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Abstract: In this paper, we discuss the domain of a recently defined conservative matrix, constructed by means of
the Schröder numbers in the spaces of p−absolutely summable sequences and bounded sequences. We determine the
β−duals of the Banach spaces, introduced here, and present characterization of some matrix operators. Moreover, we
give the characterization of certain compact operators via the Hausdorff measure of noncompactness.
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1. Introduction
The Schröder numbers Sn, located in a very important position in combinatorics and number theory, can be
defined by the recurrence relation

Sn+1 = Sn +

n∑
k=0

SkSn−k, for n ≥ 0

subject to initial condition S0 = 1. The definition of these numbers can also be given combinatorially as
follows: Schröder number Sn counts the number of paths from the southwest corner (0, 0) of an n × n grid
to the northeast corner (n, n) , using only single steps north, northeast, or east, that do not rise above the
southwest–northeast diagonal. The first few Schröder numbers Sn for 0 ≤ n ≤ 10 are

1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718.

Also, the Schröder numbers Sn possess the following representation via hypergeometric function as

Sn = 22F1 (−n+ 1, n+ 2; 2;−1) ,

where the hypergeometric function 2F1 (a, b; c; z) is defined by

2F1 (a, b; c; z) =

∞∑
n=0

(a)n (b)n
(c)n

zn

n!

with the Pochhammer symbol (x)n = x(x+1)...(x+n− 1) for n ≥ 1, and (x)n = 1 for n = 0. For details and
applications, we may refer to [10].
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In this study, N = {0, 1, 2, ...} and R denotes the set of all real numbers.
A sequence space is a linear subspace of the set of all real valued sequences ω. We denote ℓ∞, c, c0 and ℓp

as the set of all bounded sequences, the set of all convergent sequences, the set of all convergent to zero sequences
and the set of all sequences constituting p−absolutely convergent series, respectively. These are Banach spaces
with the following norms

∥z∥ℓ∞ = ∥z∥c = ∥z∥c0 = sup
n∈N

|zn|

and

∥z∥ℓp =

( ∞∑
k=0

|zk|p
)1/p

.

By Ψ, we denote the set of all finite sequences. A Banach space with all continuous coordinate functionals pk

defined by pk(z) = zk is referred as a BK-space while a complete linear metric space with continuous coordinate
functionals is referred as a FK-space.

As is known, the theory of sequence spaces plays a central role in functional analysis and summability
theory. Indeed, the classical theory concerns with the generalization of the concept of convergence for series and
sequences. The purpose is to assign a limit for nonconvergent series and sequences by applying a transformation,
represented by means of infinite special matrices. Since the most general linear mapping from a sequence space
into another sequence space can be given via an infinite matrix, it is convenient to deal with matrices instead
of a general linear mapping.

Let T = (tnk) be an infinite matrix with real entries tnk and Tn be the sequence in the nth row of the
matrix T for each n ∈ N. The T−transform of a sequence z = (zk) ∈ ω is the sequence Tz obtained by the
usual matrix product and its entries are stated as

(Tz)n =
∑
k

tnkzk

provided that the series is convergent for each n ∈ N.
∑
k

means
∞∑
k=0

briefly. T is called as a matrix mapping

from a sequence space Γ to a sequence space Θ if the sequence Tz exists and Tz ∈ Θ for all z ∈ Γ. The
collection of all infinite matrices from Γ to Θ is denoted by (Γ,Θ) .

The β -dual of a sequence space Γ is denoted by Γβ and consists of sequences x = (xk) ∈ ω such that
the series

∑
k

xkzk is convergent for every z = (zk) ∈ Γ . The necessary and sufficient conditions for an infinite

matrix T to belong to the class (Γ,Θ) are that Tn ∈ Γβ for each n ∈ N and Tu ∈ Θ for all z ∈ Γ.

Recall that the set
ΓT = {z ∈ ω : Tz ∈ Γ}

is referred the domain of the infinite matrix T in the space Γ. For the last two decades, the study of domains of
special triangular matrices has been studied intensively by many authors. Some papers in the relevant literature
can be given as [2–4, 15–17, 22–24, 28, 33].

Regarding an infinite matrix as a linear operator between two sequence spaces encourages the scholars
to deal with theory of matrix transformations in summability theory. More precisely, the theory of matrix
transformations provides the necessary and sufficient conditions for a matrix to map a sequence space into
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another sequence space. The reader can consult [11–13, 18, 19, 30, 31, 37, 38, 40] for further information about
matrix operators.

