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1. Introduction

It is one of the main topics in submanifold geometry to investigate an immersed real hypersurface of homoge-
neous type in Hermitian symmetric spaces of rank 2 (HSS2) with certain geometric condition. Understanding
and classifying real hypersurfaces in HSS2 is an important problem in differential geometry. One of these spaces
is the complex two-plane Grassmannian G2(Cm+2) defined by the set of all complex two-dimensional linear
subspaces in Cm+2 . For indefinite complex Euclidean spaces, we give a definition of dual space of G2(Cm+2)

denoted by G∗
2(Cm+2) as the set of all complex two-dimensional linear subspaces in indefinite complex Eu-

clidean space Cm+2
2 . G∗

2(Cm+2) has homogeneous expression as SU2,m/S(U2·Um) and is called the complex
hyperbolic two-plane Grassmannian which is the unique noncompact, irreducible, Kähler, quaternionic Kähler
manifold which is not a hyperkähler manifold. Thanks to Berndt and Suh [2], comparing to G2(Cm+2) with
compact type, we have investigated geometry of submanifolds in SU2,m/S(U2 · Um) .

Let N be a local unit normal vector field on M . Since SU2,m/S(U2 ·Um) has a Kähler structure J , we
may define the Reeb vector field ξ = −JN and a 1 -dimensional distribution [ξ] = Span{ ξ} .

Let C be a distribution which stands for the orthogonal complement of [ξ] in TxM at x ∈ M . It becomes
the complex maximal subbundle of TxM . Thus the tangent space of M consists of the direct sum of C and
C⊥(:= [ξ]) as follows: TxM = C ⊕ C⊥ . The real hypersurface M is said to be Hopf if AC ⊂ C , or equivalently,
the Reeb vector field ξ is principal with principal curvature α = g(Aξ, ξ) . In this case, the principal curvature
α = g(Aξ, ξ) is said to be the Reeb curvature of M .
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From the quaternionic Kähler structure J = span{J1, J2, J3} of SU2,m/S(U2 ·Um) , there naturally exist
almost contact 3-structure vector fields ξν = −JνN , ν = 1, 2, 3 . Put Q⊥ = Span{ ξ1, ξ2, ξ3} , which is a 3-
dimensional distribution on M . In addition, Q stands for the orthogonal complement of Q⊥ in TxM . It
becomes the quaternionic maximal subbundle of TxM . Thus the tangent space of M consists of the direct sum
of Q and Q⊥ as follows: TxM = Q⊕Q⊥ .

Thus, we considered as geometric conditions for real hypersurfaces in SU2,m/S(U2·Um) that the subbun-
dles C and Q of TM are both invariant under the shape operator. By using them, Berndt and Suh proved the
following:

Theorem 1.1 ([3]) Let M be a connected real hypersurface in SU2,m/S(U2 ·Um),m ≥ 3 . Then the following
statements are equivalent:

• The maximal complex subbundle C and the maximal quaternionic subbundle Q of the tangent bundle of
M are invariant under the shape operator A of M ;

• M is congruent to an open part of one of the following hypersurfaces:

1. A tube with radius r ∈ R+around the complex and quaternionic totally geodesic embedding of SU2,m−1/S(U2·
Um−1) into SU2,m/S(U2 · Um) ;

2. A tube with radius r ∈ R+around the complex and totally complex totally geodesic embedding of the
complex hyperbolic space CHm into SU2,m/S(U2 · Um) ;

3. (Only if m = 2l is even) A tube with radius r ∈ R+ around the real and quaternionic totally geodesic
embedding of the quaternionic hyperbolic space HH l into SU2,m/S(U2 · Um) ;

4. A horosphere with singular point at infinity of type ξ ∈ Q⊥ ;

5. A horosphere with singular point at infinity of type ξ ∈ Q ;

6. The normal vector field N of M is singular of type ξ ∈ Q and M has at least four distinct principal
curvatures, three of which are given by

α = 2, γ = 0, λ = 1,

with corresponding principal curvature spaces

Tα = (C ∩ Q)⊥, Tγ = JQ⊥, Tλ = C ∩ Q ∩ JQ.

If µ is another (possibly nonconstant) principal curvature function, then JTµ ⊆ Tλ and J Tµ ⊆ Tλ.

Certain parallelisms on the other symmetric operators such as Ricci operator, structure Jacobi and normal
Jacobi operators for real hypersurfaces in Hermitian symmetric spaces are extensively studied. Among them,
shape operator was studied by Niebergall and Ryan [12]. The Ricci operator were considered by Lee, Suh
and Woo [10] and Suh [15, 16] and Suh and Woo [17]. Moreover, the structure Jacobi and normal Jacobi
operators for real hypersurfaces in Hermitian symmetric spaces have been undertaken by Hwang, Lee and Woo
[6], Panagiotidou and Tripathi [13] and Pérez and Santos [14].
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Semisymmetry for an operator T on M means the Riemannian curvature tensor R act as a derivation of
T on M as follows: R ·T = 0 . Hwang, Lee and Woo [6] proved nonexistence of Hopf hypersufaces in G2(Cm+2)

with semisymmetric T (T denotes either shape operator, structure Jacobi operator or normal Jacobi operator)
as follows:

Theorem 1.2 ([6]) There does not exist any Hopf real hypersurface in complex two-plane Grassmannians
G2(Cm+2) , m ≥ 3 , with semiparallel shape operator and ξα = 0 .

