analog of these notions. Namely, given modules AR and RB , RB

is called absolutely AR -pure if for every extension RC of RB , A⊗B → A⊗C is a monomorphism. The class
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Fl−1(AR) ={RB : RB is absolutely AR -pure} is called the absolutely pure domain of a module AR (see [13]).

It is clear that a module AR is flat if and only if Fl−1(AR) = R -Mod. As absolutely pure domains contains all
absolutely pure modules, the authors in [13] considered f -indigent modules as modules whose absolutely pure
domain consists of entire class of absolutely pure modules.

A submodule RA of RB is called RD -pure if for all a ∈ R , the induced map α : (R/aR) ⊗ A →
(R/aR)⊗B is a monomorphism, equivalently β : Hom(R/Ra,B) → Hom(R/Ra,B/A) is an epimorphism. An
R -module RN is said to be RD-projective (resp. RD-injective) if it is projective (resp. injective) with respect
to every RD-pure exact sequence ([20, 26]). An R -module FR is called RD -flat if the map α : F ⊗A → F ⊗B

is monic for all modules RA and RB with RA is RD -pure in RB ([8]). According to Warfields criterions
[8, 26], FR is RD -projective if and only if FR is RD -flat and pure-projective.

RD-purity is an important example of relative purity. It is the first notion of purity that appeared in the
literature. Moreover, RD-purity coincides with purity for some classes of rings not necessarily commutative. On
the other side, the RD -flat modules form an example of additive accessible category by [8, Proposition 1.1]. In
[20, Proposition 2.3], Mao observed that a left R -module B is divisible if every short exact sequence starting
with B is RD-pure.

In this paper, our aim is to reveal the links between the last trends mentioned above by considering
questions similar to the seminal work on RD-purity and RD-flatness. Along the way, an easy observation shows
that if a module RB is divisible, then RB is absolutey AR -pure for any RD -flat module AR . Thus the smallest
possible absolutely pure domain of an RD -flat module is the class of divisible modules. We consider in this
paper, the RD -flat modules whose absolutely pure domains contain only divisible modules, and we referred to
these RD-flat modules as rd -indigent.

In Section 2, we study some properties of rd -indigent modules. We also establish connections between
rd -indigent and f -indigent modules. We show that rd -indigent module exists over any ring (Proposition 2.3).
For an abelian group H , we prove that H is rd -indigent if and only if T (H) ̸= pT (H) for every prime integer
p and the torsion submodule T (H) of H . A commutative domain R is shown to be Prüfer if and only if rd -
indigent modules coincide with f -indigent modules. Furthermore, we prove that a ring R is left PP if and only
if absolutely pure domain of any RD -flat right R -module is closed under quotients (Proposition 2.8). Moreover,
a ring R is (von Neumann) regular if and only if there exists a flat rd -indigent right module (Proposition 2.9).
Over a left P-coherent ring, R is left divisible if and only if there exists an rd -indigent RD-flat right module
which embeds in a flat module (Proposition 2.11).

In Section 3, we address some questions studied and partially answered in [13] and [15]. The first question
under consideration here is to give a characterization of a ring over which every simple module is rd -indigent
or flat. Over a left Noetherian right C and a right SRDP ring R , we show that every simple right R -module is
f -indigent or projective if and only if there exists a decomposition of rings R ∼= R1×R2 , where R1 is semisimple
and R2 is either (a) right finitely

∑
-extending right hereditary ring that contains a unique singular simple right

R2 -module (up to isomorphism), or (b) n-saturated indecomposable matrix ring over a QF local ring (Theorem
3.6). For a commutative SRDP ring R , we prove that R is a C-ring and every simple R -module is rd -indigent
or projective if and only if there exists a decomposition of rings R ∼= R1 × R2 , where R1 is semisimple and
R2 is either (a) finitely

∑
-extending Noetherian hereditary ring that contains a unique singular simple module

(up to isomorphism), or (b) matrix ring over a local QF ring (Theorem 3.8).
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2. The absolutely pure domain of an RD-flat module