Further details concerning summability theory and its applications can be found in [5].
The notion of Hausdorff measure of noncompactness has been applied to characterize the compact

operators between BK-spaces as a very effective tool. Especially, as an application of the Hausdorff measure
of noncompactness of a linear operator in the theory of sequence spaces, a number of noteworthy results have
been revealed. (See, for instance, [1, 6–9, 20, 21, 25–27, 32, 34–36]).

In this paper, two Banach spaces as the domains of a newly given conservative matrix, whose entries are
Schröder numbers, are presented and discussed. Besides this, β−duals of these spaces are determined and the
characterizations of some matrix classes are derived. Furthermore, the compactness of certain matrix operators
are characterized by aid of the concept of Hausdorff measure of noncompactness.

2. New Banach sequence spaces ℓp

(
S̃
)

and ℓ∞

(
S̃
)

Quite recently, the author [14] introduced a new matrix S̃ =
(
S̃nk

)
, whose entries are Schröder numbers Sn

as

S̃nk =


SkSn−k

Sn+1 − Sn
, if 0 ≤ k ≤ n;

0, if k > n;

and computed its inverse as

S̃−1
nk =

(−1)n−k Sk+1 − Sk

Sn
Pn−k, if 0 ≤ k ≤ n;

0, if k > n;

where Pn denotes the following determinant for all n ∈ N \ {0}∣∣∣∣∣∣∣∣∣∣∣

S1 S0 0 . . . 0
S2 S1 S0 . . . 0
S3 S2 S1 . . . 0
...

...
... . . . ...

Sn Sn−1 Sn−2 . . . S1

∣∣∣∣∣∣∣∣∣∣∣
subject to initial condition P0 = 1.

Now, define new sequence spaces ℓp

(
S̃
)

and ℓ∞

(
S̃
)

as

ℓp

(
S̃
)
=

{
z = (zn) ∈ ω :

∞∑
n=0

∣∣∣∣ 1

Sn+1 − Sn

n∑
k=0

SkSn−kzk

∣∣∣∣p < ∞
}

and

ℓ∞

(
S̃
)
=

{
z = (zn) ∈ ω : sup

n

∣∣∣∣ 1

Sn+1 − Sn

n∑
k=0

SkSn−kzk

∣∣∣∣ < ∞
}
.

More precisely, if the transformation

tn = S̃n (z) =
1

Sn+1 − Sn

n∑
k=0

SkSn−kzk (2.1)
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is called as S̃−transform of a sequence z = (zn) , then, the spaces ℓp

(
S̃
)

and ℓ∞

(
S̃
)

consist of all sequences,

whose S̃−transforms are in the spaces ℓp and ℓ∞ , respectively. Notice that the following relation is valid for
all k ∈ N,

zk =
k∑

i=0

(
(−1)k−iSi+1 − Si

Sk
Pk−i

)
ti. (2.2)

Let us start with a theorem concerning the linearity of the spaces ℓp

(
S̃
)

and ℓ∞

(
S̃
)
, whose proof can be

reached routinely.

Theorem 2.1 The spaces ℓp

(
S̃
)

and ℓ∞

(
S̃
)

are linear spaces which are also BK-spaces with the norms

∥z∥ℓp(S̃) =
( ∞∑

n=0

∣∣∣∣ 1
Sn+1−Sn

n∑
k=0

SkSn−kzk

∣∣∣∣p)1/p

and ∥z∥ℓ∞(S̃) = supn∈N

∣∣∣∣ 1
Sn+1−Sn

n∑
k=0

SkSn−kzk

∣∣∣∣ , respectively.

Theorem 2.2 The spaces ℓp

(
S̃
)

and ℓ∞

(
S̃
)

are linearly isomorphic to ℓp and ℓ∞, respectively.

Proof For 1 ≤ p ≤ ∞, let L : ℓp

(
S̃
)
→ ℓp be a transformation such that L (z) =

(
S̃n (z)

)
. The one to one

property of this mapping is trivial. Proceeding the arguments, used in [14], leads to

S̃n (z) =
1

Sn+1 − Sn

n∑
k=0

SkSn−kzk

=
1

Sn+1 − Sn

n∑
k=0

SkSn−k

k∑
i=0

(
(−1)k−iSi+1 − Si

Sk
Pk−i

)
ti

=
1

Sn+1 − Sn

n∑
i=0

(
n−i∑
k=0

(−1)kSn−k−iPk

)
(Si+1 − Si) ti

= tn,

where we have used that
n−i∑
k=0

(−1)kSn−k−iPk = 0 for n ̸= i. So, we have Ln (z) = tn for all n ∈ N, where

z = (zk) is given by (2.2) while t = (tn) is any sequence in ℓp. So, from the fact that Lz = t, the mapping L is

onto. We conclude from Theorem 2.1 that ∥z∥ℓp(S̃) = ∥t∥ℓp . Namely, ℓp

(
S̃
)

and ℓp are linearly isomorphic,

as required. 2

Now, let us mention a lemma, which is an effective tool to discover the β−duals of the spaces ℓp

(
S̃
)

and ℓ∞

(
S̃
)
, and the characterizations of some matrix classes. In the sequel, 𝟋 denotes the family of all finite

subsets of N and 𝟋r denotes the subcollection of 𝟋 consisting of subsets of N with elements that are greater
than r .

