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1. Introduction
Approximation theory, a common scientific field of study where applied mathematics and functional analysis
intersect, is based on the Weierstrass Approach Theorem, which was put forward and proved by German
mathematician Karl Theodor Wilhelm Weierstrass, known as the father of modern analysis, in 1885 [1].
According to this theorem, there is a sequence of polynomials that are uniformly convergent to every continuous
function defined in a closed and finite range. Bernstein operators [2] is one of the best examples of the
polynomials for the interval [0, 1] . The other is an extension of Bernstein operators to the infinite interval
and is called as Szász operators defined by Szász [3] as follows:

Sm (f ;x) =
1

exp(mx)

∞∑
j=0

(mx)
j

j!
f

(
j

m

)
, x ≥ 0, m ∈ N

where f ∈ C [0,∞) .

Sucu [4] has defined a Dunkl analogue of Szász operators with the help of a generalization of the
exponential function given by Rosenblum in [5] as follows

Sµ
m (f ;x) =

1

expµ (mx)

∞∑
j=0

(mx)
j

γµ (j)
f

(
j + 2µθj

m

)
, x ≥ 0, m ∈ N (1.1)
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where µ ≥ 0 and f ∈ C [0,∞) . expµ (x) has been given by Rosenblum [5] in here as follows:

expµ (x) =

∞∑
j=0

xj

γµ (j)
(1.2)

where the coefficients γµ (j) are defined by

γµ (2j) =
22jj!Γ

(
j + µ+ 1

2

)
Γ
(
µ+ 1

2

) and γµ (2j + 1) =
22j+1j!Γ

(
j + µ+ 3

2

)
Γ
(
µ+ 1

2

) (1.3)

for j ∈ N0 := N∪{0} and µ > − 1
2 where Γ denotes the Euler’s Gamma function. It is known from [5] that γµ

satisfies the following recurrence relation

γµ (j) = (j + 2µθj) γµ (j − 1) , j = 1, 2, ... (1.4)

where θj is defined as

θj =
1 + (−1)

j−1

2
=

{
1 , j ∈ 2N0 + 1
0 , j ∈ 2N0.

(1.5)

On the other hand, we recall that Dunkl derivative operator has been defined by Rosenblum in [5] with

Dµ,x (f (x)) := f ′ (x) + µ
f (x)− f (−x)

x
, x ∈ C (1.6)

where µ ∈ C\ {−(2k − 1)/2 : k ∈ N} and f is entire function defined on C . It can be seen that

i) If µ = 0, then Dµ,x is the standard derivative operator,

ii) D2
µ,x (f (x)) = f ′′ (x) + 2µ

xf
′ (x)− µ f(x)−f(−x)

x2 ,

iii) Dµ,x (x
m) =

γµ(m)
γµ(m−1)x

m−1, m ∈ N

iv) Dµ,x

(
expµ (λx)

)
= λ expµ (λx) ,

v) Dµ,x (f (x) g (x)) = f (x)Dµ,x (g (x)) + g (−x)Dµ (f (x)) + f ′ (x) [g (x)− g (−x)]

where f and g are entire functions defined on [5].
Through the above properties, authors have studied various generalizations about Dunkl analogue of

Szász operators in [6], [7], [8], [9], [10], [11] and [12]. On the one hand, orthogonal polynomials and other
families of polynomials have played an important role in construction of linear positive operators (see [13], [14],
[15], [16], [17] and [18]). At the present, we recall Dunkl-Appell polynomials defined by Cheikh and Gaied in
[19]. From [19], Dunkl-Appell polynomials are symbolized by pj (x) and defined by

pj (x) =

j∑
ν=0

(
j
ν

)
µ

cj−ν xν , c0 ̸= 0
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where Dunkl-binomial coefficient is

(
j
ν

)
µ

=
γµ (j)

γµ (ν) γµ (j − ν)
.