Theorem 1.3 ([6]) There does not exists any Hopf real hypersurface in complex two-plane Grassmannians
G2(Cm+2) , m ≥ 3 , with semiparallel structure Jacobi operator and ξα = 0 .

Based on these results, in this paper, we will consider the notion of semisymmetric operator for real
hypersurfaces in complex hyperbolic two-plane Grassmannians SU2,m/S(U2 · Um) in the class of Hermitian
symmetric spaces.

Theorem 1.4 There does not exist any Hopf real hypersurface in complex hyperbolic two-plane Grassmannians
SU2,m/S(U2 · Um) , m ≥ 3 , with semisymmetric shape operator.

By a result in [4], we know that if a tensor field is recurrent, it is always semisymmetric. Hence, as a
corollary we obtain the following:

Corollary 1.5 There does not exists any Hopf real hypersurface in complex hyperbolic two-plane Grassmannians
SU2,m/S(U2 · Um) , m ≥ 3 , with parallel or recurrent shape operator.

On the other hand, related to the structure Jacobi operator Rξ , we have the following results:

Theorem 1.6 There does not exists any Hopf real hypersurface in complex hyperbolic two-plane Grassmannians
SU2,m/S(U2 · Um) , m ≥ 3 , with semisymmetric structure Jacobi operator.

Also using [4] again, we have the following:

Corollary 1.7 There does not exist a connected Hopf real hypersurface in the complex hyperbolic two-plane
Grassmannians SU2,m/S(U2 · Um) , m ≥ 3 , with parallel or recurrent structure Jacobi operator.

2. The complex hyperbolic two-plane Grassmannian SU2,m/S(U2 · Um)

In this section we summarize basic material about complex hyperbolic two-plane Grassmann manifolds SU2,m/S(U2·
Um) , for details we refer to [2, 3, 15, 16].

The Riemannian symmetric space SU2,m/S(U2·Um) , which consists of all complex two-dimensional linear
subspaces in indefinite complex Euclidean space Cm+2

2 , becomes a connected, simply connected, irreducible
Riemannian symmetric space of noncompact type and with rank two. Let G = SU2,m and K = S(U2·Um) ,
and denote by g and k the corresponding Lie algebra of the Lie group G and K respectively. Let B be the
Killing form of g and denote by p the orthogonal complement of k in g with respect to B . The resulting
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decomposition g = k⊕ p is a Cartan decomposition of g . The Cartan involution θ ∈ Aut(g) on su2,m is given
by θ(A) = I2,mAI2,m , where

I2,m =

(
−I2 02,m
0m,2 Im

)
.

I2 and Im denote the identity (2× 2) -matrix and (m×m) -matrix, respectively. Then < X,Y >= −B(X, θY )

becomes a positive definite Ad(K) -invariant inner product on g . Its restriction to p induces a metric g on
SU2,m/S(U2·Um) , which is also known as the Killing metric on SU2,m/S(U2·Um) . Throughout this paper we
consider SU2,m/S(U2·Um) together with this particular Riemannian metric g .

The Lie algebra k decomposes orthogonally into k = su2 ⊕ sum ⊕ u1 , where u1 is the one-dimensional
center of k . The adjoint action of su2 on p induces the quaternionic Kähler structure J on SU2,m/S(U2·Um) ,
and the adjoint action of

Z =

( mi
m+2I2 02,m
0m,2

−2i
m+2Im

)
∈ u1

induces the Kähler structure J on SU2,m/S(U2·Um) . By construction, J commutes with each almost Hermitian
structure Jν in J for ν = 1, 2, 3 . Recall that a canonical local basis J1, J2, J3 of a quaternionic Kähler structure
J consists of three almost Hermitian structures J1, J2, J3 in J such that JνJν+1 = Jν+2 = −Jν+1Jν , where
the index ν is to be taken modulo 3 . The tensor field JJν , which is locally defined on SU2,m/S(U2·Um) , is
selfadjoint and satisfies (JJν)

2 = I and tr(JJν) = 0 , where I is the identity transformation. For a nonzero
tangent vector X we define RX = {λX|λ ∈ R} , CX = RX ⊕ RJX , and HX = RX ⊕ JX .

We identify the tangent space ToSU2,m/S(U2·Um) of SU2,m/S(U2·Um) at o with p in the usual way.
Let a be a maximal abelian subspace of p . Since SU2,m/S(U2·Um) has rank two, the dimension of any such
subspace is two. Every nonzero tangent vector X ∈ ToSU2,m/S(U2·Um) ∼= p is contained in some maximal
abelian subspace of p . Generically this subspace is uniquely determined by X , in which case X is called
regular. If there exist more than one maximal abelian subspaces of p containing X , then X is called singular.
There is a simple and useful characterization of the singular tangent vectors: A nonzero tangent vector X ∈ p

is singular if and only if JX ∈ JX or JX ⊥ JX .

