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Abstract: In this paper, we characterize the operators which are unitarily equivalent to truncated Hankel operators.
We show that every rank one operator and every 2 x 2 matrix is unitarily equivalent to a truncated Hankel operator.
Furthermore, we get that certain sum of tenser products of truncated Hankel operators is unitarily equivalent to a

truncated Hankel operator.
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1. Introduction
The model theory plays an important role in the study of contraction operators. It is particularly powerful
when dealing with Cy(1)-operators. It is shown in [1] that every Cp(1l)-operator is unitarily equivalent to a
compressed shift on a model space. Hence, studying operators on a model space is of great significance. In
2007, Sarason introduces the truncated Toeplitz operator on the model space in [13]. Afterwards, truncated
Toeplitz operators are extensively studied (see [5, 8] and their references). However, the truncated Hankel
operators are not studied well. R. V. Bessonov [2] proved that every compact truncated Hankel operator has
a continuous symbol. C. Gu characterized zero and rank one truncated Hankel operators on the model space,
respectively [10]. It is reasonable to predict that truncated Hankel operators will also become an interesting
class of operators. In this paper, we consider the problem what kind of operator is unitarily equivalent to a
truncated Hankel operator.

Let D={z€ C: |z] <1} be the unit disk in the complex plane C and T its boundary, the unit circle.
Let L? denote the space of Lebesgue square integrable functions on the unit circle T, and let H? denote the
standard Hardy space which is the subspace of L? consisting of functions whose negative Fourier coefficients
vanish.

Let P be the projection from L? onto H?. For ¢ € L?, the Toeplitz operator T, with symbol ¢ is
densely defined on H? by

T,f = P(ef), for f € H™.

The Hankel operator H,, with symbol ¢ € L? is densely defined on H? by

Hyf = J(I - P)(¢f). for f € H>,
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where J is the unitary operator on L? defined by
[71](z) ==f, with f(z2) = f(2), f € L*.

Clearly, Hj = H,# , where ©*(2) = 0(3).

A function u € H? is called an inner function if |u| = 1 a.e. on T. If u is a nonconstant inner
function, then the model space K, = H? © uH? is a proper nontrivial invariant subspace of 7. Let M, be
the multiplication operator on L? defined by M, f = uf for f € L?, and let P, be the orthogonal projection

from L? onto K, . It is easy to see
P,=P— M,PMz.

For ¢ € L?, the truncated Toeplitz operator A with symbol ¢ is densely defined on K., by
ALf = Pu(pf) for f € K,NH™.
For ¢ € L?, a truncated Hankel operator Bg with symbol ¢ is densely defined on K, by
Byf =P, J(I — P)pf = P, Jof, for f € K, NH™.

Obviously, (By)* = B,

Unitary equivalence to the truncated Toeplitz operator has been studied extensively. In [4], the authors
show that all rank one operators, two by two matrices, normal operators and inflations of finite Toeplitz
matrices are unitarily equivalent to truncated Toeplitz operators. The authors in [15] and [7] continue to study
the problem. In [15], the authors obtain the theorem that a sum of some tensor products of truncated Toeplitz
operators is unitarily equivalent to some truncated Toeplitz operator, and then give some operators which are
unitarily equivalent to truncated Toeplitz operators. In [7], the authors give a necessary and sufficient condition
when a n by n matrix is unitarily equivalent to an analytic truncated Toeplitz operator.

Now a natural problem is what operators are unitarily equivalent to truncated Hankel operators.

In this paper, we will generalize several results mentioned above to the setting of truncated Hankel
operators. Firstly, we prove every rank one operator and every two by two matrix is unitarily equivalent to the
truncated Hankel operator. Then we show that a sum of some tensor products of truncated Hankel operators

with the form ) B, v ® ngﬂw is unitarily equivalent to a truncated Hankel operator, and then obtain some
J

concrete particular situations. We introduce when the direct sum of the truncated Hankel operator with zero
operators and the tensor product of the truncated Hankel operator with the rank one operator are unitarily

equivalent to truncated Hankel operators. We give two examples to show that some truncated Hankel operators

are unitarily equivalent to block Hankel matrices.