Following [19], an R -module RB is called divisible if Ext1(R/Ra,B) = 0 for all a ∈ R . An R -module AR is
said to be torsion-free if Tor1(A,R/Ra) = 0 for all a ∈ R . Furthermore, a module B is divisible (torsion-free)
if and only if any exact sequences starting (ending) with B is an RD-pure exact ([20]). It is clear that a right
R -module A is torsion-free if and only if A+ is divisible. We refer the reader to [20, 21, 24], for more details
about torsion-free and divisible modules. A cyclic right R -module C ∼= R/I is said to be cyclically presented
if I = aR for some a ∈ R . Thus, it is clear by the definitions that every cyclically presented right R -module
is RD -flat.

Let A be an RD-flat right R -module. It is clear that A is flat if and only if = Fl−1(AR) = R -Mod. If
a left R -module B is divisible, every short exact sequence starting with B is RD-pure, whence B is absolutey
A -pure. Thus the smallest possible absolutely pure domain of an RD -flat module is the class of divisible
modules. The next result asserts that absolutely pure domain Fl−1(A) of an RD-flat right R -module A how
small can be. It should contain the divisible modules at least.

Proposition 2.1
∩

A∈RF Fl−1(A) = {B ∈ R -Mod | B is divisible}, where RF is the class of all RD -flat
right R -modules.

Proof Let B ∈ Fl−1(A) for any A ∈ RF . Since every cyclically presented right R -module is RD -flat, for
each cyclically presented right R -module A , B is absolutely A -pure, which means that α : A⊗B → A⊗E(B)

is monic. Thus, B is divisible by [20, Proposition 2.3]. The converse is straightforward. 2

In particular, if A is an RD-flat right R -module, then we have the following relations:
{Absolutely pure left modules} ⊆ {Divisible left modules} ⊆ Fl−1(A) ⊆ R -mod.
Therefore we wonder about the RD -flat modules whose absolutely pure domain contains only divisible

modules.

Definition 2.2 An RD -flat right R -module A is called rd -indigent if Fl−1(A) ={Divisible left R -modules}.

In what follows, let F :=
⊕

a∈R R/aR for every a ∈ R . Since RD -flat right R -modules are closed under
direct sums, F is an RD-flat R -module.

The first problem that comes to mind is whether rd -indigent modules exist over all rings. A positive
answer to that problem can be given by the following result.

Proposition 2.3 The module F is rd-indigent.

Proof Recall that a left R -module B is divisible if and only if B is absolutely R/aR -pure for all a ∈ R . Thus
Proposition 2.1 and [13, Proposition 2.4] implies that Fl−1(

⊕
a∈R R/aR) =

∩
a∈R Fl−1(R/aR) ={Divisible left

modules}. Hence F is rd -indigent. 2

Recall that a ring R is said to be RD -ring if RD -pure exact sequence of R -modules is pure exact
(see [8]). Serial rings, Dedekind prime rings and two-sided Warfield rings are examples of RD rings (see,
[23]). Over an RD -ring R , every divisible left R -module is absolutely pure by [20, Proposition 2.15], but not
conversely. Furthermore, if R is two-sided semihereditary such that maximal left and right quotient rings of R
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are semisimple, then every torsion-free right R -module is flat by [3, Theorem 5.2]. In this case, every divisible
left R -module is absolutely pure.

Corollary 2.4 Over the following rings, F is f -indigent.

(1) RD -rings.

(2) Two-sided semihereditary such that maximal left and right quotient rings of R are semisimple.

Corollary 2.5 Let R be a commutative semihereditary ring. The following are equivalent for a module A .

1. A is rd-indigent.

2. Z(A) is rd-indigent, where Z(A) is the singular submodue of A .

3. A is f -indigent.

Proof (1) ⇔ (3) Over a commutative semihereditary ring R , every pure projective R -module is RD -
projective by [9, Corollary 2.11]. Thus, every R -module is RD -flat by [8, Theorem 1.4] and every divisible
R -module is absolutely pure by [20, Proposition 2.15]. Thus (1) ⇔ (3) follows.