3. Real hypersurfaces in complex hyperbolic two-plane Grassmannian SU2,m/S(U2 · Um)

The complex hyperbolic two-plane Grassmannian SU2,m/S(U2·Um) is the unique noncompact, irreducible,
Kähler, quaternionic Kähler manifold which is not a hyperkähler manifold. Remarkably, it is equipped with
both a Kähler structure J and a quaternionic Kähler structure J (not containing J ) satisfying JJν = JνJ

(ν = 1, 2, 3) , where {Jν}ν=1,2,3 is an orthonormal basis of J .

Let M be a real hypersurface in complex hyperbolic two-plane Grassmannian SU2,m/S(U2 · Um) , that
is, a submanifold in SU2,m/S(U2 ·Um) with real codimension one. The induced Riemannian metric on M will
also be denoted by g , and ∇ denotes the Levi–Civita covariant derivative of (M, g) . From the quaternionic
Kähler structure J of SU2,m/S(U2 · Um) , there naturally exist almost contact 3-structure vector fields defined
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by ξν = −JνN , ν = 1, 2, 3 . We denote by C and Q the maximal complex and quaternionic subbundle of the
tangent bundle TM of M , respectively. Now let us put

JX = φX + η(X)N, JνX = φνX + ην(X)N (ν = 1, 2, 3) (3.1)

for any tangent vector field X on M in SU2,m/S(U2 · Um) , where φX (resp., φνX ) denotes the tangential
component of JX (resp., JνX ) and N a unit normal vector field of M in SU2,m/S(U2 · Um) .

From the Kähler structure J of SU2,m/S(U2 · Um) there exists an almost contact metric structure
(φ, ξ, η, g) induced on M in such a way that

φ2X = −X + η(X)ξ, η(ξ) = 1, φξ = 0, and η(X) = g(X, ξ) (3.2)

for any vector field X on M and ξ = −JN .

If M is orientable, then the vector field ξ is globally defined and it is said to be the induced Reeb vector
field on M . Then each Jν induces a local almost contact metric structure (φν , ξν , ην , g) , ν = 1, 2, 3 , on M .
Locally, C is the orthogonal complement in TM of the real span of ξ , and Q the orthogonal complement
in TM of the real span of {ξ1, ξ2, ξ3} . Moreover, the almost contact metric 3-structure (φν , ξν , ην , g) on M

satisfies

φ2
νX = −X + ην(X)ξν , φνξν = 0, ην(ξν) = 1

φν+1ξν = −ξν+2, φνξν+1 = ξν+2,
(3.3)

for any vector field X tangent to M . The tangential and normal components of the commuting identity
JJνX = JνJX give

φφνX − φνφX = ην(X)ξ − η(X)ξν and ην(φX) = η(φνX). (3.4)

The last equation implies φνξ = φξν .

From the parallelism of Kähler structure J and the quaternionic Kähler structure J , together with Gauss
and Weingarten formulas it follows that

(∇Xφ)Y = η(Y )AX − g(AX,Y )ξ, ∇Xξ = φAX, (3.5)

∇Xξν = qν+2(X)ξν+1 − qν+1(X)ξν+2 + φνAX, (3.6)

where qν are 1-forms associated to the derivatives of {Jν}ν=1,2,3 .

Finally, using the explicit expression for the Riemannian curvature tensor R̄ of SU2,m/S(U2 ·Um) in [2]
the Codazzi equation takes the form

(∇XA)Y − (∇Y A)X = −1

2

[
η(X)φY − η(Y )φX − 2g(φX, Y )ξ

+
∑3

ν=1

{
ην(X)φνY − ην(Y )φνX − 2g(φνX,Y )ξν

}
+
∑3

ν=1

{
ην(φX)φνφY − ην(φY )φνφX

}
+
∑3

ν=1

{
η(X)ην(φY )− η(Y )ην(φX)

}
ξν

]
(3.7)
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for any vector fields X and Y on M . Moreover, we have the equation of Gauss as follows:

R(X,Y )Z =− 1

2

[
g(Y, Z)X − g(X,Z)Y

+ g(φY,Z)φX − g(φX,Z)φY − 2g(φX, Y )φZ

+
∑3

ν=1
{g(φνY, Z)φνX − g(φνX,Z)φνY − 2g(φνX,Y )φνZ}

+
∑3

ν=1
{g(φνφY,Z)φνφX − g(φνφX,Z)φνφY }

−
∑3

ν=1
{η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY }

−
∑3

ν=1
{η(X)g(φνφY,Z)− η(Y )g(φνφX,Z)} ξν

]
+ g(AY,Z)AX − g(AX,Z)AY

(3.8)

for any tangent vector fields X,Y and Z on M . Hereafter, unless otherwise stated, we want to use these basic
equations mentioned above frequently without referring to them explicitly.