2. Preliminaries

The reproducing kernels of the K, are

1 — u(Nu(z)

Kiz) = 1— Az

, AeD.
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K} with A € D is a reproducing kernel at ID. Then we introduce the reproducing kernel at T. To understand
the reproducing kernel at T, we need to know the angular derivative. In [13], we know a function u is said to
have an angular derivative in the sense of Carathéodory (an ADC) at the point 7 of T if u has a nontangential

limit u(n) of unit modulus at n, and «' has a nontangential limit «/(n) at . There is a fundamental theorem
about ADC.

Theorem 2.1 (The Julia-Carathé odory Theorem) Suppose ¢ is a holomorphic self-map of D, and ( € T.

Then the following three statements are equivalent:
(1) 0 <liminf 1HEE! = 6 < oo;
z—C z
(2) 2 lim =2 egists for some n € T;
z—C (—z
(3) Llim p(z) =n e T, Llim ¢'(z) exists and equal to (0.
z—C z—C

The Zlim means the nontangential limit.

If v has an ADC at n € T, then the function

Kyt = LETTE) _ )~

is a reproducing kernel at n. And K} — K} as A approaches 7 nontangentially from D.

The norm of reproducing kernel is

1—JuM))?

Kv 2:
H >\|| 17|)\|2

Let kY := ||§§u denote the normalized reproducing kernel.

Define a conjugation C on L2 by (Cf)(¢) = u(¢O)Cf(Q), for f € L2. We write f for Cf. A short
calculation reveals that
= u(z) —u(})
K¥(z) = ———~.
X(2) z—A
Now we introduce several properties of truncated Hankel operators. It is easy to see that Bg does not

depend on the analytic part of the symbol function . Therefore, we often assume ¢ € zH?2. In [10], C. Gu

gives the symbols of truncated Hankel operators which are zero.

Theorem 2.2 [10] Suppose u is an inner function. A bounded truncated Hankel operator Bg with ¢ € 2H?

s zero operator if and only if

0 (2) = w2 u(Z)A(z) — |u(O)PR(0), h € H>.

If x,y are two elements in some Hilbert space H, let x ® y denote the rank one operator defined by

(x ®y)h = (h,y)x, for h € H. Gu gives the rank one truncated Hankel operators.
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Theorem 2.3 [10] Let u be an inner function and 6(z) == u(2)u(z).

(1) For A € D, the operator K% © Ky and I’(v% ® I’(EL belong to G, . And K% O K} has the symbol i ,
@ ® IA(} has the symbol %.

(2) If 6 has an ADC at the point n of T, then the operator K3 © K belongs to G,,. And I?% ® I,(E‘ has
the symbol K72.

(8) The only rank one operators in G, are nonzero scalar multiples of the operators in (1) and (2).

3. Rank one operators and 2 x 2 matrices

In this section, we show that every rank one operator and every 2 x 2 matrix is unitarily equivalent to a
truncated Hankel operator.

The following lemma is well known.

Lemma 3.1 Let H; and Ha be two Hilbert spaces. Two operators of rank one x; @ y; € L(H;), i = 1,2, are
unitarily equivalent if and only if the following are satisfied:

(1) dim Hy = dim Ho;

(2) llzallllyall = llz2lllly=1l ;

(3) (x1,91) = (22, 92) .-

Theorem 3.2 FEvery rank one operator is unitarily equivalent to a truncated Hankel operator.

Proof Let R = x®y on H where H is a Hilbert space. Without loss of generality, we assume that

lz]l = llyll = 1, then 0 < [{x,y)] < 1. We need to show that there exists an inner function 6 and an
appropriate point ¢ such that z ® y is unitarily equivalent to pk:g ® k‘g or pkg ® k;g for some constant p with

|p| = 1. Applying Lemma 3.1, it suffices to claim that
)] = (k2. D). (3.1
Suppose that |(z,y)| = 1. Choosing any inner function 6 and any real number A € D, clearly we have

<k§ak§> = |<$,y>| =1

Suppose that 0 < |(z,y)| < 1, we divide the discussion into two cases.