(1) ⇔ (2) follows by [13, Proposition 5.1]. 2

There are several characterizations of Prüfer domains in the literature. A Prüfer domain is exactly a
semihereditary integral domain. Over a commutative domain, the ring R is Prüfer if and only if divisible
modules are absolutely pure (see [22]). Now, the following is easy by considering Corollary 2.5.

Corollary 2.6 The following are equivalent for a commutative domain R .

1. R is Prüfer.

2. rd-indigent modules coincide with f -indigent modules.

3. F is f -indigent.

The f -indigent abelian groups are completely characterized in [13]. Using Corollary 2.5, rd -indigent
abelian grups coincide with f -indigent groups. As a result of [13, Theorem 5.1] and [13, Corollary 5.1] we can
give the characterization of rd -indigent groups.

Corollary 2.7 The following are equivalent for an abelian group H with the torsion submodule T (H) :

(1) H is rd-indigent.

(2) For every prime integer p , T (H) ̸= pT (H) .

(3) T (H)⊗R S ̸= 0 for all singular simple modules S .

(4) Hom(T (H), S) ̸= 0 for all singular simple modules S .
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Recall that, a ring R is left PP if every principal left ideal of R is projective. A ring R is left PP
if and only if every quotient of divisible left R -module is divisible (see, [20, Corollary 2.13]). The absolutely
pure domain of an RD -flat module needs not be closed under quotients. For example, if we assume that R is
not a left PP ring, by Proposition 2.3 we conclude that the absolutely pure domain of F is not closed under
quotients.

Proposition 2.8 A ring R is left PP if and only if absolutely pure domain of any RD -flat right R -module
A is closed under quotients.

Proof First suppose that R is left PP and A is an RD -flat right R -module. Let B be a left R -module such
that B is absolutely A -pure. For any submodule C of B , we claim that B/C is absolutely A -pure. Consider
the commutative diagram below:

0 // C

h

��

// B

g

��

// B/C

f

��

// 0

0 // C // E(B) // E(B)/C // 0

with h is an isomorphism. Applying A⊗− to the diagram above gives the following diagram:

0 // A⊗ C

h∗

��

// A⊗B

g∗

��

// A⊗B/C

f∗

��

// 0

0 // A⊗ C // A⊗ E(B) // A⊗ E(B)/C // 0

Since h∗ and g∗ are monomorphisms, f∗ is a monomorphism by the Five Lemma. Furthermore, PP condition
on R gives that E(B)/C is divisible (see [20, Corollary 2.13]), and so E(B)/C ∈ Fl−1(A) . On the other hand,
consider the following diagram induced by the inclusions α : B/C → E(B/C) and β : E(B)/C → E(E(B)/C) .

B/C

α

��

f // E(B)/C

β

��
E(B/C) E(E(B)/C)

Since E(E(B)/C) is injective, there exists a homomorphism χ : E(B/C) → E(E(B)/C) such that
χα = βf . Now, applying A⊗− to the diagram above gives the following commutative diagram:

A⊗B/C

α∗

��

f∗
// A⊗ E(B)/C

β∗

��
A⊗ E(B/C)

χ∗
// A⊗ E(E(B)/C)

Since E(B)/C ∈ Fl−1(A) , β∗ is monic, and so β∗f∗ = χ∗α∗ is monic. This means that α∗ is monic, whence

B/C ∈ Fl−1(A) by [13, Proposition 2.2]. For the converse, the hypothesis implies that the absolutely pure
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domain of F is closed under quotients. But F is rd -indigent, and so any quotient of a divisible left R -module
is divisible, whence R is left PP by [20, Corollary 2.13]. 2

A ring R is said to be (von Neumann) regular provided that for any r ∈ R satisfies r ∈ rRr , equivalently
every left R -module is absolutely pure.

Proposition 2.9 Let R be a ring. The following are equivalent:

(1) R is (von Neumann) regular.

(2) All left R -modules are divisible.

(3) All RD -flat right R -modules are flat.

(4) All (nonzero) RD -flat right R -modules are rd-indigent.