Moreover, from [19], the polynomials pj (x) are generated by

G (t) expµ (xt) =

∞∑
j=0

pj (x)

γµ (j)
tj (1.7)

where G is an analytic function in the disc |t| < r, r > 1 and

G (t) =

∞∑
j=0

cj
tj

γµ (j)
. (1.8)

Now, we are going to define our operators thanks to d -Appell polynomials, Dunkl derivative operator and
increasing-unbounded sequences of positive real numbers similar to [20] (also see [21] and [22]) in next section.

2. Construction of the operators Lam,bm,µ
m

Let pj (x) be Dunkl-Appell polynomials. We introduce a new generalization of Szász-Mirakyan operators by

Lam,bm,µ
m (f ;x) =

1

G (1) expµ (amx)

∞∑
j=0

pj (amx)

γµ (j)
f

(
j + 2µθj

bm

)
, x ≥ 0, m ∈ N (2.1)

where µ is a real parameter with |µ| < 1/2 , G (t) is an analytic function given in (1.8), f ∈ C [0,∞) ,
G (1) ̸= 0,

cj
G(1) ≥ 0 for j = 0, 1, 2, ..., (am) and (bm) are increasing-unbounded sequences of positive real

numbers, satisfying the following conditions

lim
m→∞

1

bm
= 0 and lim

m→∞

am
bm

= 1. (2.2)

It is clear that these operators defined in (2.1) are linear positive and if am = bm = m , Lam,bm,µ
m (f ;x) reduces

to the operators given by Sucu in [18].
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Lemma 2.1 For the function given in (1.7), we have the following equalities

i)
∞∑
j=0

pj(amx)
γµ(j)

= G (1) expµ (amx) ,

ii)
∞∑
j=0

pj+1(amx)
γµ(j)

= expµ (amx) [amxG (1) +G′ (1)]

+µ expµ (−amx) [G (1)−G (−1)] ,

iii)
∞∑
j=0

(−1)
j pj+1(amx)

γµ(j)
= expµ (−amx) [amxG (−1) +G′ (−1)]

+µ expµ (amx) [G (1)−G (−1)] ,

iv)
∞∑
j=0

pj+2(amx)
γµ(j)

= expµ (amx)
[
a2mx2G (1) + 2amxG′ (1) +G′′ (1)

]
+µ expµ (−amx) [2G′ (1)− (G (1)−G (−1))]

where (am) is the positive, increasing and unbounded sequence.

Proof i) By letting t → 1 and x → amx in the equality (1.7), we obtain the proof of Lemma 2.1-(i).
ii) By applying operator Dµ,x given by (1.6) both sides of the equality (1.7), using the properties (iv)

and (v) of Dunkl derivative operator in page 2 and then letting t → 1 and x → amx , we have the proof of
Lemma 2.1-(ii).

iii) We get the proof of Lemma 2.1-(iii) by applying operator Dµ,x given in (1.6) both sides of the equality
(1.7), using the properties (iv) and (v) of Dunkl derivative operator in page 2 and then getting t → −1 and
x → amx .

iv) By twice applying operator Dµ,x given in (1.6) both sides of the equality (1.7), using the properties
(ii), (iv) and (v) of Dunkl derivative operator in page 2 and then getting t → 1 and x → amx , we acquire the
proof of Lemma 2.1-(iv). 2

Lemma 2.2 Let Lam,bm,µ
m (f ;x) be the operator introduced in (2.1). Then, we have

i) Lam,bm,µ
m (1;x) = 1,

ii) Lam,bm,µ
m (t;x) = am

bm
x+ 1

bm

G′(1)+µ[G(1)−G(−1)]ξµm(x)
G(1) ,

iii) Lam,bm,µ
m (t2;x) =

(
am

bm

)2
x2 + am

b2m

2G′(1)+G(1)+2µG(−1)ξµm(x)
G(1) x

+ 1
b2m

G′′(1)+G′(1)+2µ2[G(1)−G(−1)]+2µ[G′(1)+G′(−1)]ξµm(x)

G(1)

where ξµm (x) :=
expµ(−amx)

expµ(amx) .