Case 1. If dimH =n < oo, we choose 0(z) = z". Take ¢ € T, then

1— ZQn
—2

n(l—-¢)
140+ 4¢C
n

(2,18 =

2n—2

=2 =2n-—-2
We know that |%\ can achieve 0 and 1 with ¢ € T, and it is a continuous function. Hence, the

equation (3.1) is true by selecting appropriate (.
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Case 2. If dimH = oo. Suppose that (x,y) = 0. Let 6 be the singular inner function exp (z;ﬂ) . Itis

clear that 6 has ADC at ¢ € T\{1,—1}. Taking ¢ = +i, we have

1 1-6(0)0(C)
0/()e'(C)) 1-¢

<k27 kg> =

Suppose that 0 < |(z,y)| < 1. Let 01(z) = exp (Ozzzﬂ), a >0, and 0(z) = z01(z). Then 6 has ADC

at T\{1,—1}. Taking ¢ = —1, we have 6({) = 6(¢) = ¢ and |0}(¢)| = |0,({)| = «. Then

(1 =)/ 10" (O (Q)]
B 1
V1110 ()]
By Theorem 2.1, we have
liminf 1= 16=)] 0C=) = liminf 1= 1202)] [201(2)]
e 1— |2 ¢ 11—z
= 1+liminf M
z—C 1-— ‘Z|
= 1l+oa.
Similarly,
limipfw:1+a> 1.

= 117

By Theorem 2.1, we get |0'(¢)| = |6'(¢)| = 1+ «. Hence, (kg,k‘? = p%a < 1, and it equals |(z,y)| by choosing

appropriate «. O

Theorem 3.3 Fvery 2 x 2 matriz is unitarily equivalent to a truncated Hankel operator.

Proof Let T be a 2 x 2 matrix. In fact, every 2 X 2 matrix is unitarily equivalent to a complex symmetric
matrix (see [3]). There is a unitary operator U such that T'= URU, where R is a complex symmetric matrix.

Hence, R is a Hankel matrix. Take 6 = 2z2. It is easy to see that R is a truncated Hankel operator on Ky. O

4. Tensor products of truncated Hankel operators

In this section, we prove that a sum of some tensor products of truncated Hankel operators is unitarily equivalent

to a truncated Hankel operator. Suppose X,Y are Hilbert spaces, let X ® Y denote a tensor product (see [11]).
In the paper [15], a unitary operator from K, ® L? onto L? is defined as the following.
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Lemma 4.1 [15] Suppose that u is an inner function. The mapping
Q: h@ f—=h(fou), heK,, felL?

can be extended linearly to define a unitary operator from K, ® L? onto L?, denoted by €, . It is clear that
the image of K, ® H? under Q, is H?.

Lemma 4.2 [15] Suppose that w and 0 are inner functions, Q,, is the unitary operator defined in Lemma 4.1.
Then

Qu(K, ®0H?) = (0 ou)H?, Qu(K, ® Kp) = Kgou.

Lemma 4.3 Suppose that 0 is an inner function and o € L*. If BZ s bounded then ng is bounded for any

JjEZ.
The proof of Lemma 4.3 is similar to that of Lemma 2.1 in [15], and we omit it.

In the following of the paper, we let u and 6 denote inner functions satisfying u# = u. Let us now
show that the sum of some tensor products of truncated Hankel operators is unitarily equivalent to a truncated

Hankel operator.

Theorem 4.4 Suppose 1, p € L? are subjected to the following conditions,

(I)ngw are bounded and nonzero only for a finite number of j,
(2)BY is bounded,

(3)(pou) € L2.

Then BZ)‘EZOU) is bounded, and

o _ 0
sz(Zou)Qu =y Z Bﬁ“ﬁ oY ng+199 . (4.1)
J

Proof Let he K°, f € Kg°. We have JY(pou)Q,(h® f) = (JYh)(JZ(p ou)(f ou)). By the assumption
Y € L?, clearly Jyh € L? = @jczu/K,,. It follows that

JYh = > Puk, Jvh
J

= Y WP Jiph
J

ZuquJujwh
J

> u/ Bl ,h.
J
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Since B, " = 0 only for a finite number of j, then the sum above is finite. We can write

Joh(pou)(fou) = (Jbh)JIZ(pou)(fou)
= Zuﬁ B).J(p o u)(f o)

= Z(ngwh)JﬂjE(wou)(fou)
= ) Qu(BYh @ JF T of).