Lemma 2.3 ([39]) T = (tnk) ∈ (ℓ1, ℓ∞) if and only if

sup
n,k∈N

|tnk| < ∞. (2.3)
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T = (tnk) ∈ (ℓ1, c) if and only if (2.3) holds and

lim
n→∞

tnk exists (2.4)

for each k ∈ N. T = (tnk) ∈ (ℓ1, c0) if and only if (2.3) holds and

lim
n→∞

tnk = 0 (2.5)

for each k ∈ N. T = (tnk) ∈ (ℓ1, ℓp) if and only if

sup
k

∞∑
n=0

|tnk|p < ∞,

where 1 ≤ p < ∞. T = (tnk) ∈ (ℓp, ℓ∞) if and only if

sup
k

∞∑
n=0

|tnk|q < ∞, (2.6)

where 1 < p < ∞. T = (tnk) ∈ (ℓp, c) if and only if (2.4) and (2.6) hold for 1 < p < ∞. T = (tnk) ∈ (ℓp, c0) if
and only if (2.5) and (2.6) hold for 1 < p < ∞. T = (tnk) ∈ (ℓp, ℓ1) if and only if

∞∑
k=0

( ∞∑
n=0

|tnk|q
)q

< ∞ for 1 < p < ∞.

T = (tnk) ∈ (ℓ∞, ℓ∞) = (c, ℓ∞) = (c0, ℓ∞) if and only if

sup
n

∞∑
k=0

|tnk| < ∞.

T = (tnk) ∈ (ℓ∞, c) if and only if (2.4) holds and

lim
n→∞

∞∑
k=0

|tnk| =
∞∑
k=0

∣∣∣ lim
n→∞

tnk

∣∣∣ . (2.7)

T = (tnk) ∈ (ℓ∞, c0) if and only if (2.5) holds and

lim
n→∞

∞∑
k=0

|tnk| = 0. (2.8)

T = (tnk) ∈ (ℓ∞, ℓp) = (c, ℓp) = (c0, ℓp) if and only if

sup
K∈𝟋

∞∑
n=0

∣∣∣∣ ∑
k∈K

tnk

∣∣∣∣p < ∞, for 1 ≤ p < ∞.

We are ready to offer the following theorem.
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Theorem 2.4 Let the sets B1, B2, B3 and B4 be defined by

B1 =

{
b = (bk) ∈ ω : lim

n→∞

n∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi exists for each k ∈ N

}
,

B2 =

{
b = (bk) ∈ ω : sup

n

∑
k

∣∣∣∣ n∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi

∣∣∣∣q < ∞
}
,

B3 =

{
b = (bk) ∈ ω : sup

n,k

∣∣∣∣ n∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi

∣∣∣∣ < ∞

}
,

and

B4 =

{
b = (bk) ∈ ω : lim

n→∞

∑
k

∣∣∣∣ n∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi

∣∣∣∣ =∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi

∣∣∣∣} .

Then, we have
(
ℓp

(
S̃
))β

= B1 ∩B2, for 1 < p < ∞.
(
ℓ1

(
S̃
))β

= B1 ∩B3,
(
ℓ∞

(
S̃
))β

= B1 ∩B4.

Proof We prove the first assertion. For 1 < p < ∞, b = (bk) ∈
(
ℓp

(
S̃
))β

if and only if
∞∑
k=0

bkzk is convergent

for all z = (zk) ∈
(
ℓp

(
S̃
))

. It is easily read that

n∑
k=0

bkzk =
n∑

k=0

bk

(
k∑

i=0

(−1)k−iSi+1 − Si

Sk
Pk−iti

)

=
n∑

k=0

(
n∑

i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi

)
tk,

from which we get b = (bk) ∈
(
ℓp

(
S̃
))β

if and only if the following matrix

dnk =


n∑

i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi, if 0 ≤ k ≤ n;

0, if k > n

belongs to the class (ℓp, c) . Thus, from Lemma 2.3, the following limit exists for each k ∈ N

lim
n→∞

n∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi

and the relation

sup
n

n∑
k=0

∣∣∣∣ n∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kbi

∣∣∣∣q < ∞

is valid. So, we have b = (bk) ∈ B1 ∩ B2, as desired. The proofs of other assertions given in this theorem can
be deduced in a similar way. 2

2309



DAĞLI/Turk J Math

3. Certain matrix mappings

In this section, for Γ ∈ {ℓp} with 1 ≤ p ≤ ∞ and Θ ∈ {ℓ1, c0, c, ℓ∞} , we obtain the characterization of the

classes (Γ
(
S̃
)
,Θ).

