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Abstract: In this paper, we obtain the classification of topological dynamical systems with a discrete action. The
equicontinuity and sensitivity for amenable discrete countable semigroup action are shown by the left Følner sequence.
We consider the notion of uniquely ergodic and mean equicontinuous on amenable discrete countable semigroup action
and develop the notion of density with respect to the Følner sequence on equicontinuous and sensitivity.
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1. Introduction
Throughout the paper, the topological dynamical system (t.d.s. for short) is denoted by (X,S) or (X, 〈Ts〉s∈S) ,
where S is a discrete (infinite) countable semigroup, (X, d) is a compact metric space and Ts : X → X for
every s ∈ S is a continuous map such that for all s, t ∈ S, Ts ◦Tt = Tst . When S = Z+ the action is generated
by a continuous evolution map T . For simplicity, we write t.d.s., instead of (X,T ) . The C*-algebra of all
complex-valued continuous functions equipped by supermom norm denoted by C(X) . Therefore, by adjoint-
map UTs : C(X) → C(X) is well defined by φ ◦ Ts = UTs ◦ φ for every φ ∈ C(X) and s ∈ S . For simplicity,
we define sφ := φ ◦ Ts = UTs(φ). So, sφ(x) = φ(sx) for every s ∈ S , x ∈ X , and φ ∈ C(X) .

Let (X, 〈Ts〉s∈S) be a t.d.s. In this paper, (X × X, {Ts × Ts}s∈S) denotes the topological dynamical
system (x, y) 7→ (Tsx, Tsy) : X ×X → X ×X for s ∈ S . We will write it (X ×X,S × S) for simplicity.

Let (X,B, µ) be a probability space. A self-map T : X → X is called to be measurable if T−1B ∈ B
for all B ∈ B . We say that µ is a T-invariant measure, if µ(T−1B) = µ(B) for all B ∈ B , and we say that
(X,T,B, µ) is measure preserving dynamical system (m.p.s for short). Let M(X,T ) denote the collection of
all T− invariant measures on X .

Lemma 1.1 [14] Assume that X is a compact metric space and {µn} is a sequence of measures in M(X,T )

and µ ∈M(X,T ) ; Then, we have the following equivalent properties:

1. µn → µ in the weak*-topology;

2. For every closed subset F of X , µ(F ) ≥ lim supn→+∞ µn(F ) ;

3. For every open subset U of X , µ(U) ≤ lim infn→+∞ µn(U).
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By Krylov–Bogolioubov Theorem [6], M(X,T ) 6= ∅ . The topological dynamical system (X,T ) is uniquely
ergodic if M(X,T ) is a one-point set. In 1952, Oxtoby proved equivalent conditions for uniquely ergodic of the
dynamical system. The following theorem can be seen in Section 5.3 of [11]. For a dynamical system (X,T ) ,
f ∈ C(X) and n ∈ Z+ , we define mean average of f by Mn

f (x) = (1/n)
∑n−1

i=0 f(T
ix).

Theorem 1.2 Let (X,T ) be a dynamical system. Then the following statements are equivalent:

1. (X,T ) is uniquely ergodic;

2. For each f ∈ C(X) , {Mn
f (x)}∞n=1 converges uniformly on X to a constant;

3. For each f ∈ C(X) , there is a subsequence {Mnk

f }∞k=1 which converges pointwise on X to a constant;

4. (X,T ) contains only one minimal set, and for each f ∈ C(X) , {Mn
f (x)}∞n=1 converges uniformly on X .

We prove the above theorem for a countable amenable semigroup action S , (see Theorem 2.5). A
dynamical system (X,T ) is called equicontinuous if for every ϵ > 0 there is a δ > 0 such that whenever
x, y ∈ X with d(x, y) < δ, d(Tnx, Tny) < ϵ for n ∈ Z+ . In fact, the collection of maps {Tn|n ∈ Z+} is
uniformly equicontinuous.

Let (X,T ) be a dynamical system, a point x ∈ X is called mean equicontinuous if for every ϵ > 0 , there
exists a δ > 0 such that for every y ∈ X with d(x, y) < δ ,

lim sup
n→+∞

1

n

n−1∑
i=1

d(T ix, T iy) < ϵ.

A transitive system (see subsection 2.2) is called almost mean equicontinuous if there is at least one mean
equicontinuous point. A dynamical system (X,T ) is called mean sensitive, if there exists a δ > 0 such that for
every x ∈ X and every neighborhood U of x , there exists y ∈ U such that

lim sup
n→+∞

1

n

n−1∑
i=1

d(T ix, T iy) > δ.