With the assumption of Hopf hypersurfaces in SU2,m/S(U2 · Um) , we also have the following equations

Y α = (ξα)η(Y ) + 2
∑3

ν=1
ην(ξ)ην(φY ). (3.9)

AφAY =
α

2
(Aφ+ φA)Y +

∑3

ν=1

{
η(Y )ην(ξ)φξν + ην(ξ)ην(φY )ξ

}
− 1

2
φY − 1

2

∑3

ν=1

{
ην(Y )φξν + ην(φY )ξν + ην(ξ)φνY

} (3.10)

for any vector field Y on M (see [2]).

4. Semisymmetric shape operator

In this section, let M represent a Hopf real hypersurface in SU2,m/S(U2 · Um) , m ≥ 3 , and R denote the
Riemannian curvature tensor of M . Hereafter unless otherwise stated, we consider that X,Y , and Z are any
tangent vector fields on M . Let W be any tangent vector field in Q .

We first give the fundamental equation for the semisymmetry of a tensor field T of type (1,1) in M and
prove our Theorem 1.4.

As mentioned in Introduction, a tensor field T on M is said to be semisymmetric, if T satisfies R ·T = 0 .
It is equal to

(R(X,Y )T )Z = 0. (†)

Since (R(X,Y )T )Z = R(X,Y )(TZ)− T (R(X,Y )Z) , the equation (†) is equivalent to the following

R(X,Y )(TZ) = T (R(X,Y )Z). (‡)
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Therefore from (3.8), it becomes

g(Y, TZ)X − g(X,TZ)Y + g(φY, TZ)φX − g(φX, TZ)φY

− 2g(φX, Y )φTZ − 2g(AY, TZ)AX + 2g(AX,TZ)AY

+
∑
ν

{
g(φνY, TZ)φνX − g(φνX,TZ)φνY − 2g(φνX,Y )φνTZ

}
+

∑
ν

{
g(φνφY, TZ)φνφX − g(φνφX, TZ)φνφY

}
−

∑
ν

{
η(Y )ην(TZ)φνφX − η(X)ην(TZ)φνφY

}
−
∑
ν

{
η(X)g(φνφY, TZ)− η(Y )g(φνφX, TZ)

}
ξν

= g(Y, Z)TX − g(X,Z)TY + g(φY,Z)TφX − g(φX,Z)TφY

− 2g(φX, Y )TφZ − 2g(AY,Z)TAX + 2g(AX,Z)TAY

+
∑
ν

{
g(φνY, Z)TφνX − g(φνX,Z)TφνY − 2g(φνX,Y )TφνZ

}
+

∑
ν

{
g(φνφY,Z)TφνφX − g(φνφX,Z)TφνφY

}
−

∑
ν

{
η(Y )ην(Z)TφνφX − η(X)ην(Z)TφνφY

}
−
∑
ν

{
η(X)g(φνφY,Z)− η(Y )g(φνφX,Z)

}
Tξν ,

(4.1)

where
∑

ν moves from ν = 1 to ν = 3 .
Using this discussion, let us prove our Theorem 1.4 given in the Introduction. In order to do this,

suppose that M has semisymmetric shape operator, that is, the shape operator A of M satisfies the condition
(R(X,Y )A)Z = 0 .

Putting T = A and putting Y = Z = ξ and using the condition of Hopf, the equation (4.1) can be
reduced to

AX − 2αA2X

−
∑
ν

{(
ην(X)− η(X)ην(ξ)

)
Aξν + 3ην(φX)Aφνξ + ην(ξ)AφνφX

}
= αX − 2α2AX

(4.2)

− α
∑
ν

{(
ην(X)− η(X)ην(ξ)

)
ξν + 3ην(φX)φνξ + ην(ξ)φνφX

}
.

Our first purpose is to show that ξ belongs to either Q or Q⊥ .

Lemma 4.1 Let M be a Hopf hypersurface with semisymmetric shape operator in SU2,m/S(U2 ·Um) , m ≥ 3 .
Then ξ belongs to either the distribution Q or the distribution Q⊥ .
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Proof We consider that ξ satisfies
ξ = η(X0)X0 + η(ξ1)ξ1 (*)

for some unit vectors X0 ∈ Q , ξ1 ∈ Q⊥ , and η(X0)η(ξ1) ̸= 0 .

Lee and Loo [8] show that if M is Hopf, then the Reeb curvature α is constant along the direction of
structure vector field ξ, that is, ξα = 0 . Also in [9], we see that ξα = 0 yields that the distribution Q and the
Q⊥ -component of the Reeb vector field ξ are invariant by the shape operator A , that is,

AX0 = αX0, and Aξ1 = αξ1. (4.3)

In the case of α = 0 , using the equation in (3.9), we obtain that ξ belongs to either Q or Q⊥ .

We next consider the case α ̸= 0 .

Substituting X = φX0 in (4.2) and using basic formulas including (*), we get

AφX0 − 4η(X0)η1(ξ)Aφ1ξ + η1(ξ)Aφ1X0 − 2αA2φX0

= αφX0 − 4αη(X0)η1(ξ)φ1ξ + αη1(ξ)φ1X0 − 2α2AφX0.
(4.4)

From (*) and φξ = 0 , we obtain that φ1ξ = η(X0)φ1X0 and φX0 = −η(ξ1)φ1X0 . In addition, substituting X

by X0 into (3.10) and applying AX0 = αX0 , we see that both vector fields φX0 and φ1X0 are principal with

same corresponding principal curvature k = α2−2η2(X0)
α . From this, (4.4) gives

2kη2(X0)φX0 − αk2φX0 = 2αη2(X0)φX0 − α2kφX0.