Theorem 3.1 Define a matrix R = (rnk) by

rnk = lim
m→∞

m∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni (3.1)

for n, k ∈ N. Then, we have

(a) : T ∈
(
ℓ1

(
S̃
)
, ℓ∞

)
if and only if

R = (rnk) is well defined for all n, k ∈ N, (3.2)

sup
m,k

∣∣∣∣ m∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣ < ∞, for each n ∈ N (3.3)

and
sup
n,k

|rnk| < ∞. (3.4)

(b) : T ∈
(
ℓ1

(
S̃
)
, c
)

if and only if equations (3.2), (3.3) and (3.4) are valid and

lim
n→∞

rnk exists for each k ∈ N. (3.5)

(c) : T ∈
(
ℓ1

(
S̃
)
, c0

)
if and only if equations (3.2), (3.3) and (3.4) are valid and

lim
n→∞

rnk = 0 for each k ∈ N. (3.6)

(d) : T ∈
(
ℓ1

(
S̃
)
, ℓ1

)
if and only if equations (3.2) and (3.3) are valid and

sup
k

∑
n
|rnk| < ∞. (3.7)

Proof We only prove the assertion (a). It is known that T ∈
(
ℓ1

(
S̃
)
, ℓ∞

)
if and only if Tz ∈ ℓ∞ for all

z ∈ ℓ1

(
S̃
)
. It follows from the convergence of the series

∞∑
k=0

tnkzk that tnk ∈
(
ℓ1

(
S̃
))β

for each fixed n ∈ N.

From Theorem 2.4, one can readily find that the limit

lim
m→∞

m∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

is available for each n, k ∈ N and

sup
m,k

∣∣∣∣ m∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣ < ∞, for each n ∈ N
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from which we arrive that (3.2) and (3.3) hold. Now, consider

m∑
k=0

tnkzk =
m∑

k=0

tnk
k∑

i=0

(
(−1)k−iSi+1 − Si

Sk
Pk−i

)
ti

=
m∑
i=0

(
m∑
k=i

tnk(−1)k−iSi+1 − Si

Sk
Pk−i

)
ti. (3.8)

If we denote a matrix R̃ = (r̃mi) for each n ∈ N by

r̃mi =


m∑
k=i

(−1)k−iSi+1 − Si

Sk
Pk−itnk, if 0 ≤ i ≤ m;

0, if i > m;

then, we find that (3.2) and (3.3) imply R̃ = (r̃mi) ∈ (ℓ1, c). So, the series R̃m (t) =
∞∑
i=0

r̃miti converges uniformly

in m for all t ∈ ℓ1, from which limm→∞R̃m (t) =
∞∑
i=0

limm→∞r̃miti. Thus, we conclude from (3.8) that

Tn (z) = lim
m→∞

R̃m (t) =
∞∑
i=0

(limm→∞r̃mi) ti =
∞∑
i=0

r̃niti = Rn (t) , (3.9)

which gives that for z ∈ ℓ1

(
S̃
)
, T (z) ∈ ℓ∞ if and only if for t ∈ ℓ1, R (t) ∈ ℓ∞. Consequently, T ∈(

ℓ1

(
S̃
)
, ℓ∞

)
if and only if (3.2), (3.3) and (3.4) hold, which completes the proof. The assertions (b), (c) and

(d) can be derived by the similar way. 2

Theorem 3.2 Let 1 < p < ∞ and let the matrix R = (rnk) given by (3.1). Then,

(a) : T ∈
(
ℓp

(
S̃
)
, ℓ∞

)
if and only if (3.2) holds and

sup
m

m∑
k=0

∣∣∣∣ m∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣q < ∞, for each n ∈ N (3.10)

and
sup
n

∑
k

|rnk|q < ∞. (3.11)

(b) : T ∈
(
ℓp

(
S̃
)
, c
)

if and only if Equations (3.2), (3.5), (3.10) and (3.11) are valid.

(c) : T ∈
(
ℓp

(
S̃
)
, c0

)
if and only if Equations (3.2), (3.6), (3.10) and (3.11) are valid.