LI, TU, and YE in [9] expressed an important notion of the mean equicontinuity and mean sensitively.
In [8], the authors showed that a t.d.s., (X,T ) is called density-one-equicontinuous (resp. Banach density-one-
equicontinuous), if for any ϵ > 0 there is a δ > 0 such that if x, y ∈ X with d(x, y) < δ , then d(Tnx, Tny) ≤ ϵ

for all n ∈ Z+ except a set of zero upper density (resp. zero upper Banach density).
In this paper, we generalize the results in [8, 9], for dynamical system (X, 〈Ts〉s∈S) where S is a left

amenable countable semigroup. Furthermore, Theorem 3.8 is an extension of the following theorem.

Theorem 1.3 [9] Let (X,T ) be a dynamical system. Then the following statements are equivalent:

1. (X,T ) is mean equicontinuous;

2. For each f ∈ C(X ×X) , the sequence {Mnk

f }∞k=1 is uniformly equicontinuous;
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3. For each f ∈ C(X×X) , the sequence {Mnk

f }∞k=1 is uniformly convergent to a T×T− invariant continuous
function f∗ ∈ C(X ×X) .

The topological dynamical system (X,T ) is called sensitive, if there is a δ > 0 such that for any nonempty
open subset U ⊆ X , there exist x, y ∈ U such that

lim sup
k→+∞

d(T kx, T ky) > δ.

In other words, (X,T ) is sensitive, if NT (U, δ) is nonempty for some δ > 0 , where

NT (U, δ) := {n ∈ Z+ : there exist x, y ∈ Uwith d(Tn(x), Tn(y)) > δ},

here δ will be referred to as a constant of sensitivity. We will introduce the concept of sensitivity to the
dynamical system (X, 〈Ts〉s∈S) , where S is a left amenable countable semigroup.

This paper is arranged as follows: In Section 2 we give some basic notions in semigroups and topological
dynamics. Section 3 is devoted to the basic properties of F -mean equicontinuous and F -density equicontinuous
to the dynamical system (X, 〈Ts〉s∈S) in which S is an amenable semigroup. In the last section, the structure
of F -density-sensitivity is studied by notion of density and Følner sequence F on S .

2. Preliminaries
In this section, we introduce some basic facts and notions in semigroups and topological dynamics which will
be used later.

2.1. Notions of size in semigroups

Let S be a semigroup. For a ∈ S and A,B ⊆ S define a−1A = {s ∈ S : as ∈ A}, B−1A =
⋃

b∈B b
−1A, AB =

{ab : a ∈ A, b ∈ B} and AA−1 = {x ∈ S : there exists y ∈ A such that xy ∈ A}.

Definition 2.1 Let S be a semigroup and Pf (S) be the set of all finite and nonempty subsets of S .

i) A subset B on S is (left) syndetic, if there is a F ∈ Pf (S) such that BF−1 =
⋃

f∈F Bf
−1 = S.

ii) A subset B on S is (left) thick, if for every F ∈ Pf (S) there is a t ∈ S such that tF ⊆ B .

iii) A subset B on S is called (left) piecewise syndetic, if there is a F ∈ Pf (S) such that for some H ∈ Pf (S) ,
BH−1 is (left) thick.

iv) A subset B on S is called (left) thickly syndetic, if for every A ∈ Pf (S) there is a syndetic set QA ⊆ S

such that QAA ⊆ B (cf.[13]).

Similarly, one can define a right syndetic set, a right piecewise syndetic set, a right thick set and a right
thickly syndetic set, respectively. But we remark that left syndetic and right syndetic sets are different. For
more details, see [7, Lemma 13.39]. Every thickly syndetic set is thick and syndetic. In other words, let B be
a thickly syndetic and t ∈ S . Then, there is a syndetic set Qt ⊆ S such that tQt ⊆ B . So, B is syndetic. One
can check that a thickly syndetic set is thick.

The cardinality of A denotes by |A| . The upper density subset A of N is defined by
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D(A) = lim sup
n→+∞

|A ∩ {1, 2, .., n}|
n

.

Similarly, the lower density of A is defined by

D(A) = lim inf
n→+∞

|A ∩ {1, 2, .., n}|
n

.

