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Abstract: In this paper, we introduce a new generalization of Fibonacci and Lucas hybrid polynomials. We investigate
some basic properties of these polynomials such as recurrence relations, the generating functions, the Binet formulas,
summation formulas, and a matrix representation. We derive generalized Cassini’s identity and generalized Honsberger
formula for generalized Fibonacci hybrid polynomials by using their matrix representation.
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1. Introduction
The hybrid numbers have been recently introduced by Ozdemir [10] as a generalization of complex, hyperbolic
and dual numbers. The set of hybrid numbers are defined as

K =
{
a+ bi+ cϵ+ dh | i2 = −1, ϵ2 = 0, h2 = 1, ih = −hi = ϵ+ i

}
, (1.1)

where a, b, c, d ∈ R.
The addition, substraction and multiplication of two hybrid numbers k1 = a1 + b1i + c1ϵ + d1h and

k2 = a2 + b2i+ c2ϵ+ d2h are defined respectively as

k1 ± k2 = (a1 ± a2) + (b1 ± b2) i+ (c1 ± c2) ϵ+ (d1 ± d2)h,

and

k1k2 = a1a2 − b1b2 + d1d2 + b1c2 + c1b2

+(a1b2 + b1a2 + b1d2 − d1b2) i

+(a1c2 + c1a2 + b1d2 − d1b2 + d1c2 − c1d2) ϵ

+(a1d2 + d1a2 + c1b2 − b1c2)h.

Similar to the quaternion multiplication, the hybrid number multiplication is noncommutative. Thus the set of
hybrid numbers form a noncommutative algebra. For more details of hybrid numbers, see Ozdemir’s paper [10].

Recently, Szynal-Liana [15] introduced the Fibonacci hybrid polynomials (alias hybrinomials) as

FHn (x) = Fn (x) + Fn+1 (x) i+ Fn+2 (x) ϵ+ Fn+3 (x)h, (1.2)
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where Fn (x) is the nth Fibonacci polynomial (see [7]) defined by the recurrence relation

Fn (x) = xFn−1 (x) + Fn−2 (x) , n ≥ 2

with initial values F0 (x) = 0, F1 (x) = 1 . In [5], Kizilates defined the Horodam hybrinomials which generalize
the Fibonacci hybrinomials. Several studies related to hybrid numbers with Fibonacci-like number coefficients
can be found in [6, 8, 9, 12–14, 16–19], and for a recent study related to the generalized Fibonacci numbers
and polynomials we refer to [2]. It is also worth noting that, in the literature there exist another type of
hybrid polynomials which are related to the families of special functions such as the Laguerre and the Hermite
polynomials, see [4]. We should note that our approach will be different from that polynomials.

This work has been intended as an attempt to introduce a new class of hybrid polynomials, which are
so-called “r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials of type s”. They give a natural
generalization of the Fibonacci and Lucas hybrinomials. We give the generating functions, the Binet formulas,
matrix representations and several basic properties of these hybrid polynomials. A relation between r -Fibonacci
hybrid polynomials and r -Lucas hybrid polynomials is also given.

Now we start by recalling some basic results concerning to the r -Fibonacci polynomials and r -Lucas
polynomials of type s . For the detailed information related to these polynomials, we refer to [1, 11].

Let r ≥ 1 be any integer, and let s = 1, 2, . . . , r . The r -Fibonacci polynomials
(
U

(r)
n

)
:=

(
U

(r)
n (x, y)

)
are defined by

U
(r)
n+1 = xU (r)

n + yU
(r)
n−r, n ≥ r (1.3)

with initial conditions U
(r)
0 = 0, U

(r)
k = xk−1 for k = 1, 2, . . . , r. Its companion sequence, the r -Lucas

polynomials of type s,
(
V

(r,s)
n

)
:=

(
V

(r,s)
n (x, y)

)
are defined by

V
(r,s)
n+1 = xV (r,s)

n + yV
(r,s)
n−r , n ≥ r (1.4)

with initial conditions V
(r,s)
0 = s + 1, V

(r,s)
k = xk for k = 1, 2, . . . , r . It is clear that if we take r = 1, s = 1 ,

then these polynomials respectively reduce to the classical bivariate Fibonacci and Lucas polynomials, see [3].
If we take x = y = 1, they reduce to the r -Fibonacci and r -Lucas numbers.

The Binet formulas for r -Fibonacci polynomials and r -Lucas polynomials of type s are

U (r)
n =

r+1∑
k=1

αn
k

(r + 1)αk − rx
, (1.5)

and

V (r,s)
n =

r+1∑
k=1

αn
k

(s+ 1)αk − sx

(r + 1)αk − rx
, (1.6)

respectively. Here αk are the distinct roots of the polynomial P (t) = tr+1 − xtr − y . For details see [1].