(d) : T ∈
(
ℓp

(
S̃
)
, ℓ1

)
if and only if Equations (3.2) and (3.10) are valid and

sup
N∈𝟋

∑
k

∣∣∣∣ ∑
n∈N

rnk

∣∣∣∣q < ∞. (3.12)
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Proof Let us give the proof of relation (a). T ∈
(
ℓp

(
S̃
)
, ℓ∞

)
if and only if Tz ∈ ℓ∞ for all z ∈ ℓp

(
S̃
)
.

It follows from the convergence of the series
∞∑
k=0

tnkzk that tnk ∈
(
ℓp

(
S̃
))β

for each fixed n ∈ N. Applying

Theorem 2.4, it yields that the relations (3.2) and

sup
m

m∑
k=0

∣∣∣∣ m∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣q < ∞, for each n ∈ N

are valid. Similarly, Equation (3.9) gives the fact that Tz ∈ ℓ∞ for all z ∈ ℓp

(
S̃
)

if and only if R (t) ∈ ℓ∞

for t ∈ ℓp. Thus, it is satisfied that T ∈
(
ℓp

(
S̃
)
, ℓ∞

)
if and only if the relations (3.2) and (3.10) hold and

R ∈ (ℓp, ℓ∞) namely (3.11) holds. The proofs of other assertions can be reached by proceeding the similar
arguments. 2

Theorem 3.3 Let the matrix R = (rnk) given by (3.1). Then,

(a) : T ∈
(
ℓ∞

(
S̃
)
, ℓ∞

)
if and only if (3.2) holds and

lim
m→∞

∑
k

∣∣∣∣ m∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣ =∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣ (3.13)

and
sup
n

∑
k

|rnk| < ∞. (3.14)

(b) : T ∈
(
ℓ∞

(
S̃
)
, c
)

if and only if Equations (3.2), (3.5) and (3.13) are valid and

lim
n→∞

∑
k

|rnk| =
∑
k

∣∣∣ lim
n→∞

rnk

∣∣∣ . (3.15)

(c) : T ∈
(
ℓ∞

(
S̃
)
, c0

)
if and only if Equations (3.2), (3.6) and (3.13) are valid and

lim
n→∞

∑
k

|rnk| = 0. (3.16)

(d) : T ∈
(
ℓ∞

(
S̃
)
, ℓ1

)
if and only if Equations (3.2) and (3.13) are valid and

sup
N∈𝟋

∑
k

∣∣∣∣ ∑
n∈N

rnk

∣∣∣∣ < ∞. (3.17)

Proof The proof of (a) comes from taking starting point as T ∈
(
ℓ∞

(
S̃
)
, ℓ∞

)
if and only if Tz ∈ ℓ∞ for all

z ∈ ℓ∞

(
S̃
)

and from proceedings the manipulations as in the proofs of previous theorems given in this section.

Since the proofs of the statements (b), (c) and (d) are similar, we omit them. 2

We conclude this section with further characterization of matrix classes
(
Γ, ℓp

(
S̃
))

with 1 ≤ p ≤ ∞,

where Γ ∈ {ℓ∞, c, c0, ℓ1} .
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Theorem 3.4 Let 1 ≤ p ≤ ∞.Then,

(a) : T ∈
(
ℓ∞, ℓp

(
S̃
))

=
(
c, ℓp

(
S̃
))

=
(
c0, ℓp

(
S̃
))

if and only if

sup
K∈𝟋

∞∑
n=0

∣∣∣∣ ∑
k∈K

n∑
i=0

SiSn−i

Sn+1 − Sn
tik

∣∣∣∣p < ∞.

(b) : T ∈
(
ℓ1, ℓp

(
S̃
))

if and only if

sup
k

∞∑
n=0

∣∣∣∣ n∑
i=0

SiSn−i

Sn+1 − Sn
tik

∣∣∣∣p < ∞.

(c) : T ∈
(
ℓ∞, ℓ∞

(
S̃
))

=
(
c, ℓ∞

(
S̃
))

=
(
c0, ℓ∞

(
S̃
))

if and only if

sup
n

∞∑
k=0

∣∣∣∣ n∑
i=0

SiSn−i

Sn+1 − Sn
tik

∣∣∣∣ < ∞.

(d) : T ∈
(
ℓ1, ℓ∞

(
S̃
))

if and only if

sup
n,k

∣∣∣∣ n∑
i=0

SiSn−i

Sn+1 − Sn
tik

∣∣∣∣ < ∞.

Proof We prove the case T ∈
(
ℓ∞, ℓp

(
S̃
))

for p ≥ 1. Consider the matrix T̃ =
(
t̃nk
)

as

t̃nk =
n∑

i=0

SiSn−i

Sn+1 − Sn
tik, for all n, k ∈ N.