Multiplying this equation by α , we obtain

η2(X0)(α
2 + 4η2(X0))φX0 = 0.

By our assumptions, we get η2(X0)(α
2 + 4η2(X0)) > 0 which means φX0 = 0 . This makes a contradiction.

Accordingly, we get a complete proof of our Lemma. 2

From Lemma 4.1, we only have two cases, ξ ∈ Q or ξ ∈ Q⊥ , under our assumptions. Next we study the
case ξ ∈ Q⊥ .

Lemma 4.2 Let M be a Hopf hypersurface with semisymmetric shape operator in SU2,m/S(U2 ·Um) , m ≥ 3 .
If the Reeb vector field ξ belongs to the distribution Q⊥ , then the shape operator of M satisfies AQ ⊂ Q , that
is, M is a Q⊥ -invariant hypersurface.

Proof Since ξ ∈ Q⊥ , we may put ξ = ξ1 ∈ Q⊥ for the sake of our convenience. Differentiating ξ = ξ1 along
any direction X ∈ TM and using fundamental formulae in [9], it gives us

φAX = 2η3(AX)ξ2 − 2η2(AX)ξ3 + φ1AX. (4.5)

Taking the inner product of (4.5) with W ∈ Q and taking symmetric part, we also have

AφW = Aφ1W. (4.6)
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Putting X = ξ2 and X = ξ3 into (4.2), we get, respectively,Aξ2 − αA2ξ2 = αξ2 − α2Aξ2,

Aξ3 − αA2ξ3 = αξ3 − α2Aξ3.

For α = 0 , clearly Q⊥ is invariant under the shape operator, i.e. AQ⊥ ⊂ Q⊥ . Thus, let us consider
α ̸= 0 . Then the previous equations imply that

A2ξ2 =
α2 + 1

α
Aξ2 + ξ2,

A2ξ3 =
α2 + 1

α
Aξ3 + ξ3.

(4.7)

Moreover, restricting X = ξ2 , Y = ξ3 and putting Z = W ∈ Q , Equation (4.2) becomes

4η3(AW )ξ2 − 4η2(AW )ξ3 + 2φAW − 2φ1AW + η3(A
2W )Aξ2 − η2(A

2W )Aξ3

= 2AφW − 2Aφ1W − 2η3(AW )A2ξ2 + 2η2(AW )A2ξ3.

Applying (3.5), (4.6) and (4.7) to this equation, it follows η3(AW )ξ2 = η2(AW )ξ3 . This means η3(AW ) =

η2(AW ) = 0 for any tangent W ∈ Q . It completes the proof. 2

By Theorem 1.1 in the Introduction, we assert that a real hypersurface M with the assumptions given
in Lemma 4.2 is locally congruent to one of the following real hypersurfaces:

(TA) a tube over a totally geodesic SU2,m−1/S(U2 · Um−1) in SU2,m/S(U2 · Um) ,

(TA0
) a tube over the complex and totally complex totally geodesic CHm in SU2,m/S(U2 · Um) ;

or

(HA) a horosphere in SU2,m/S(U2 · Um) whose center at infinity is singular and of type JX ∈ JX .

Therefore, by virtue of Lemma 4.2 we conclude that if ξ ∈ Q⊥ , then M is locally congruent to either TA , TA0

or HA . Such real hypersurfaces of type TA , TA0
and HA in SU2,m/S(U2 · Um) are denoted by MA . In [2, 3],

Berndt and Suh gave some information related to the shape operator A of TA , TA0
and HA as follows.

Proposition 4.3 ([2, 3]) Let MA be a connected real hypersurface of type TA , TA0
or HA in complex

hyperbolic two-plane Grassmannian SU2,m/S(U2Um) , m ≥ 3 . Then one of the following statements holds:

(TA) MA has exactly four distinct constant principal curvatures

α = 2 coth(2r), β = coth(r), λ1 = tanh(r), λ2 = 0,

and the corresponding principal curvature spaces are

Tα = span{ξ}, Tβ = span{ξ2, ξ3}, Tλ1 = E−1, Tλ2 = E+1.

The principal curvature spaces Tλ1
and Tλ2

are complex (with respect to J ) and totally complex (with
respect to J).

2385



HWANG and WOO/Turk J Math

(TA0) MA has exactly four distinct constant principal curvatures

α = 2
√
2 coth(2

√
2r), β =

√
2 coth(

√
2r), λ =

√
2 tanh(

√
2r), µ = 0

and the corresponding principal curvature spaces are

Tα = Rξ

Tλ = Q⊥ ⊖ Rξ = HN ⊖ CN

Tβ = {v ∈ Q : φv = φ1v}

Tµ = {v ∈ Q : φv = −φ1v} .

The corresponding multiplicities of the principal curvatures are

mα = 1,mλ = 2,mβ = 2(m− 1) = mµ.