The density subset A of N is D(A) = D(A) = D(A) whenever the limits are equal.
The upper Banach density subset A of N is defined by

BD(A) = lim sup
N−M→+∞

|A ∩ {M,M + 1, ..,M +N}|
N −M

,

and the lower Banach density subset A of N is defined by

BD(A) = lim inf
n→+∞

|A ∩ {M,M + 1, ..,M +N}|
N −M

.

The Banach density subset A of N is BD(A) = BD(A) = BD(A) whenever the limits are equal. It
should be noted that for any A ⊆ N , one has BD(A) ≤ D(A) ≤ D(A) ≤ BD(A) and D(A) = 1−D(Ac) . For
more details, see [1] .

Definition 2.2 (See [5]) A discrete infinite countable semigroup S will be called left amenable if it admits a
left Følner sequence, i.e. a sequence {Fn}∞n=1 of nonempty finite subsets on S such that for all g ∈ S

lim
n→+∞

|gFn 4 Fn|
|Fn|

= 0,

where 4 stands for the symmetric difference of sets.
Let A ⊆ S and F := {Fn}∞n=1 be a left Følner sequence. We define the upper density of A with respect to F by

DF (A) = lim sup
n→+∞

|A ∩ Fn|
|Fn|

.

Definition 2.3 (See [4]) For A ⊆ S , the Banach density of A with respect to left Følner sequence F :=

{Fn}∞n=1 is denoted by BD(A) and defined by

BD(A) := sup
{
DFn

(A) : (Fn) is a Følner sequence on S
}
.

2.2. The dynamical system

For a dynamical system (X, 〈Ts〉s∈S) , the orbit of x is the set orb(x, S) := {Ts(x) : s ∈ S} . For U ⊂ X and
s ∈ S define s−1U := {x ∈ X : sx ∈ U}. Let V and U be two nonempty subsets of X and x ∈ X . We have
N(x,U) := {s ∈ S : sx ∈ U}, and N(U, V ) := {s ∈ S : U ∩ s−1V 6= ∅}. We say (X, 〈Ts〉s∈S) is transitive if
N(U, V ) 6= ∅ for every nonempty open subset U and V of X and it is weakly mixing if X ×X is transitive
and it is also said that x ∈ X is a transitive point if orb(x, S) = X .
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In a complete metric space, the countable union of nowhere dense sets are said to be meager; the meager
complement set is called a residual set. The set of all transitive points in X is a dense Gδ -set for any transitive
topological dynamical system. We say that (X, 〈Ts〉s∈S) is minimal if every point of X is a transitive point.
For a dynamical system (X, 〈Ts〉s∈S) , a point x ∈ X is minimal point if and only if N(x,U) is a syndetic
subset on S for every nonempty open subset U of X .

Definition 2.4 Suppose that S is a discrete infinite countable left amenable semigroup and (X, 〈Ts〉s∈S) is a
dynamical system. If x, y ∈ X , then pair (x, y) ∈ X ×X is called Banach proximal, if for any ϵ > 0 , the set
{s ∈ S : d(Tsx, Tsy) < ϵ} has Banach density one, i.e. BD({s ∈ S : d(Tsx, Tsy) < ϵ}) = 1 .

Let (X,B, µ) be a probability space and (X, 〈Ts〉s∈S) be a t.d.s. We say that a measure µ on X is
S− invariant if µ(T−1

s A) = µ(A) for every A ∈ B and s ∈ S , also (X, 〈Ts〉s∈S) is a measure preserving dynam-
ical system, (m.p.s for short). The collection of all S− invariant measures on X is denoted by M(X,S) . For
µ ∈M(X,S) , the support of µ is defined by supp(µ) = {x ∈ X : µ(U) > 0 for every neighbourhood U of x}.

The following proof process is taken from the [6, Theorem 8.2] and [10, Theorem 3.11], but it has its own
details. We have the following theorem for uniquely ergodic dynamical system on amenable semigroup.

Theorem 2.5 Suppose that (X,B, µ) is a probability space and (X, 〈Ts〉s∈S) is an m.p.s such that for some
s ∈ S , Ts is injective and F = {Fn}∞n=1 is a left Følner sequence on S . For every φ ∈ C(X) define
φF (x) :=

1
|F |

∑
g∈F φ(Tgx) =

1
|F |

∑
g∈F φ(gx), where F is a nonempty finite subset on S . Then the following

conditions are equivalent:

1. (X, 〈Ts〉s∈S) is uniquely ergodic;

2. For every φ ∈ C(X), {φFn}∞n=1 converges uniformly on X to a constant;

3. For every φ ∈ C(X) , there is a sub-family {Fni} ⊆ {Fn} such that {φFni
}∞i=1 converges pointwise on X

to a constant.