One has
∞∑
k=0

t̃nkzk =
n∑

i=0

SiSn−i

Sn+1 − Sn

∞∑
k=0

tikzk, for any z = (zk) ∈ ℓ∞,

from which T̃n (z) = S̃n (Tz) for all n ∈ N and so that Tz ∈ ℓp

(
S̃
)

for z = (zk) ∈ ℓ∞ if and only if T̃ z ∈ ℓp

for z = (zk) ∈ ℓ∞. In conclusion, we reach that

sup
K∈𝟋

∞∑
n=0

∣∣∣∣ ∑
k∈K

n∑
i=0

SiSn−i

Sn+1 − Sn
tik

∣∣∣∣p < ∞.

The other expressions can be deduced similarly. 2

4. Compact operators on the spaces ℓp

(
S̃
)

and ℓ∞

(
S̃
)

In this final section, the compactness of certain matrix operators are characterized with the help of Hausdorff
measure of noncompactness. Let z = (zn) ∈ ω and SΓ be unit sphere in the BK-space Γ ⊃ Ψ, then, we adopt
the following notation in the sequel

∥z∥∗Γ = sup
s∈SΓ

∣∣∣∣∑
k

zksk

∣∣∣∣ < ∞
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under the assumption that the supremum is finite. In this case, observe that z ∈ Γβ . Also, C (Γ,Θ) denotes
the set of all bounded (continuous) linear operators from Γ into Θ . Now, we list some lemmas, proved by [29].

Lemma 4.1 We have
(a) : ℓβ∞ = ℓ1 and ∥z∥∗ℓ∞ = ∥z∥ℓ1 for all z ∈ ℓ1.

(b) : ℓβ1 = ℓ∞ and ∥z∥∗ℓ1 = ∥z∥ℓ∞ for all z ∈ ℓ∞.

(c) : ℓβp = ℓq and ∥z∥∗ℓp = ∥z∥ℓq for all z ∈ ℓq with 1 < p < ∞ and 1
p + 1

q = 1.

Lemma 4.2 For every T ∈ (Γ,Θ) with the BK-spaces Γ and Θ, there exists a linear operator LT ∈ C (Γ,Θ)

such that LT (z) = T (z) for all z ∈ Γ.

Lemma 4.3 Let Γ ⊃ Ψ be a BK-space and Θ = {c0, c, ℓ∞} . If T ∈ (Γ,Θ) , then, we have

∥LT ∥ = ∥T∥(Γ,Θ) = sup
n

∥Tn∥∗Γ < ∞.

The Hausdorff measure of noncompactness of a bounded set Z is denoted by χ(Z) and defined as

χ(Z) = inf {δ > 0 : Z ⊂ ∪n
k=1B (xk, rk) , xk ∈ Γ, rk < δ, n ∈ N \ {0}} ,

where B (xk, rk) is the open ball centered at xk and radius rk for each k = 1, 2, ..., n. For more details about
the Hausdorff measure of noncompactness, one can consult [29] and cited references therein.

Theorem 4.4 ([41, Theorem 2.8]) For 1 ≤ p < ∞, the Hausdorff measure of noncompactness of a bounded
set Z in ℓp is computed as

χ(Z) = lim
k

(
sup
z∈Z

∥I − Pk (z)∥ℓp

)
.

Here Pk : ℓp → ℓp is the operator defined by Pk (z) = (z0, z1, ..., zk, 0, 0, ...) for each k ∈ N and I : ℓp → ℓp is
the identity operator defined by I (z) = (z0, z1, ..., zk, zk+1, ...) .

A linear operator L from a Banach space Γ into another Banach space Θ is called a compact operator if
the domain of L is all of Γ and the image under L of any bounded subset of Γ is a totally bounded subset of Θ ,
or equivalently, for every bounded sequence z = (zn) in Γ , the sequence (L (zn)) has a convergent subsequence
in Θ.

The concepts of the Hausdorff measure of noncompactness and compact operators are linked one another.
The necessary and sufficient condition for an operator to be compact is that ∥Lχ∥ = 0, where ∥Lχ∥ denotes
the Hausdorff measure of noncompactness of L and it is defined as ∥Lχ∥ = χ (L (SΓ)) .

Let x = (xk) ∈
(
ℓp

(
S̃
))β

be a sequence, define a sequence y = (yk) ∈ ℓq as

yk =
∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−kxi (4.1)

for all k ∈ N. We give some lemmas, needed in our proofs.

2314



DAĞLI/Turk J Math

Lemma 4.5 Let 1 ≤ p ≤ ∞ and let x = (xk) ∈
(
ℓp

(
S̃
))β

. Then, y = (yk) ∈ ℓq and

∑
k

xkzk =
∑
k

yktk

for all z = (zk) ∈ ℓp

(
S̃
)
.