(5) There exists a flat rd-indigent right R -module.

Proof (1) ⇔ (3) by [20, Corollary 2.14]. (2) ⇔ (3) , (2) ⇔ (4) and (5) ⇒ (2) are clear.

(2) ⇒ (5) By hypothesis, Fl−1(F) = R -Mod, and so by Proposition 2.3, F is flat and rd -indigent. 2

From now on, all rings are supposed to be non (von Neumann) regular, equivalently by Proposition 2.9,
there does not exist an rd -indigent flat right R -module.

Proposition 2.10 If R is a commutative noetherian hereditary ring, then
⊕

Si∈Λ Si is both an RD -flat and
f-indigent module, where Λ is the set of representatives of simple singular modules.

Proof Since R is commutative hereditary noetherian, every simple R -module is RD -projective by [5, Theorem
2.14], and so any Si ∈ Λ is RD -flat and finitely presented by [20, Lemma 2.1]. Since direct sum of any RD -flat
modules is again RD -flat,

⊕
Si∈Λ Si is RD -flat. Now, let us say that B is absolutely

⊕
Si∈Λ Si -pure for any

module B . By [13, Corollary 2.1],
⊕

Si∈Λ Si is B+ -subprojective and so by [13, Proposition 5.2], B+ is flat.
Thus coherence of R gives that B is absolutely pure. 2

Recall that a ring R is called left P-coherent if every principal left ideal of R is finitely presented ([21]).

Proposition 2.11 The following are equivalent for a left P-coherent ring R :

1. R is left divisible.

2. There exists an rd-indigent RD -flat right module that is embedded in a flat module.

3. All flat left modules are divisible.

Proof (1) ⇒ (2) Consider by Proposition 2.3 that F :=
⊕

ai∈R R/aiR is rd -indigent and RD -flat. Since R

is left divisible, by [21, Proposition 4.2], for any ai ∈ R , every R/aiR contained in a flat R -module Pi . Set
P =

⊕
Pi∈Ω Pi , for a set Ω of the flat modules Pi . Then F is embedded in a flat R -module P .

(2) ⇒ (3) Existence of an rd -indigent RD -flat right module C that is embedded in a flat module gives
that all flat left modules are absolutely C -pure by [13, Lemma 3.1], whence are divisible by rd -indigence of C .

(3) ⇒ (1) is clear by [21, Proposition 4.2]. 2
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3. Rings whose nonprojective simples are rd-indigent

In this section the rings whose simple modules are rd -indigent or torsion-free are considered. By [20, Corollary
2.5], RD -flat torsion-free right modules are flat. By using this, the following is obvious.

Proposition 3.1 The following are equivalent for a ring R :

(1) All RD -flat right modules are rd-indigent or torsion-free.

(2) All RD -flat right modules are rd-indigent or flat.

Following [18], given modules AR and BR , A is called B -subprojective if for any epimorphisms f : C →
B and any homomorphism g : A → B , there exists a homomorphism h : A → C such that fh = g . The
subprojectivity domain Pr−1(A) of A contains exactly all modules B such that A is B -subprojective. Clearly,

if B is projective, then A is vacuously B -subprojective, and so Pr−1(A) contains all projective modules. Thus,
the modules whose subprojectivity domains contains only projective modules is defined to be p-indigent in [18].

For an RD-projective right R -module A , we have the following relations:
{Flat right modules} ⊆{Torsion-free right modules} ⊆ Pr−1(A) ⊆ Mod-R .

Recall that, RD -projective modules whose subprojectivity domains contains only torsion-free (flat)
modules is defined to be (s)rdp-indigent in [15].

Lemma 3.2 Let R be a ring and A a finitely presented RD -flat right R -module. A is rd-indigent if and only
if A is rdp-indigent and R is left P-coherent.