Note that Q, (K, ® Ky) = Kgown, we have

PGOu - Qu(Pu [029] PQ)QZ

Then
Byitouyu(h® f) = Poou(pou)(fou)h
= Qu(Pu® P T k(g o u)(f o)
= Qu(P,®P)(Q (Bl h® T 0f))
J
= 0> (Bliyh© B, ).
J

By Lemma 4.3, ng is bounded for any j. The proof is now complete. O

Remark 4.5 The proof of Theorem 4.4 is kind of similar to that of theorem 4.2 in [15] which shows that a

truncated Toeplitz operator A woB) is unitarily equivalent to Z(A zip ® Azw), where 8 and B are inner
J

functions. However, in the proof of Theorem 4.4, according to the definition of the truncated Hankel operator

Bjh = PyJyh, we need to consider the operator J that is different from the truncated Toeplitz operator. And

the discussion is closely related to the properties of u.

Then we investigate some special cases. By Theorems 4.4 and 2.2, we take ¥ € K,2 and get the following
corollary:

Corollary 4.6 If ) € K,2, ¢ € L? and BY,

it Be are bounded for j = —1,0,1, then Be‘mou) s bounded and

P(p

Bytou = Bity ® B, + By ® BY, + B, ® BY. (4.2)

Proof Note that K,» = K, ® uK, . And it is easy to see that vk, = 2K,.
If j > 2,
wp € W PP K e = wl TR (K, @ uKy,) = K, @ ul T2 K

thus, B =0.

I
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If j < —2, it is easy to check that u/+) € u2H2. By Theorem 2.2, we get B, =0.
Combining equation (4.1), we get that equation (4.2) holds. O

According to Corollary 4.6, we prove that the tenser product of a truncated Hankel operator and a self-adjoint
rank one operator is unitarily equivalent to a truncated Hankel operator. The conclusions are analogous with

truncated Toeplitz operators in [15], but the details of proof are different.

Theorem 4.7 Let d = dim K, , take ¥ € K2 and n € NU{oo}. Suppose that B;‘jw is bounded for j = —1,0,1,
then for any real constant A € D, the operator B a2y D Ond s unitarily equivalent to a truncated Hankel

operator.

Proof Let # be an inner function with order n + 1, by (1) of Theorem 2.3, for any real constant A € D

70 0 _ no
K @ K Be(z)eiz)

Take ¢ = %, then Zy — Ap = 0(2)0(Z) and z%p — X\Zp = 20(2)0(Z). Theorem 2.2 states

0 _\pb _ \2p0
BE%P = ABz, = \"B,,.
By equation (4.2) of Corollary 4.6,
Bigow = Biyixpxeup © By = Biyiapirzus @ (K © KY).

Since K§ ® KY is a self-adjoint operator of rank one B apaazuy @ (K{ ® KY) is unitarily equivalent

1
CIES?
to BW,JrM,H\Quw ®04®---® 04, where 04 is repeated n times.

Therefore, Bw apazuy D 0y,q is unitarily equivalent to the truncated Hankel operator on Ky, with

the symbol |2 P 9(u u)

O
Theorem 4.7 gives when the direct sum of a truncated Hankel operator with the zero operator is unitarily

equivalent a truncated Hankel operator, and by Theorems 4.7 and 3.2, we get the following conclusion.

Corollary 4.8 Suppose that ¥ € K,2 and By, is bounded for j = —1,0,1. Then for any selfadjoint rank one
operator R and any real constant A € D, the operator B*¢+/\w+/\2uw ® R is unitarily equivalent to a truncated

Hankel operator.

Then we take ¢ € K, and get the following corollary.