Lemma 4.6 Let y = (yk) be defined by (4.1), then,

(a) : ∥x∥∗ℓ1(S̃) = supk |yk| < ∞ for all x = (xk) ∈
(
ℓ1

(
S̃
))β

.

(b) : ∥x∥∗ℓp(S̃) =
(∑

k

|yk|q
)1/q

< ∞ for all x = (xk) ∈
(
ℓp

(
S̃
))β

and for 1 < p < ∞.

(c) : ∥x∥∗ℓ∞(S̃) =
∑
k

|yk| < ∞ for all x = (xk) ∈
(
ℓ∞

(
S̃
))β

.

Proof We only prove the assertion (c). For x = (xk) ∈
(
ℓ∞

(
S̃
))β

, it follows from Lemma 4.5 that y =

(yk) ∈ ℓ1 and
∑
k

xkzk =
∑
k

yktk for all z = (zk) ∈ ℓ∞

(
S̃
)
. By the fact that ℓ∞

(
S̃
)

and ℓ∞ are isomorphic, one

finds z ∈ Sℓ∞(S̃) if and only if t ∈ Sℓ∞ . Thus, ∥x∥∗ℓ∞(S̃) = supz∈Sℓ∞(S̃)

∣∣∣∣∑
k

xkzk

∣∣∣∣ = supz∈Sℓ∞

∣∣∣∣∑
k

yktk

∣∣∣∣ = ∥y∥∗ℓ∞ .

Now, apply Lemma 4.1 to obtain

∥x∥∗ℓ∞(S̃) = ∥y∥∗ℓ∞ = ∥x∥ℓ1 =
∑
k

|yk| < ∞,

as desired. The other statements can be achieved similarly. 2

Lemma 4.7 ([34, Theorem 3.7 and Theorem 3.11]) For any BK-space Γ ⊃ Ψ, we have
(a) : If T ∈ (Γ, ℓ∞) , then 0 ≤ ∥LT ∥χ ≤ lim supn ∥Tn∥∗Γ and LT is compact if limn ∥Tn∥∗Γ = 0.

(b) : If T ∈ (Γ, c0) , then ∥LT ∥χ ≤ lim supn ∥Tn∥∗Γ and LT is compact if and only if limn ∥Tn∥∗Γ = 0.

(c) : If T ∈ (Γ, ℓ1) , then

lim
r

(
sup

N∈𝟋r

∥∥∥∥ ∑
n∈N

Tn

∥∥∥∥∗
Γ

)
≤ ∥LT ∥χ ≤ 4 lim

r

(
sup

N∈𝟋r

∥∥∥∥ ∑
n∈N

Tn

∥∥∥∥∗
Γ

)

and LT is compact if and only if limr

(
supN∈𝟋r

∥∥∥∥ ∑
n∈N

Tn

∥∥∥∥∗
Γ

)
= 0.

Now, let us present a lemma, whose proof follows from Lemma 4.5. For this purpose, we define an infinite
matrix T̂ =

(
t̂nk
)

as

t̂nk =
∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni (4.2)

for all n, k ∈ N under the assumption that the series is convergent.
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Lemma 4.8 Let Γ be any sequence space and T = (tni) be an infinite matrix. If T ∈
(
ℓp

(
S̃
)
,Γ
)
, then

T̂ ∈ (ℓp,Γ) and Tz = T̂ t hold for all z ∈ ℓp

(
S̃
)

for 1 ≤ p ≤ ∞.

Theorem 4.9 Let 1 < p < ∞. Then, we have

(a) : If T ∈
(
ℓp

(
S̃
)
, ℓ∞

)
, then

0 ≤ ∥LT ∥χ ≤ lim sup
n

(∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣q)1/q

and LT is compact if

lim
n

(∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣q)1/q

= 0.

(b) : If T ∈
(
ℓp

(
S̃
)
, c0

)
, then

∥LT ∥χ = lim sup
n

(∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣q)1/q

and LT is compact if and only if

lim
n

(∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣q)1/q

= 0.

(c) : If T ∈
(
ℓp

(
S̃
)
, ℓ1

)
, then

lim
r

∥T∥r(ℓp(S̃),ℓ1) ≤ ∥LT ∥χ ≤ 4 lim
r

∥T∥r(ℓp(S̃),ℓ1)

and LT is compact if and only if
lim
r

∥T∥r(ℓp(S̃),ℓ1) = 0,

where

∥T∥r(ℓp(S̃),ℓ1) = sup
N∈𝟋r

(∑
k

∣∣∣∣ ∑
n∈N

∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣q)1/q

.