Proof i) It is clear from Lemma 2.1-(i).
ii) By using the recursion relation given in (1.4), we acquire the proof of Lemma 2.2-(ii).
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iii) We have

Lam,bm,µ
m (t2;x) = 1

G(1) expµ(amx)

∞∑
j=0

pj(amx)
γµ(j)

(
j+2µθj

bm

)2
= 1

G(1) expµ(amx)

∞∑
j=1

pj(amx)
γµ(j−1)

j+2µθj
b2m

= 1
G(1) expµ(amx)

∞∑
j=0

pj+1(amx)
γµ(j)

j+1+2µθj+1

b2m

(2.3)

from the equality (1.4). Furthermore, we can obviously see that

θj+1 = θj + (−1)
j (2.4)

where θj is a parameter given in (1.5). Using the equalities (1.4) and (2.4) in (2.3), we have

Lam,bm,µ
m (t2;x) = 1

G(1) expµ(amx)b2m

×

[
∞∑
j=0

pj+2(amx)
γµ(j)

+
∞∑
j=0

pj+1(amx)
γµ(j)

+ 2µ
∞∑
j=0

(−1)
j pj+1(amx)

γµ(j)

] (2.5)

Consequently, the proof of Lemma 2.2-(iii) is obtained by using Lemma 2.1 in the equality (2.5). 2

Throughout the rest of this study, we use

lim
x→∞

expµ (−x)

expµ (x)
= 0

for |µ| < 1/2 and
∣∣∣ expµ(−x)

expµ(x)

∣∣∣ ≤ 1 for x ≥ 0 and µ > −1/2 in [12] for approximation properties.

Now, we recall that the r -th central moment of the operators Lam,bm,µ
m in (2.1) is given by

Mµ
m,r (x) = Lam,bm,µ

m ((t− x)
r
;x) , r = 0, 1, 2, ... (2.6)

for m ∈ N and x ≥ 0.

Lemma 2.3 The first few central moments of Lam,bm,µ
m are given by

i) Mµ
m,0 (x) = 1,

ii) Mµ
m,1 (x) =

(
am

bm
− 1
)
x+ 1

bm

G′(1)+µ[G(1)−G(−1)]ξµm(x)
G(1) ,

iii) Mµ
m,2 (x) =

(
am

bm
− 1
)2

x2

+ 1
b2m

2[am−bm]G′(1)+[am−2µbmξµm(x)]G(1)+2µ[am+bm]G(−1)ξµm(x)
G(1) x

+ 1
b2m

G′′(1)+G′(1)+2µ2[G(1)−G(−1)]+2µ[G′(1)+G′(−1)]ξµm(x)

G(1) .
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Proof From linearity of the operators Lam,bm,µ
m , it is that

Mµ
m,r (x) = Lam,bm,µ

m ((t− x)
r
;x)

= Lam,bm,µ
m

(
r∑

k=0

(
r
k

)
tk (−x)

r−k
;x

)

=
r∑

k=0

(
r
k

)
(−x)

r−k
Lam,bm,µ
m

(
tk;x

)
.

(2.7)

Taking r = 0, 1, 2 in the equality (2.7) and using Lemma 2.2, the desired results follow. 2

3. Rate of convergence for operators Lam,bm,µ
m

In this section, we present the rate of convergence of the operators Lam,bm,µ
m thanks to the definitions of various

tools.

Theorem 3.1 For every g ∈ E∗ =
{
g : g is continuous on [0,∞) , g(x)

1+x2 is convergent as x → ∞
}
, we have

lim
m→∞

Lam,bm,µ
m (g;x) = g (x)

on each compact subset of [0,∞) .