Proof Let A be an rd -indigent right R -module such that A is B -subprojective for a right R -module B .
So [13, Corollary 2.1] implies that B+ is absolutely A -pure. Since A is rd -indigent, B+ is divisible. Hence
B is torsion-free. Also, since A is RD-projective by [20, Lemma 2.1(2)], A is rdp -indigent. Now, let C be
a divisible left R -module. Since C ∈ Fl−1(A) , C+ ∈ Pr−1(A) , and so C+ is torsion-free, whence R is left
P-coherent by [21, Theorem 2.7]. Conversely, let us say that B is absolutely A -pure for a left R -module B .
Then A is B+ -subprojective by [13, Corollary 2.1] and the hypothesis implies that B+ is torsion-free. Hence
B is divisible by the P-coherence of R . 2

Recall by [8, 26] that, a right R -module A is RD -projective if and only if A is RD -flat and pure-
projective. A ring R is called right SRDP provided that every simple right R -module is RD-projective,
equivalently every simple right R -module is RD-flat and finitely presented. A commutative ring R is SRDP
if and only if every simple R -module is both finitely presented and RD-injective. PIR rings and commutative
hereditary noetherian rings are SRDP (see [15]).

Corollary 3.3 Let R be a right SRDP ring that is not left PP. Assume that every simple right R -module is
either rd-indigent or projective. Then R has a unique nonprojective simple right module which satisfies the
conditions given below:
(1) R is left divisible.
(2) All flat left R -modules are divisible.
(3) All RD-projective right modules are embedded in a projective module.
(4) R is right Kasch.
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Proof By using the Lemma 3.2 and [15, Lemma 3.7], the proof is easy. 2

Corollary 3.4 For a right SRDP ring R that is not left divisible, the following are equivalent.

(1) All simple right R -modules are rd-indigent or projective.

(2) All simple right R -modules are rdp-indigent or projective.

(3) (i) Torsion-free right modules and the right modules with projective socle coincide.
(ii) R is a left PP ring with a unique nonprojective simple right R -module A (up to isomorphism).
Also, if R is right nonsingular, then the conditions given above are equivalent to:

(4) Singular finitely generated RD-projective right modules are rd-indigent.

Proof (1) ⇒ (2) and (2) ⇔ (3) follows by Lemma 3.2 and [15, Proposition 3.6], respectively.
(3) ⇒ (1) The hypothesis implies that nonprojective simple right R -modules are rdp-indigent by [15,

Proposition 3.6]. Since R is a left PP ring, R is left P-coherent, whence S is rd -indigent by Lemma 3.2.
(4) ⇒ (1) is clear.
(2) ⇒ (4) let A be a singular RD-projective and finitely generated right module. So by [15, Proposition

3.2], Pr−1(A) ⊆{Torsion-free modules}, whence A is rdp-indigent. Since R is left P-coherent, A is rd -indigent
by Lemma 3.2.

2

Recall by [7, 10.10] that a ring R is called a right C -ring if for all essential right ideals I of R ,
Soc(R/I) ̸= 0 . Two-sided noetherian hereditary rings, left perfect rings and right semiartinian rings are trivial
examples of such this rings.

Proposition 3.5 Let R be a right C and right SRDP ring that is not left divisible. Assume that every simple
right module is either rd-indigent or projective. Then R has a (up to isomorphism) unique nonprojective simple
right module S and it satisfies the following conditions:

(a) R is right Noetherian right hereditary.

(b) Classes of divisible right R -modules and injective right modules coincide.

(c) Classes of torsion-free right R -modules and nonsingular right modules coincide.

(d) Classes of torsion-free left R -modules and flat left modules coincide.

Proof Corollary 3.4 gives that R is a left PP ring which has a unique nonprojective simple right module
S . By our hypothesis, S is rd -indigent, and by Lemma 3.2, S is rdp -indigent. Let A be a nonsingular
right R -module. Since S is singular, S is A -subprojective, and so A is torsion-free. Let B be a divisible
right module. Being R right SRDP implies that Ext(S,B) = 0 by [20, Proposition 2.3]. By considering the
epimorphism E(B) → E(B)/B → 0 , we obtain the epimorphism Hom(S,E(B)) → Hom(S,E(B)/B) → 0 .
Hence by [7, 10.8 and 10.10], B is a closed submodule of E(B) , and so B is injective. In particular, every
absolutely pure right module is injective whence R is right Noetherian. In this case, R has no infinite set
of orthogonal nonzero idempotents and so R is right PP by [6, Lemma 8.4]. Being right PP implies by [21,
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Theorem 5.3] that quotients of injective right modules are injective, whence R is right hereditary. We claim
that all torsion-free right R -modules are nonsingular. Let A be a torsion-free right R -module and f : P → A