2. Main results
In this section, we give the definition of r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials of
type s . We give the generating functions, the Binet formulas, the summation formulas of these polynomials.
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Also, we give a relation between r -Fibonacci hybrid polynomials and the r -Lucas hybrid polynomials of type
s .

Definition 2.1 For n ≥ 0 , the n th r -Fibonacci hybrid polynomial and r -Lucas hybrid polynomial of type s

are defined respectively by the recurrence relations

KU(r),n = U (r)
n + U

(r)
n+1i+ U

(r)
n+2ϵ+ U

(r)
n+3h (2.1)

and
KV (r,s),n = V (r,s)

n + V
(r,s)
n+1 i+ V

(r,s)
n+2 ϵ+ V

(r,s)
n+3 h, (2.2)

where U
(r)
n is the n th r -Fibonacci polynomial and V

(r,s)
n is the n th r -Lucas polynomial of type s .

In Table, we state some special cases of r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials
of type s .

Table . Some special cases of KU(r),n and KV (r,s),n .

x y r s KU(r),n KV (r,s),n

x y 1 1 Bivariate Fibonacci hybrid polynomials Bivariate Lucas hybrid polynomials [13]
x 1 1 1 Fibonacci hybrid polynomials [15] Lucas hybrid polynomials [15]
2x 1 1 1 Pell hybrid polynomials [8] Pell-Lucas hybrid polynomials [8]
m 1 p p Gen. hybrid Fibonacci p-numbers [6] Gen. hybrid Lucas p-numbers [6]
1 1 p p Hybrid Fibonacci p-numbers [6] Hybrid Lucas p-numbers [6]
1 1 1 1 Fibonacci hybrid numbers [16] Lucas hybrid numbers [14]
2 1 1 1 Pell hybrid numbers [17] Pell-Lucas hybrid numbers [17]
1 2 1 1 Jacobsthal hybrid numbers [18] Jacobsthal-Lucas hybrid numbers [18]

We state the following lemma, which is useful to obtain the generating functions of r -Fibonacci hybrid
polynomials and r -Lucas hybrid polynomials of type s .

Lemma 2.2 For n ≥ r + 1 , the r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials of type s

satisfy the following relations
KU(r),n = xKU(r),n−1 + yKU(r),n−r−1 (2.3)

and
KV (r,s),n = xKV (r,s),n−1 + yKV (r,s),n−r−1. (2.4)

Proof By using the definition of r -Fibonacci polynomials, we have

KU(r),n = U (r)
n + U

(r)
n+1i+ U

(r)
n+2ϵ+ U

(r)
n+3h

= xU
(r)
n−1 + yU

(r)
n−r−1 + (xU (r)

n + yU
(r)
n−r)i+ (xU

(r)
n+1 + yU

(r)
n−r+1)ϵ+ (xU

(r)
n+2 + yU

(r)
n−r+2)h

= x(U
(r)
n−1 + U (r)

n i+ U
(r)
n+1ϵ+ U

(r)
n+2h) + y(U

(r)
n−r−1 + U

(r)
n−ri+ U

(r)
n−r+1ϵ+ U

(r)
n−r+2h)

= xKU(r),n−1 + yKU(r),n−r−1.
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Thus, we get the desired result.
The relation for the r -Lucas hybrid polynomials of type s can be proven similarly. So we omit it here. 2

Theorem 2.3 The generating functions for r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials of
type s are, respectively:

G (z) =

KU(r),0 +
r∑

n=1

(
KU(r),n − xKU(r),n−1

)
zn

1− xz − yzr+1
, (2.5)

and

H (z) =

KV (r,s),0 +
r∑

n=1

(
KV (r,s),n − xKV (r,s),n−1

)
zn

1− xz − yzr+1
. (2.6)

Proof Let

G (z) =

∞∑
n=0

KU(r),nz
n = KU(r),0 +KU(r),1z +KU(r),2z

2 + · · ·+KU(r),nz
n + · · · .

From Lemma 2.2, we get(
1− xz − yzr+1

)
G (z)

=

∞∑
n=0

KU(r),nz
n − x

∞∑
n=0

KU(r),nz
n+1 + y

∞∑
n=0

KU(r),nz
n+r+1

=

∞∑
n=0

KU(r),nz
n − x

∞∑
n=1

KU(r),n−1z
n − y

∞∑
n=r+1

KU(r),n−r−1z
n

=

r∑
n=0

KU(r),nz
n − x

r∑
n=1

KU(r),n−1z
n +

∞∑
n=r+1

(
KU(r),n − xKU(r),n−1 − yKU(r),n−r−1

)
zn

=

r∑
n=0

KU(r),nz
n − x

r∑
n=1

KU(r),n−1z
n

= KU(r),0 +

r∑
n=1

(
KU(r),n − xKU(r),n−1

)
zn.