Proof The proof is based on the well-known universal Korovkin-type theorem in [23]. 2

The classical modulus of continuity of g ∈ CB [0,∞) , the space of continuous and bounded functions on [0,∞) ,
is defined by

ω (g; δ) := sup
|h|≤δ

{|g (x+ h)− g (x)| : x ∈ [0,∞)} (3.1)

where δ > 0 [23] .

Theorem 3.2 The operators Lam,bm,µ
m defined in (2.1) satisfy the following inequality

∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤ 2ω
(
g;
√
Mµ

m,2 (x)
)

where g ∈ CB [0,∞) and Mµ
m,2 (x) has been given in Lemma 2.3.

Proof The modulus of classical continuity of function g ∈ CB [0,∞) satisfies the below inequality in [23]

|g (t)− g (x)| ≤ ω (g; δ)

(
|t− x|

δ
+ 1

)
. (3.2)

From inequality (3.2), we obtain∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤ Lam,bm,µ
m (|g (t)− g (x)| ;x)

≤ ω (g; δ)
(
1 + 1

δL
am,bm,µ
m (|t− x| ;x)

)
.

(3.3)
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It can be clearly written by Cauchy-Schwarz inequality that

Lam,bm,µ
m (|t− x| ;x) =

∞∑
j=0

√(
1

G(1) expµ(amx)

)2 (
pj(amx)
γµ(j)

)2 (
j+2µθj

bm
− x
)2

≤
√

∞∑
j=0

1
G(1) expµ(amx)

pj(amx)
γµ(j)

(
j+2µθj

bm
− x
)2

×
√

∞∑
j=0

1
G(1) expµ(amx)

pj(amx)
γµ(j)

=

√
Lam,bm,µ
m

(
(t− x)

2
;x
)√

Lam,bm,µ
m (1;x)

=
√

Mµ
m,2 (x).

(3.4)

Using the inequality (3.4) in (3.3), we have

∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤ ω (g; δ)

(
1 +

1

δ

√
Mµ

m,2 (x)

)
. (3.5)

Choosing δ =
√
Mµ

m,2 (x) in inequality (3.5), the proof is completed. 2

Theorem 3.3 Let Lam,bm,µ
m be the operator defined in (2.1). Then, we have

∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤√Mµ
m,2 (x)

(
|g′ (x)|+ 2ω

(
g′;
√

Mµ
m,2 (x)

))
where g ∈ C1

B [0,∞) := {g : g, g′ ∈ CB [0,∞)} , x ∈ [0,∞) and Mµ
m,2 (x) have been calculated in Lemma 2.3.

Proof We can clearly write that

g (t)− g (x) = (t− x) g′ (x) +

t∫
x

(g′ (s)− g′ (x)) ds (3.6)

for x, t ∈ [0,∞) . Moreover, because the function g ∈ C1
B [0,∞) verifies the inequality in (3.2), we have∣∣∣∣∣∣

t∫
x

(g′ (s)− g′ (x)) ds

∣∣∣∣∣∣ ≤ ω (g′; δ)

(
(t− x)

2

δ
+ |t− x|

)
. (3.7)

If we apply Lam,bm,µ
m to (3.6) and then taking the absolute value on both sides of this equality, we can write by

using (3.7) and triangle inequality that∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤ |g′ (x)|Lam,bm,µ
m (|t− x| ;x)

+ω (g′; δ)
(
Lam,bm,µ
m (|t− x| ;x) + Mµ

m,2(x)

δ

)
.

(3.8)
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Using Cauchy-Schwarz inequality in (3.8), we can write

∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤ |g′ (x)|
√

Mµ
m,2 (x) + ω (g′; δ)

(√
Mµ

m,2 (x) +
Mµ

m,2 (x)

δ

)
.

Choosing δ =
√
Mµ

m,2 (x) in the above inequality, the proof of Theorem 3.3 is completed. 2

Now, we remind that Lipschitz class functions of order α is defined as follows

LipN (α) := {g ∈ C [0,∞) : |g (t)− g (x)| ≤ N |t− x|α , t, x ∈ [0,∞)} (3.9)

where 0 < α ≤ 1 and N > 0 [24].