an epimorphism with P projective. Since R is a right C-ring and S is A -subprojective, Ker(f) is closed in
P by [16, Theorem 5]. Furthermore, since R is right nonsingular, the projective module P is nonsingular,
whence A is nonsingular by [25, Lemma 2.3]. Now, we claim that all torsion-free left R -modules are flat. For
a torsion-free left R -module T , T+ is divisible, whence is injective by (b). Therefore T is flat. 2

Recall from [10] that a right R -module A is called extending if every closed submodule of A is direct
summand. A ring R is called finitely

∑
-extending if every finite direct sums of copies of RR is extending (see

[10]).

Theorem 3.6 For a left Noetherian right C and right SRDP ring R , the following are equivalent.

(1) All simple right R -modules are f -indigent or projective.

(2) All simple right R -modules are srdp-indigent or projective.

(3) There exists a decomposition of rings R ∼= R1 ×R2 , where R1 is semisimple and R2 is either
(a) Right finitely

∑
-extending right hereditary ring that contains a unique nonprojective simple right

R2 -module (up to isomorphism), or
(b) n-saturated indecomposable matrix ring over a QF local ring.

Proof (1) ⇒ (2) Let S be a nonprojective simple right R -module and S a B -subprojective module for a
right R -module B . By [13, Corollary 2.1], B+ is absolutely S -pure, and by the f -indigence of S , B+ is
absolutely pure. Since R is right C and right SRDP, by the proof of Proposition 3.5, B+ is injective. Thus, B

is flat and S is srdp -indigent.
(2) ⇒ (1) Let S be a nonprojective simple right R -module and B an absolutely S -pure module for a

right R -module B . This implies that S is B+ -subprojective by [13, Corollary 2.1], and by (2), B+ is flat.
Since B++ is injective and B is pure in B++ , B is absolutely pure. Thus, S is f -indigent.

(2) ⇒ (3) By using [15, Corollary 3.9], there is a unique nonprojective simple right module S and R is
either left absolutely pure or wD(R) ≤ 1 . Since R is right C and right SRDP, every divisible (and so absolutely
pure) right R -module is injective, whence R is right Noetherian. In the former case, by [15, Theorem 3.11], there
is a decomposition of rings R ∼= R1 × R2 , where R1 is semisimple and R2 is an n-saturated indecomposable
matrix ring over a QF local ring. The latter case implies R is not absolutely pure, and so by Lemma 3.2
and Proposition 3.5, R is right hereditary. Let I denote the sum of injective simple right ideals of R . Right
Noetherianity of R implies that I is injective, whence R can be decomposed as R = I⊕J for some right ideal J
of R such that Soc(I) = I and J has no injective simple submodule. From this, by applying the same arguments
as in [1, Theorem 1], if there is a nonzero homomorphism α : I → J , then α(Soc(I)) = α(I) ⊆ Soc(J) , where
α(I) is injective since R is right hereditary. This means that Soc(J) contains an injective simple submodule,
a contradiction. Thus, I is also a left ideal by the fact that Hom(I, J) = 0 . For reverse order, if there is a
nonzero homomorphism β : J → I , then J/Ker(β) ∼= Im(β) ⊆ I , where J/Ker(β) is projective since R is
right hereditary. Moreover, J/Ker(β) is semisimple and injective as it is isomorphic to a submodule of I . By
considering the split exact sequence 0 → Ker(β) → J → J/Ker(β) → 0 we deduce that J contains a copy
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of an injective simple R -module, a contradiction. Thus the fact that Hom(J, I) = 0 implies J is an ideal,
too. Consequently, we get a ring decomposition R ∼= I × J where I is semisimple and J is right hereditary
and right Noetherian. Now, we want to prove that J is right finitely