(HA) MA has exactly three distinct constant principal curvatures

α = 2, β = 1, λ = 0

with corresponding principal curvature spaces

Tα = span{ξ}, Tβ = span{ξ2, ξ3} ⊕ E−1, Tλ = E+1.

Here, E+1 and E−1 are the eigenbundles of φφ1|Q with respect to the eigenvalues +1 and −1 , respectively.

In the remaining part of this section, by using Proposition 4.3, we will check whether the shape operator
A on a real hypersurface MA of type TA (TA0 or HA , resp.) satisfies semisymmetry condition. In order to do
this, we assume that the shape operator A of MA is semisymmetric.

Case I. TA .
From (4.2), [1, Proposition 3 ], and ξ ∈ Q⊥ , we have

(λ1 − α)(αλ1 − 1)X = 0

for any tangent vector X ∈ Tλ1
= {X ∈ TxM |X⊥ξν , φX = φ1X, x ∈ M} . Since α = 2 coth(2r) and

λ = tanh(r) , it implies that every X ∈ Tλ1
is a zero vector. This gives rise to a contradiction. In fact, the

dimension of the eigenspace Tλ1 is 2m− 2 where m ≥ 3 .

Case II. TA0
.

From (4.2), [1, Proposition 3 ], and ξ ∈ Q⊥ , we have

(β − α)(αβ − 1)X = 0

for any tangent vector X ∈ Tβ = {X ∈ TxM |X⊥ξν , φX = φ1X, x ∈ M} . Since α = 2
√
2 coth(2

√
2r) and

β =
√
2 coth(

√
2r) , it becomes (√

2 tanh(
√
2r)

)(
2 coth2(

√
2r) + 1

)
X = 0
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which implies that every X ∈ Tβ is a zero vector. This gives rise to a contradiction. In fact, the dimension of
the eigenspace Tβ is 2m− 2 where m ≥ 3 .

Case III. HA .

From (4.2), [1, Proposition 3 ], and ξ ∈ Q⊥ , we have

(λ− α)(αλ− 1)X = 0

for any tangent vector X ∈ Tλ = {X ∈ TxM |X⊥ξν , φX = φ1X, x ∈ M} . Since α = 2 and λ = 0 , it implies
that every X ∈ Tλ is a zero vector. This gives rise to a contradiction. In fact, the dimension of the eigenspace
Tλ is 2m− 2 where m ≥ 3 .

Summing up these observations, we assert that the shape operator of real hypersurfaces MA of three
kinds of model spaces TA , TA0 and HA in SU2,m/S(U2 · Um) does not satisfy the property of semisymmetry.

Due to Lemma 4.1, let us suppose that ξ ∈ Q (i.e. JN ⊥ JN ) in this section. Related to this condition,
Suh proved:

Theorem 4.4 ([16]) Let M be a Hopf hypersurface in complex hyperbolic two-plane Grassmannian SU2,m/S(U2·
Um) , m ≥ 3 , with the Reeb vector field belonging to the maximal quaternionic subbundle Q . Then one of the
following statements holds

(TB) M is an open part of a tube around a totally geodesic HHn in SU2,2n/S(U2U2n) , m = 2n ,

(HB) M is an open part of a horosphere in SU2,m/S(U2Um) whose center at infinity is singular and of type
JN ⊥ JN , or

(E) The normal bundle νM of M consists of singular tangent vectors of type JX ⊥ JX .

By virtue of this result, we assert that a real hypersurface M in SU2,m/S(U2 · Um) satisfying the
hypotheses in our Theorem 1.6 is locally congruent to an open part of one of the model spaces mentioned in
above Theorem 1.3. Hereafter, unless otherwise stated, such real hypersurfaces of type of TB , HB , and E in
SU2,m/S(U2 · Um) are denoted by MB .

Now, let us check whether the shape operator A of a real hypersurfaces TB , HB , and E satisfies our
conditions. In order to do this, let us introduce the following proposition given by Berndt and Suh [3].

Proposition 4.5 ([3]) Let MB be a real hypersurface of type TB (resp. HB or E ) in SU2,m/S(U2Um) ,
m ≥ 3 .Then MB has distinct principal curvatures as follows.

(TB ) MB has five (four for r =
√
2tanh−1(1/

√
3) in which case α = λ2 ) distinct constant principal curvatures

α =
√
2 tanh(

√
2r), β =

√
2 coth(

√
2r), γ = 0,

λ1 =
1√
2
tanh(

1√
2
r), λ2 =

1√
2
coth(

1√
2
r),

and the corresponding principal curvature spaces are

Tα = span{ξ}, Tβ = span{ξ1, ξ2, ξ3},

Tγ = span{φξ1, φξ2, φξ3}.
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The principal curvature spaces Tλ1 and Tλ2 are invariant under J and are mapped onto each other by
J . In particular, the quaternionic dimension of SU2,m/S(U2Um) must be even.

(HB) MB has exactly three distinct constant principal curvatures

α = β =
√
2, γ = 0, λ =

1√
2

with corresponding principal curvature spaces

Tα = span{ξ, ξ1, ξ2, ξ3}, Tγ = span{φξ1, φξ2, φξ3},

Tλ = C ∩ Q ∩ JQ.