Theorem 3.4 For the operators Lam,bm,µ
m given in (2.1), we have

∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤ N
(
Mµ

m,2 (x)
)α

2

where g ∈ LipN (α) and Mµ
m,2 (x) have been calculated in Lemma 2.3.

Proof Using linearity property of Lam,bm,µ
m and g ∈ LipN (α) , we get

∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤ NLam,bm,µ
m (|t− x|α ;x) . (3.10)

We can write that∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣ ≤ NLam,bm,µ
m (|t− x|α ;x)

≤ N
(
Lam,bm,µ
m

(
(t− x)

2
;x
))α

2

.
(
Lam,bm,µ
m (1;x)

) 2−α
2

≤ N
(
Mµ

m,2 (x)
)α

2

from Lemma 2.3 and applying Hölder’s inequality for sum with p = α
2 and q = 2−α

2 in (3.10). So, the proof is
done. 2

Peetre’s K- functional of the function g ∈ CB [0,∞) is defined by

K (g; δ) = inf
h∈C2

B [0,∞)

{
∥g − h∥CB [0,∞) + δ ∥h∥C2

B [0,∞)

}
(3.11)

for δ > 0 where ∥g∥CB [0,∞) = sup
x∈[0,∞)

|g (x)| [25]. Here, C2
B [0,∞) := {g ∈ CB [0,∞) : g′, g′′ ∈ CB [0,∞)} is

the normed space with following norm

∥g∥C2
B [0,∞) = ∥g∥CB [0,∞) + ∥g′∥CB [0,∞) + ∥g′′∥CB [0,∞) (3.12)

for every g ∈ C2
B [0,∞) .
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The second-order modulus of smoothness of function g ∈ C2
B [0,∞) is given by

ω2 (g; δ) := sup
0<h≤δ

{|g (x+ 2h)− 2g (x+ h) + g (x)| : x ∈ [0,∞)} (3.13)

for δ > 0 [23]. Moreover, we know that there is a connection between Peetre’s K-functional and ω2 given by

K (g; δ) ≤ N
{
ω2

(
g,
√
δ
)
+min (1, δ) ∥g∥CB [0,∞)

}
(3.14)

for δ > 0 and N is positive constant [26].

Theorem 3.5 The operators Lam,bm,µ
m defined in (2.1) have the below inequality∣∣Lam,bm,µ

m (g;x)− g (x)
∣∣ ≤ 2N

{
ω2

(
g,
√
δn (x)

)
+min (1, δn (x)) ∥g∥CB [0,∞)

}
where g ∈ CB [0,∞) , N is a positive constant that is independent of n and δn (x) =

√
Mµ

m,2 (x) +
Mµ

m,2(x)

2 .

Here Mµ
m,2 (x) is calculated in Lemma 2.3.

Proof For f ∈ C2
B [0,∞) , we have that

f(t)− f (x) = f ′(x)(t− x) + f ′′(c)
(t− x)

2

2
(3.15)

where c between x and t . When we apply the operators Lam,bm,µ
m to both sides of (3.15) and remind the

linearity property of the operators Lam,bm,µ
m , we acquire

|Lam,bm,µ
m (f ;x)− f(x)| ≤ |f ′(x)|Lam,bm,µ

m (|t− x| ;x) + |f ′′(c)|
2

Lam,bm,µ
m

(
(t− x)2;x

)
.

From (3.4), we obtain

∣∣Lam,bm,µ
m (f ;x)− f (x)

∣∣ ≤ |f ′ (x) |
√
Mµ

m,2 (x) +
|f ′′ (c) |

2
Mµ

m,2 (x)

≤ ∥f ′∥CB [0,∞)

√
Mµ

m,2 (x) +
∥f ′′∥CB [0,∞)

2
Mµ

m,2 (x)

≤
(√

Mµ
m,2 (x) +

Mµ
m,2 (x)

2

)(
∥f ′∥CB [0,∞) + ∥f ′′∥CB [0,∞)

)
≤

(√
Mµ

m,2 (x) +
Mµ

m,2 (x)

2

)
∥f∥C2

B [0,∞) .