Proof We begin with the proof of (a). Let T ∈
(
ℓp

(
S̃
)
, ℓ∞

)
and z ∈ ℓp

(
S̃
)
, then from the convergence of the

series
∞∑
k=0

tnkzk that Tn ∈
(
ℓp

(
S̃
))β

for each n ∈ N. Using Lemma 4.6 (b), it yields ∥Tn∥∗ℓp(S̃) =
(∑

k

∣∣t̂nk∣∣q)1/q

for each n ∈ N, where t̂nk is given by (4.2). So, apply Lemma 4.7 (a) to get

0 ≤ ∥LT ∥χ ≤ lim sup
n

(∑
k

∣∣t̂nk∣∣q)1/q
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and LT is compact if

lim
n

(∑
k

∣∣t̂nk∣∣q)1/q

= 0.

For the proof of (b), let T ∈
(
ℓp

(
S̃
)
, c0

)
, then, taking into consideration ∥Tn∥∗ℓp(S̃) =

(∑
k

∣∣t̂nk∣∣q)1/q

and

using Lemma 4.7 (b), we obtain that

∥LT ∥χ = lim sup
n

(∑
k

∣∣t̂nk∣∣q)1/q

and LT is compact if and only if

lim
n

(∑
k

∣∣t̂nk∣∣q)1/q

= 0.

For the proof of (c), let T ∈
(
ℓp

(
S̃
)
, ℓ1

)
, then, it follows from Lemma 4.6 that

∥∥∥∥ ∑
n∈N

Tn

∥∥∥∥∗
ℓp(S̃)

=

∥∥∥∥ ∑
n∈N

T̂n

∥∥∥∥∗
ℓq

.

So, employing Lemma 4.7 (c), it leads to

lim
r

(
sup

N∈𝟋r

∑
k

∣∣∣∣ ∑
n∈N

t̂nk

∣∣∣∣q)1/q

≤ ∥LT ∥χ ≤ 4 lim
r

(
sup

N∈𝟋r

∑
k

∣∣∣∣ ∑
n∈N

t̂nk

∣∣∣∣q)1/q

and LT is compact if and only if

lim
r

(
sup

N∈𝟋r

∑
k

∣∣∣∣ ∑
n∈N

t̂nk

∣∣∣∣q)1/q

= 0.

Consequently, the proofs are completed. 2

We conclude the study with the following two theorems, whose proofs can be made similar to Theorem
4.9.

Theorem 4.10 We have

(a) : If T ∈
(
ℓ∞

(
S̃
)
, ℓ∞

)
, then

0 ≤ ∥LT ∥χ ≤ lim sup
n

∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣
and LT is compact if

lim sup
n

∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣ = 0.

(b) : If T ∈
(
ℓ∞

(
S̃
)
, c0

)
, then

∥LT ∥χ = lim sup
n

∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣
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and LT is compact if and only if

lim
n

∑
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣ = 0.

(c) : If T ∈
(
ℓ∞

(
S̃
)
, ℓ1

)
, then

lim
r

∥T∥r(ℓ∞(S̃),ℓ1) ≤ ∥LT ∥χ ≤ 4 lim
r

∥T∥r(ℓ∞(S̃),ℓ1)

and LT is compact if and only if
lim
r

∥T∥r(ℓ∞(S̃),ℓ1) = 0,

where

∥T∥r(ℓ∞(S̃),ℓ1) = sup
N∈𝟋r

∑
k

∣∣∣∣ ∑
n∈N

∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣ .
Theorem 4.11 We have

(a) : If T ∈
(
ℓ1

(
S̃
)
, ℓ∞

)
, then

0 ≤ ∥LT ∥χ ≤ lim sup
n

(
sup
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣)
and LT is compact if

lim
n

(
sup
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣) = 0.

(b) : If T ∈
(
ℓ1

(
S̃
)
, c0

)
, then

∥LT ∥χ = lim sup
n

(
sup
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣)
and LT is compact if and only if

lim
n

(
sup
k

∣∣∣∣ ∞∑
i=k

(−1)i−k Sk+1 − Sk

Si
Pi−ktni

∣∣∣∣) = 0.

5. Conclusion
The approach of constructing a new sequence space by means of a matrix domain has been employed by many
scholars. In general, the first aim is to identify its special duals and some matrix transformations and to
characterize its compact operators and the Hausdorff measure of noncompactness. In recent years, these topics
have been investigated by introducing a new conservative matrix, whose terms are some fascinating special
numbers and number theoretic functions. By adopting these considerations, we here deal with the domain
of a recently defined conservative matrix, constructed by means of the Schröder numbers in the spaces of
p−absolutely summable sequences and bounded sequences. We determine the β−duals of the newly defined
Banach spaces and present characterization of some matrix operators and of certain compact operators by
means of the Hausdorff measure of noncompactness.
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