Proof (1) ⇒ (2) . Assuming µ to is the uniquely ergodic measure of the dynamical system (X, 〈Ts〉s∈S) , we
must show that for any φ ∈ C(X), the sequence {φFn}∞n=1 converges uniformly on X to

∫
X
φdµ .

Suppose, contrary to our claim that there exists a function ψ ∈ C(X) , ϵ0 > 0, sequence ni ≥ i and a
sequence of points {xi} ⊆ X such that

|ψFni
(xi)−

∫
X

ψdµ| ≥ ϵ0 > 0.

The sequence ψFni
is bounded by ||ψ||∞ ; so, by the Arzela–Ascoli Theorem [12, pp. 394], it has a

convergent subsequence. Without restriction of generality, we can assume

lim
i→+∞

ψFni
(xi) = lim

i→+∞

1

|Fni |
∑

s∈Fni

ψ(sxi) −→ α 6=
∫
X

ψdµ. (2.1)

Also, since X is a compact metric, C(X) is a separable; So, we can take W := {φ1 = ψ,φ2 =

1, φ3, φ4, . . . , φn, . . .} as a countable dense set of C(X) and define Z := span {φ1 = ψ,φ2 = 1, φ3, φ4, . . .} .

2398



ASADI KARAM/Turk J Math

For nℓ ∈ N define Lnℓ
:W −→ R by

Lnℓ
(φ) :=

1

|Fnℓ
|
∑

s∈Fnℓ

φ(sx̃ℓ),

such that x̃ℓ ∈ X and n, ℓ ∈ N . Clearly, Lnℓ
is linear, positive and Lnℓ

(1) = 1 for all nℓ ∈ N .

Thus, according to Section 3 of [2], Lnℓ
is a mean, and the sequence {Lnℓ

} has a w*-limit point L .
Therefore, we can define the linear operator L :W −→ R by

L(φ) := lim
ℓ→+∞

1

|Fnℓ
|
∑

s∈Fnℓ

φ(sx̃ℓ),

for every φ ∈W.

It is obvious that L is a mean on W . Since L :W −→ R is a uniform continuous function on W and W

is a dense subset of C(X) , L has a unique extension L : C(X) −→ C . We define SZ := {sφ : s ∈ S, φ ∈ Z} .
Therefore, we have

|L(sφ)− L(φ)| = lim
ℓ→+∞

∣∣∣∣∣∣ 1

|Fnℓ
|
∑

t∈Fnℓ

sφ (tx̃ℓ)−
1

|Fnℓ
|
∑

t∈Fnℓ

φ (tx̃ℓ)

∣∣∣∣∣∣
= lim

ℓ→+∞

∣∣∣∣∣∣ 1

|Fnℓ
|
∑

t∈Fnℓ

φ (stx̃ℓ)−
1

|Fnℓ
|
∑

t∈Fnℓ

φ (tx̃ℓ)

∣∣∣∣∣∣
= lim

ℓ→+∞

∣∣∣∣∣∣ 1

|Fnℓ
|
∑

t∈Fnℓ

(φ (stx̃ℓ)− φ (tx̃ℓ))

∣∣∣∣∣∣
≤ lim

ℓ→+∞

‖φ‖∞ |sFnℓ
∆Fnℓ

|
|Fnℓ

|

= 0.

As a result, if φ, sφ ∈W for s ∈ S , then L(sφ) = L(φ) . If sφ = pψ for φ,ψ ∈W and s, p ∈ S then
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|L(sφ)− L(pφ)| = lim
ℓ→+∞

∣∣∣∣∣∣ 1

|Fnℓ
|
∑

t∈Fnℓ

sφ (tx̃ℓ)−
1

|Fnℓ
|
∑

t∈Fnℓ

pφ (tx̃ℓ)

∣∣∣∣∣∣
= lim

ℓ→+∞

∣∣∣∣∣∣ 1

|Fnℓ
|
∑

t∈Fnℓ

φ (stx̃ℓ)−
1

|Fnℓ
|
∑
t∈Fnl

φ (ptx̃ℓ)

∣∣∣∣∣∣
= lim

ℓ→+∞

∣∣∣∣∣∣ 1

|Fnℓ
|
∑

t∈Fnℓ

(φ (stx̃ℓ)− φ (ptx̃ℓ))

∣∣∣∣∣∣
≤ lim

ℓ→+∞

‖φ‖∞ |sFnℓ
∆pFnℓ

|
|Fnℓ

|

≤ lim
ℓ→+∞

‖φ‖∞
(
|sFnℓ

∆Fnℓ
|

|Fnℓ
|

+
|Fnℓ

∆pFnℓ
|

|Fnℓ
|

)
= 0.