∑
-extending. Let A be a nonsingular

finitely generated right J -module. Since A is a nonsingular right R -module by [17, Proposition 1.28], any
epimorphism P → A is closed exact by [25, Lemma 2.3]. Thus all simple right R -modules are projective
relative to epimorphism P → A by [16, Theorem 5], and so S is A -subprojective. The fact that S is srdp-
indigent implies that A is flat, and so A+ is injective left R -module. This means that A+ is an injective
left J -module by [19, Example 3.11A]. So A is a flat and finitely generated right J -module, whence A is
projective by noetherianity of J . Thus J is a right finitely

∑
-extending ring by [10, Corollary 11.4]. Again

by the uniqueness of a nonprojective simple right R -module S and by [17, Proposition 1.28], J has a unique
nonprojective simple right J -module (up to isomorphism).

(3) ⇒ (2) Let R = R1×R2 , where R1 is semisimple and R2 is either n-saturated indecomposable matrix
ring over a QF local ring, or right finitely

∑
-extending right hereditary ring with a unique singular simple right

B -module (up to isomorphism). In the former case, (2) follows by [12, Theorem 3.1]. Assume the latter case,
since R2 is right hereditary right extending, R2 cannot have an infinite set of orthogonal nonzero idempotents
and so R2 is right Noetherian by [11, Theorem 3.1]. Moreover, since R2 is not right divisible, the rest follows
by [15, Lemma 3.10]. 2

In [15, Corollary 3.12], it is proven that a left Noetherian right PIR ring whose nonprojective simple right
R -modules are srdp -indigent is a right C-ring. The following is now an easy result of Theorem 3.6 and [15,
Corollary 3.12].

Corollary 3.7 The following are equivalent for a left Noetherian right PIR ring R .

(1) All simple right R -modules are f -indigent or projective.

(2) All simple right R -modules are srdp-indigent or projective.

(3) There exists a decomposition of rings R ∼= R1 ×R2 , where R1 is semisimple and R2 is either
(a) Right finitely

∑
-extending right hereditary right C-ring that contains a unique nonprojective simple

right B -module (up to isomorphism), or
(b) n-saturated indecomposable matrix ring over a QF local ring.

Recall that if E is an injective cogenerator in R -Mod over a commutative ring R , then for each simple
module S , Hom(S,E) ∼= S , in particular S ∼= S+ .

Theorem 3.8 The following are equivalent for a commutative SRDP ring R .

(1) R is a C-ring and every simple R -module is rd-indigent or projective.

(2) R is a C-ring and every simple R -module is rdp-indigent or projective.

(3) There exists a decomposition of rings R ∼= R1 ×R2 , where R1 is semisimple and R2 is either
(a) Finitely

∑
-extending hereditary Noetherian ring that contains a unique nonprojective simple module
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(up to isomorphism), or
(b) matrix ring over a QF local ring.

Proof (1) ⇔ (2) is clear by the fact that SRDP C-rings are Noetherian and by Lemma 3.2.
(1) ⇒ (3) Let S be a nonprojective simple R -module. Then by the hypothesis, divisible modules

contained in Fl−1(S) . Since R is SRDP and C-ring, by the proof of Proposition 3.5 all divisible modules are
injective and so R is Noetherian, i.e. S is f-indigent. By [13, Theorem 5.2], R ∼= R1 × R2 , where R1 is
semisimple and R2 is a ring which is either matrix ring over a QF local ring, or noetherian hereditary ring with
a unique singular simple module S′ . In the later case, R2 is not divisible, otherwise R2 would be a semisimple
ring. Since S′ is rdp-indigent by Lemma 3.2, S′ is srdp-indigent by Proposition 3.5(d). Thus, R2 is finitely∑

-extending by Theorem 3.6.
(3) ⇒ (1) In either cases, R1 and R2 are C-rings, whence R ∼= R1×R2 is a C-ring. Now the rest follows

again by [13, Theorem 5.2]. 2
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