(E) MB has at least four distinct principal curvatures, three of which are given by

α = β =
√
2, γ = 0, λ =

1√
2

with corresponding principal curvature spaces

Tα = span{ξ, ξ1, ξ2, ξ3}, Tγ = span{φξ1, φξ2, φξ3},

Tλ ⊂ C ∩ Q ∩ JQ.

If µ is another (possibly nonconstant) principal curvature function, then JTµ ⊂ Tλ and JTµ ⊂ Tλ . Thus,
the corresponding multiplicities are

m(α) = 4, m(γ) = 3, m(λ), m(µ).

To check our converse problem we suppose that the structure Jacobi operator Rξ of MB is semisymmetric. By
virtue of Proposition 4.5, we see that the structure vector field ξ of TB , HB or E belongs to the distribution Q .

Case I. TB .

If we put X as a unit vector field ξ1 ∈ Tβ into (4.2), then we obtain αβ(α − β)ξ1 = 0 . As we know
α =

√
2 tanh(

√
2r) , β =

√
2 coth(

√
2r) on MB , we get a contradiction.

Case II. HB or E .

If we put X as a unit vector field φξ1 ∈ Tγ into (4.2), then we obtain 4αφξ1 = 0 . As we know α =
√
2

on HB or E , we get φξ1 = 0 which is a contradiction.

Therefore we assert that the shape operator A of a model space neither of type (A) nor type (B) in SU2,m/S(U2·
Um) does not satisfy the semisymmetry condition.

Summing up these discussions, we complete the proof of our Theorem 1.4 given in Introduction.
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5. Semisymmetric structure Jacobi operator

In this section, we give a complete proof of our Theorem 1.6. Suppose the structure Jacobi operator of M has
semisymmetry, that is, M satisfies the condition (R(X,Y )Rξ)Z = 0 . Besides, from the relation between (†)
and (‡) we see that the given condition is equivalent to

R(X,Y )(RξZ) = Rξ(R(X,Y )Z). (5.1)

Let SU2,m/S(U2 · Um) and M be a complex hyperbolic two-plane Grassmannian and a Hopf real
hypersurface. Hereafter, unless otherwise stated, we consider that X and Y are any tangent vector fields
on M . The structure Jacobi operator Rξ of M in SU2,m/S(U2 · Um) is given by

Rξ(X) = R(X, ξ)ξ

= −1

2

[
X − η(X)ξ −

∑3

ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν

}
−
∑3

ν=1

{
3ην(φX)φνξ + ην(ξ)φνφX

}]
+ αAX − η(AX)Aξ,

(5.2)

where α is the Reeb curvature defined by α = g(Aξ, ξ) on M (see [17]).

Put Y = Z = ξ into (5.1), due to Rξξ = 0 , we get:

Rξ(RξX) = 0. (5.3)

Using these observation from now on we show that ξ belongs to either Q or its orthogonal complement
Q⊥ .

Lemma 5.1 M is a Hopf hypersurface in SU2,m/S(U2 · Um) , m ≥ 3 , with semisymmetric structure Jacobi
operator, then ξ belongs to either the distribution Q or the distribution Q⊥ .

Proof Suppose that ξ satisfies (*) for some unit vectors X0 ∈ Q and ξ1 ∈ Q⊥ .

In this case also we use [8, 9] again, we have

AX0 = αX0, and Aξ1 = αξ1. (5.4)

Substituting X = ξ1 in (5.2), we have Rξ(ξ1) = α2ξ1 − α2η(ξ1)ξ . This gives that

Rξ(Rξξ1) = Rξ

(
α2ξ1 − α2η(ξ1)ξ

)
= α2Rξξ1 − α2η(ξ1)Rξξ

= α4ξ1 − α4η(ξ1)ξ.

So, the condition of semisymmetric structure Jacobi operator implies

α4ξ1 − α4η(ξ1)ξ = 0.

From this, taking the inner product with X0 ∈ Q , it gives α4η(ξ1)η(X0) = 0 . So we obtain the following three
cases: α = 0 , η(X0) = 0 or η(ξ1) = 0 . When α identically vanishes, by virtue of (3.9) we conclude that ξ
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belongs to either Q or Q⊥ . For η(ξ1) = 0 , then ξ belongs to Q because of our notation (*). Moreover, ξ

belongs to Q⊥ if η(X0) = 0 . Accordingly, it completes the proof of our Lemma. 2

According to Lemma 5.1, we consider the case ξ ∈ Q⊥ .

Lemma 5.2 Let M be a Hopf real hypersurface with semisymmetric structure Jacobi operator in SU2,m/S(U2 ·
Um) , m ≥ 3 . If the Reeb vector field ξ belongs to the distribution Q⊥ , then the shape operator of M satisfies
AQ ⊂ Q .