Using the above inequality, we can write∣∣Lam,bm,µ
m (g;x)− g (x)

∣∣
=
∣∣Lam,bm,µ

m (g;x)− Lam,bm,µ
m (f ;x) + Lam,bm,µ

m (f ;x)− f (x) + f (x)− g (x)
∣∣

≤ Lam,bm,µ
m (|g − f | ;x) + |g(x)− f(x)|+

∣∣Lam,bm,µ
m (f ;x)− f(x)

∣∣
≤ 2 ∥g − f∥CB [0,∞) + 2 ∥f∥C2

B [0,∞)

(√
Mµ

m,2 (x) +
Mµ

m,2(x)

2

)
(3.16)
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for g ∈ CB [0,∞) . Let K be Peetre’s K- functional of the function g ∈ CB [0,∞) . Consequently, we have

∣∣Lam,bm,µ
m (g;x)− g(x)

∣∣ ≤ 2K

(
g;

(√
Mµ

m,2 (x) +
Mµ

m,2 (x)

2

))
(3.17)

by taking infimum on both sides of the inequality (3.16) for f ∈ C2
B [0,∞) . As a result, the desired result is

obtained from (3.14) and (3.17). 2

4. Weighted approximation
Korovkin’s theorem has an important place in approximation theory. According to this theorem, uniformly
convergence of a linear positive operator to some test functions is examined, and by using the approximation
character of these test functions, it is concluded that this operator uniformly converges to a continuous function
in a real closed limited interval [27].

Gadjiev extended to Korovkin’s theorem in an unlimited range for weighted function spaces [28]. Let
function φ be a monotonous increased function, lim

x→∞
φ (x) = ∞ and ρ (x) = 1+φ2 (x) is a weighted function.

Then, we recall some function spaces associated with weighted Korovkin theorem with help of function ρ as
follows:

Bρ [0,∞) :=
{
g : [0,∞) −→ R | |g (x)| ⩽ Mf

(
1 + φ2 (x)

)}
,

Cρ [0,∞) := {g ∈ Bρ [0,∞) | f is continuous on [0,∞)} ,

Cξ
ρ [0,∞) :=

{
g ∈ Cρ [0,∞) | limx→∞

|g(x)|
1+φ2(x) = ξf < ∞

}
,

(cf.[28]) . Bρ [0,∞) , Cρ [0,∞) and Cξ
ρ [0,∞) are normed spaces and the weighted norm on the space Bρ [0,∞)

is given as

∥g∥ρ := sup
x≥0

|g (x)|
ρ (x)

for g ∈ Bρ [0,∞) . It is obviously Cξ
ρ [0,∞) ⊂ Cρ [0,∞) ⊂ Bρ [0,∞) , (cf.[28]) .

Theorem 4.1 (cf. [28]) If a sequence of linear positive operators {Ln}n≥1 satisfying two conditions

J1) the operators Ln act from Cρ [0,∞) to Bρ [0,∞) ,

J2) lim
n→∞

∥Ln (ek; ·)− ek∥ρ = 0, k = 0, 1, 2,

then we have
lim
n→∞

∥Ln (f ; ·)− f∥ρ = 0

for f ∈ Cξ
ρ [0,∞) where ek (t) := tk , k ∈ N0 = N ∪ {0} .

Lemma 4.2 The operators Lam,bm,µ
m defined in (2.1) have the following inequality

Lam,bm,µ
m (ρ;x) ≤ Kρ (x) ,K > 0

where ρ (t) = 1 + t2.
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We use the inequality |ξµm (x)| ≤ 1 to prove the following theorem.