The generating function for r -Lucas hybrid polynomials of type s can be proven similarly. So we omit it here.
2

Next, we state the Binet formulas for r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials
of type s , and by using these formulas, we derive some properties of them.

Theorem 2.4 The Binet formulas for r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials of type
s are, respectively:

KU(r),n =

r+1∑
k=1

α∗
kα

n
k

(r + 1)αk − rx
(2.7)
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and

KV (r,s),n =

r+1∑
k=1

α∗
kα

n
k

(s+ 1)αk − sx

(r + 1)αk − rx
, (2.8)

where α∗
k = 1 + αki+ α2

kϵ+ α3
kh.

Proof By using the definitions of the sequences KU(r),n , KV (r,s),n and the Binet formulas of U
(r)
n and V

(r,s)
n ,

we have

KU(r),n = U (r)
n + U

(r)
n+1i+ U

(r)
n+2ϵ+ U

(r)
n+3h

=

r+1∑
k=1

αn
k

(r + 1)αk − rx
+

r+1∑
k=1

αn+1
k

(r + 1)αk − rx
i

+

r+1∑
k=1

αn+2
k

(r + 1)αk − rx
ϵ+

r+1∑
k=1

αn+3
k

(r + 1)αk − rx
h

=

r+1∑
k=1

αn
k + αn+1

k i+ αn+2
k ϵ+ αn+3

k h

(r + 1)αk − rx

=

r+1∑
k=1

αn
k (1 + αki+ α2

kϵ+ α3
kh)

(r + 1)αk − rx

=

r+1∑
k=1

αn
k

(r + 1)αk − rx
(1 + αki+ α2

kϵ+ α3
kh)

=

r+1∑
k=1

α∗
kα

n
k

(r + 1)αk − rx
.

For the r -Lucas hybrid polynomials of type s , we have

KV (r,s),n = V (r,s)
n +V

(r,s)
n+1 i+V

(r,s)
n+2 ϵ+V

(r,s)
n+3 h

=

r+1∑
k=1

αn
k

(s+ 1)αk − sx

(r + 1)αk − rx
+

r+1∑
k=1

αn+1
k

(s+ 1)αk − sx

(r + 1)αk − rx
i

+

r+1∑
k=1

αn+2
k

(s+ 1)αk − sx

(r + 1)αk − rx
ϵ+

r+1∑
k=1

αn+3
k

(s+ 1)αk − sx

(r + 1)αk − rx
h

=

r+1∑
k=1

(αn
k + αn+1

k i+ αn+2
k ϵ+ αn+3

k h)((s+ 1)αk − sx)

(r + 1)αk − rx

=

r+1∑
k=1

αn
k (1 + αki+ α2

kϵ+ α3
kh)((s+ 1)αk − sx)

(r + 1)αk − rx
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=

r+1∑
k=1

αn
k

(s+ 1)αk − sx

(r + 1)αk − rx
(1 + αki+ α2

kϵ+ α3
kh)

=

r+1∑
k=1

α∗
kα

n
k

(s+ 1)αk − sx

(r + 1)αk − rx
.

which gives the desired results. 2

The link between the r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials of type s can be
given in the following result.

Theorem 2.5 The r -Lucas hybrid polynomials of type s can be expressed in term of r -Fibonacci hybrid
polynomials as

KV (r,s),n = KU(r),n+1 + syKU(r),n−r for n ≥ r + 1. (2.9)

Proof Using the Binet formulas of r -Fibonacci hybrid polynomials and r -Lucas hybrid polynomials of type
s , we have

KU(r),n+1 + syKU(r),n−r =

r+1∑
k=1

α∗
kα

n+1
k

(r + 1)αk − rx
+ sy

r+1∑
k=1

α∗
kα

n−r
k

(r + 1)αk − rx

=

r+1∑
k=1

α∗
kα

n+1
k + syα∗

kα
n−r
k

(r + 1)αk − rx

=

r+1∑
k=1

α∗
kα

n
k (αk + syα−r

k )

(r + 1)αk − ra

=

r+1∑
k=1

α∗
kα

n
k

(s+ 1)αk − sx

(r + 1)αk − rx

= KV (r,s),n.

Note that since αk = x+ yα−r
k , then αk + syα−r

k = (s+ 1)αk − sx . 2

Next, we give some summation formulas for KU(r),n and KV (r,s),n in the following theorem.