Proof We may put ξ = ξ1 , because ξ ∈ Q⊥ . Differentiating ξ = ξ1 for any direction X on M , we obtain

{
q2(X) = 2g(AX, ξ2), q3(X) = 2g(AX, ξ3) and

AX = η(AX)ξ + 2g(AX, ξ2)ξ2 + 2g(AX, ξ3)ξ3 − φφ1AX.
(5.5)

Putting X = ξ2 into (5.2), it follows that Rξ(ξ2) = 2ξ2 + αAξ2 . If the smooth function α vanishes, it
makes a contradiction. In fact, from (5.3) we see that Rξ(Rξξ2) = ξ2 = 0 . Thus we may consider that the
smooth function α is nonvanishing.

On the other hand, it follows that for any W ∈ Q Equation (5.2) becomes

Rξ(W ) = −1

2
W − 1

2
φ1φW + αAW. (5.6)

From this and (5.3), it follows that

0 = Rξ(RξW )

=
1

2
W − 1

2
φ1φW − α2A2W.

(5.7)

Taking the inner product with ξ2 and ξ3 , respectively, using α ̸= 0 , it becomes

η2(A
2W ) = 0, η3(A

2W ) = 0. (5.8)

According to (5.2), we also have Rξ(Aξ2) = 2Aξ2 + αA2ξ2 . By virtue of (5.3), we get

0 = Rξ(Rξξ2) = Rξ(−ξ2 + αAξ2)

= −Rξ(ξ2) + αRξ(Aξ2)

= ξ2 − 2αAξ2 + α2A2ξ2.

Again taking the inner product with W ∈ Q and using the fact α ̸= 0 , we have

−2αg(Aξ2,W ) + α2g(A2ξ2,W ) = 0. (5.9)

From this and (5.8), we obtain η2(AW ) = 0 for any tangent vector field W ∈ Q .

Similarly, putting X = ξ3 into (5.2), using the same method, we also obtain η3(AW ) = 0 for any tangent
vector field W ∈ Q .
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Until now, we proved that if M satisfies our assumptions, then the distribution Q (resp., Q⊥ ) is invariant
under the shape operator, that is, AQ ⊂ Q . This gives a complete proof of our lemma. 2

From such a point of view, let us consider the converse problem. By using Proposition 4.3, let us check
whether the shape operator A on a real hypersurface MA of type TA , TA0

or HA , resp. satisfies semisymmetry
condition. In order to do this, we assume that the structure Jacobi operator Rξ of MA is semisymmetric.

In order to check our problem for a model space MA , we suppose that MA has semisymmetric structure
Jacobi operator.

Case I. TA .
By virtue of Proposition 4.3, we see that ξ = ξ1 ∈ Tα and ξj ∈ Tβ for j = 2, 3 . From this, the semisymmetric
condition for Rξ becomes

Rξ(Rξξ2) = ξ2 − 2αβξ2 + α2β2ξ2

= (αβ − 1)2ξ2 = 0.

But since α = 2 coth(2r) and β = coth(r) , we obtain (αβ − 1)2 = coth2(r) ̸= 0 . This gives ξ2 = 0 which is a
contradiction.

Case II. TA0
.

From (4.2), Proposition 4.3, and ξ ∈ Q⊥ , we have

Rξ(Rξξ2) = ξ2 − 2αλξ2 + α2λ2ξ2

= (αλ− 1)2ξ2 = 0.

Since α = 2
√
2 coth(2

√
2r) and λ =

√
2 tanh(

√
2r) , it becomes

(
2 tanh2(

√
2r) + 1

)
ξ2 = 0

which implies that ξ2 is a zero vector. This gives rise to a contradiction.

Case III. HA .

By virtue of Proposition 4.3, we see that ξ = ξ1 ∈ Tα and ξj ∈ Tβ for j = 2, 3 . From this, the
semisymmetry condition for Rξ becomes

Rξ(Rξξ2) = ξ2 − 2αβξ2 + α2β2ξ2

= (αβ − 1)2ξ2 = 0.

But since α = 2 and β = 1 , this gives ξ2 = 0 which is a contradiction.

Summing up these observations, we assert that the structure Jacobi operator of real hypersurfaces
MA of three kinds of model spaces TA , TA0

and HA in SU2,m/S(U2 · Um) does not satisfy the property
of semisymmetry.

In the sequel, we check whether Rξ of a model space MB of type (B) is semisymmetric. To do this, we
assume that Rξ of MB satisfies the condition (5.1). On a tangent vector space TxMB at any point x ∈ MB ,
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the Reeb vector ξ belongs to Q . The condition of (5.1) implies that for X = ξ2 ∈ Tβ and Y = Z = ξ ,

Rξ(Rξξ2) = (αβ)2ξ2 = 0.

On the other hand, from Proposition 4.5, since α =
√
2 tan(

√
2r) and β =

√
2 cot(

√
2r) on TB or α =

√
2 and

β =
√
2 on the other cases. In all cases, we get (αβ)2 = 4 . So, we consequently see that the tangent vector ξ2

must be zero, which gives a contradiction.

Therefore we assert that the structure Jacobi operator Rξ of a model space of type (A) or type (B) in
SU2,m/S(U2 · Um) does not satisfy the semisymmetry condition. Summing up these discussions, we complete
the proof of our Theorem 1.6 given in the Introduction.
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