Theorem 4.3 The operators Lam,bm,µ
m given in (2.1) verify

lim
m→∞

∥∥Lam,bm,µ
m (g; ·)− g

∥∥
ρ
= 0

for g ∈ Cξ
ρ [0,∞) where ρ : ρ (x) = 1 + x2.

Proof J1) Let g ∈ Cρ [0,∞) . For ρ (t) = 1 + t2, we have

Lam,bm,µ
m (g;x) = Lam,bm,µ

m

(
g

ρ
ρ;x

)
≤ ∥g∥ρ L

am,bm,µ
m (ρ;x) ≤ ∥g∥ρ Kρ (x) ≤ Mgρ (x)

where Mg > 0 thanks to Lemma 4.2. From the above inequality, it is Lam,bm,µ
m (g; ·) ∈ Bρ [0,∞) . So, we obtain

that the operators Lam,bm,µ
m act from Cρ [0,∞) to Bρ [0,∞) .

J2) Let ek (t) := tk , k ∈ N0 = N ∪ {0} . It is clear that
∥∥Lam,bm,µ

m (e0; ·)− e0
∥∥
ρ
= 0 . Furhermore, by

using Lemma 2.2, we can write that

∥∥Lam,bm,µ
m (e1; ·)− e1

∥∥
ρ

≤
∣∣∣∣ambm − 1

∣∣∣∣ sup
x≥0

x

1 + x2
+

1

bm
sup
x≥0

∣∣∣G′(1)+µ[G(1)−G(−1)]ξµm(x)
G(1)

∣∣∣
1 + x2

≤ 1

2

∣∣∣∣ambm − 1

∣∣∣∣+ C1

bm
→ 0, (m → ∞)

where the constant C1 verifies∣∣∣∣G′ (1) + µ [G (1)−G (−1)] ξµm (x)

G (1)

∣∣∣∣ ≤ C1, C1 > 0

thanks to that |ξµm (x)| ≤ 1 and the function G is an analytic function in the disc |t| < r, r > 1 .
From Lemma 2.2, we obtain that

∥∥Lam,bm,µ
m (e2; ·)− e2

∥∥
ρ

≤

∣∣∣∣∣
(
am
bm

)2

− 1

∣∣∣∣∣ supx≥0

x2

1 + x2
+

am
b2m

sup
x≥0

∣∣∣ 2G′(1)+G(1)+2µG(−1)ξµm(x)
G(1)

∣∣∣x
1 + x2

+
1

b2m
sup
x≥0

∣∣∣∣G′′(1)+G′(1)+2µ2[G(1)−G(−1)]+2µ[G′(1)+G′(−1)]ξµm(x)

G(1)

∣∣∣∣
1 + x2

≤

∣∣∣∣∣
(
am
bm

)2

− 1

∣∣∣∣∣+ C2

2

am
b2m

+
C3

b2m
→ 0, (m → ∞)

where the constants C2 and C3 satisfy∣∣∣ 2G′(1)+G(1)+2µG(−1)ξµm(x)
G(1)

∣∣∣ ≤ C2, C2 > 0∣∣∣∣G′′(1)+G′(1)+2µ2[G(1)−G(−1)]+2µ[G′(1)+G′(−1)]ξµm(x)

G(1)

∣∣∣∣ ≤ C3, C3 > 0
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thanks to that |ξµm (x)| ≤ 1 and the function G is an analytic function in the disc |t| < r, r > 1 . As a result,
in the light of all the above procedures, we obtain

lim
m→∞

∥∥Lam,bm,µ
m (ek; ·)− ek

∥∥
ρ
= 0, k = 0, 1, 2.

Finally, since the conditions J1 and J2 are verified, the desired result is obtained by using Theorem 4.1 and so,
the proof is completed. 2

5. Conclusion
We introduce a generalization of Szász-Mirakyan operators including Dunkl-Appell polynomials and sequences
satisfying certain conditions and obtain some approximation properties. Similarly, the generalizations of
Kantorovich, Durrmeyer and Stancu type of these operators can be constructed. These could be considered for
future research.
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