Theorem 2.6 For m ≥ 0 , we have

m∑
n=0

KU(r),n =

r+1∑
k=1

α∗
k(α

m+1
k − 1)

(r + 1)α2
k − (r(x+ 1) + 1)αk + rx

(2.10)

and
m∑

n=0

KV (r,s),n =

r+1∑
k=1

α∗
k

((s+ 1)αk − sx)(αm+1
k − 1)

(r + 1)α2
k − (r(x+ 1) + 1)αk + rx

. (2.11)
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Proof Using the Binet formula of KU(r),n , we get

m∑
n=0

KU(r),n =

m∑
n=0

r+1∑
k=1

α∗
kα

n
k

(r + 1)αk − rx

=

r+1∑
k=1

α∗
k

(r + 1)αk − rx

αm+1
k − 1

αk − 1

=

r+1∑
k=1

α∗
k(α

m+1
k − 1)

(r + 1)α2
k − (r(x+ 1) + 1)αk + rx

.

And from the Binet formula of KV (r,s),n , we get

m∑
n=0

KV (r,s),n =

m∑
n=0

r+1∑
k=1

α∗
kα

n
k

(s+ 1)αk − sx

(r + 1)αk − rx

=

r+1∑
k=1

α∗
k

(s+ 1)αk − sx

(r + 1)αk − rx

m∑
n=0

αn
k

=

r+1∑
k=1

α∗
k

((s+ 1)αk − sx)(αm+1
k − 1)

(r + 1)α2
k − (r(x+ 1) + 1)αk + rx

.

2

3. Matrix representation
In this section, we give a matrix representation of r -Fibonacci hybrid polynomials.

Let Qr :=



x 0 · · · 0 y
1 0 · · · 0 0

0 1
. . . ...

...
... . . . . . . 0 0
0 · · · 0 1 0

 be a matrix of size (r + 1) × (r + 1) . For n ≥ r, it can be verified

that

Qn
r =


U

(r)
n+1 yU

(r)
n−r+1 · · · yU

(r)
n−1 yU

(r)
n

U
(r)
n yU

(r)
n−r yU

(r)
n−2 yU

(r)
n−1

...
... . . . ...

...
U

(r)
n−r+1 yU

(r)
n−2r+1 · · · yU

(r)
n−r−1 yU

(r)
n−r


with U

(r)
j = 0, for j = −1,−2, . . . .

Now let us define the matrix

K (n) :=


KU(r),n+1 yKU(r),n−r+1 · · · yKU(r),n−1 yKU(r),n

KU(r),n yKU(r),n−r yKU(r),n−2 yKU(r),n−1
...

... . . . ...
...

KU(r),n−r+1 yKU(r),n−2r+1 · · · yKU(r),n−r−1 yKU(r),n−r

 . (3.1)
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For any nonnegative integer n ≥ r , we have

K (n) = K (0)Qn
r . (3.2)

By taking the determinant of both sides of the matrix equality (3.2), we get the generalized Cassini’s
identity for r -Fibonacci hybrid polynomials as

detK (n) = (−1)
nr

yn detK (0) . (3.3)

Remark 3.1 If r = 1 in (3.3), we get

KU(1),n+1KU(1),n−1 −K2
U(1),n = (−1)

n
(
KU(1),1KU(1),−1 −K2

U(1),0

)
. (3.4)

By using the matrix identity (3.2), we get the following theorem which can be seen as a generalization of
Honsberger formula.

Theorem 3.2 For n, s, t ≥ r, we have

KU(r),s+t = KU(r),sKU(r),t+1 + y

r−1∑
j=0

KU(r),s−r+jKU(r),t−j (3.5)

KU(r),s+t = U (r)
s KU(r),t+1 + y

r−1∑
j=1

U
(r)
s−r+jKU(r),t−j . (3.6)

Proof Let K := K(0) , considering the matrix equalities (KQs+t
r )K = (KQs

r) (Q
t
rK) and (KQs+t

r ) =

(KQs
r)Q

t
r, then equating the corresponding entries, we get the desired results respectively. 2

Remark 3.3 If r = 1 , the identities (3.5) and (3.6) reduce to the classical bivariate Fibonacci hybrid polyno-
mials as

KU(1),s+t = KU(1),sKU(1),t+1 + yKU(1),s−1KU(1),t (3.7)

KU(1),s+t = U (1)
s KU(1),t+1 + yU

(1)
s−1KU(1),t. (3.8)

4. Conclusion
In our present investigation, we have introduced r -Fibonacci hybrid polynomials and r -Lucas hybrid poly-
nomials of type s as a generalization of the r -Fibonacci and r -Lucas hybrid polynomials. We have derived
several interesting properties such as the Binet formulas, the generating functions, summation formulas, a ma-
trix representation of these polynomials. As an application of matrix method, we have derived a generalization
of Cassini’s and Honsberger formulas.
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