Corollary 4.9 If Y € K,,, ¢ € L? and By, Biy» Bg are bounded, then Be‘zuou) is bounded and

Gou ~ Ru (4 U 6
Bw(wou) - Bw ® BE(,& + Bﬂ"b ® B@' (43)

The proof of the Corollary 4.9 is similar to that of Corollary 4.6.
Using Corollary 4.9, we obtain that the tenser product of a truncated Hankel operator and a nonself-

adjoint rank one operator is unitarily equivalent to a truncated Hankel operator.
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Theorem 4.10 Suppose that 6 has ADC at ¢ and C, where ( € T, and ( # £1. If ¢ € K,, such that B

and By, are bounded, then B&Hmb ® (Kg ® Kg) is unitarily equivalent to a truncated Hankel operator.

Proof Take

In [10], we know that Bf, = I?Jg ©) I}?. A simple calculation shows that (Zp — ¢ = ((0(2)0(z) — 0(0)0(C)), it

follows that BY

zo = BZ. Applying Corollary 4.9, we obtain that

fGou ~ DRU AE’ A/G
Byigou) = Bepay @ (Kg © K¢).

By Theorems 4.10 and 3.2, the following Corollary is immediately obtained.

Corollary 4.11 If ¢ € K,,, such that By, and By, are bounded, and ¢,C € T,C # =1, then for any nonself-

adjoint rank one operator R, we have that B¢, 7, ® R is unitarily equivalent to a truncated Hankel operator.
Then we take » = 1, equation (4.1) gives the following conclusion.

Corollary 4.12 Suppose that ¢ € L? and u is a Blaschke product of order k, k=1,2,--- ,00. Assume that

Bg is bounded. Then B2°" is bounded and unitarily equivalent to B%@Be and (B2%%)? is unitarily equivalent

pou w’ pou
to I, ® (B?D)2 .

Proof Take v = 1. If j > 0, «/ is analytic, clearly BY = 0. If j < -2, we have w € u?H?,
Theorem 2.2 implies BY, = 0. Then equation (4.1) gives B2 =~ B @ BZ. We have (B%)? = I. Therefore,

pou

(BY%4)? = (BL @ BY)? = I © (BY)?. O

pou

Remark 4.13 Unlike the truncated Toeplitz operator, we note that the identity operator is not a truncated
Hankel operator. Therefore, the result in Corollary /.12 is somewhat different from the setting of the truncated

Toeplitz operator.

5. Block Hankel matrices
Now we give two examples which show that some truncated Hankel operator is unitarily equivalent to a block
Hankel matrix.

Example 5.1 Suppose u(z) = z", then

o gy L ifiti=mtl
Bim = (ai;) = { 0, otherwise.

Take ¢, € L?, m=0,--- ,n—1, such that Bgm are bounded. Define
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By corollary 4.9, we have

n—1
Gou E u 0 u 0
Bh = (BE"L ® BE‘p'm Zzmtn ® BLP'm ) :
m=0
Then BY°" is bounded and unitarily equivalent to the matrix
9 0 0 0

B g«m B?Fo B?QDHW, -1 Bsg 0

staz B?QOa e B<P0 Bsﬁl

0 0 ... 0 0

?éﬂélfl BtePo Btepnfs Btgn72

Bcpo Btp1 e Btpnﬂ Bs@n—l

Example 5.2 Suppose 0 = 2. Take v € K,, i =0,---,2n — 1. Assume By, and Bz, are bounded for
1=0,---,2n—1. Define

2n—1 2n—1

h(z) = Z VW™ = Z Y (Z™ o).
m=1 m=1

We have
2n—1
Bt = N (BY @Bl + By, ©B.).

m=0

Then Bgou is bounded and unitarily equivalent to the matrix

BZZole BZﬁwz o sznfﬁwnfl Bfﬁnfﬁwn
u u u u
B, vau, B, v, By, _+ayn Byt wpas
BZZn—Z‘FHwn—l Bzzn71+ﬁd)n o B$2n74+ﬂw2n73 B$2n73+ﬂ¢2n72
u u u u
Bllin—l-l-ﬂwn B¢n+ﬂ¢n+1 T Bw2n—3+ﬂw2n—2 B@b2n—2+ﬂ¢2n—1
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