So, the linear operator L is well defined on SZ .
Ts is injective for some s ∈ S ; so, UTs

: C(X) → C(X) is surjective by [3, Exercises 9 pp. 284]. Therefore,

C(X) = UTs(C(X)) = UTs(Z) ⊆ UTs(Z) = sZ ⊆ SZ.

SZ is a dense subset of C(X) . Thus, for any φ ∈ C(X) and every {φ̃j} ⊆ SZ with

lim
j→∞

‖φ̃j − φ‖∞ = 0,

we have

L(φ) := lim
j→∞

L (φ̃j) .

For some Borel probability measures ν on X , we have L(φ) =
∫
X
φ dν by the Riesz representation

theorem. In the next step, we must show that ν is an S− invariant measure.
Considering s ∈ S and φ ∈ C(X) , there exists {φj} ⊆ Z with the property that limj→+∞ ‖φj − φ‖ = 0 .

Then {sφj} ⊆ SZ and limj→+∞ ‖sφj −s φ‖ = 0 ; therefore, we have

L (sφ) = lim
j→∞

L (sφj) = lim
j→∞

L (φj) = L(φ).

So, ν is S− invariant. Since (X, 〈Ts〉s∈S) is uniquely ergodic, ν = µ . Considering ψ ∈ W and equality (2.1),
one has ∫

X

ψ dµ =

∫
X

ψ dν = L(ψ) = lim
ℓ→∞

1

|Fnℓ
|
∑

s∈Fnℓ

ψ (sx̃ℓ) = lim
ℓ→∞

ψFnℓ
(x̃ℓ) = α.

Therefore, α =
∫
X
ψ dµ , which contradicts our assumption.

(2) ⇒(3). It is trivial.

2400



ASADI KARAM/Turk J Math

(3) ⇒(1). Similarly, we can extend the operator L to C(X) such that L(1) = 1 and L is a positive
linear operator from C(X) into C . By the Riesz representation theorem, L(φ) =

∫
X
φ dν for some Borel

probability measures ν such that ν is S− invariant. Let µ ∈ M(X,S) be an arbitrary S− invariant measure.
For all φj ∈W , and x ∈ X , we have

lim
ℓ→+∞

1

|Fnℓ
|
∑

s∈Fnℓ

φj(sx) = L (φj) =

∫
X

φj dν.

Since µ is S− invariant, one has
∫
X
φj(sx)dµ =

∫
X
φj(x)dµ; therefore,∫

X

1

|Fnℓ
|
∑

s∈Fnℓ

φj(sx)dµ =
1

|Fnℓ
|
∑

s∈Fnℓ

∫
X

φj(sx)dµ =

∫
X

φj dµ.

By the dominated convergence theorem, we get

∫
X

φj dµ = lim
ℓ→∞

∫
X

1

|Fnℓ
|
∑

s∈Fnℓ

φj(sx)dµ =

∫
X

(∫
X

φj dν

)
dµ =

∫
X

φj dν.

Since W is dense in C(X) , we have
∫
X
φ dµ =

∫
X
φ dν for all φ ∈ C(X) ; so, ν = µ .

Therefore, (X, 〈Ts〉s∈S) is uniquely ergodic. 2

3. Mean equicontinuous and density equicontinuous

In this section, we mainly discuss the properties of mean equicontinuous and density equicontinuous for
dynamical system on left amenable countable semigroups.

Definition 3.1 Let (X, d) be a compact metric space, S be a discrete infinite countable semigroup and
(X, 〈Ts〉s∈S) be a dynamical system.

i) A subset A of S acts equicontinuously at x0 ∈ X if for every ϵ > 0 there exists δ > 0 such that for each
x ∈ X , d(x0, x) < δ implies d(Ta(x0), Ta(x)) < ϵ for every a ∈ A .

ii) A point x0 ∈ X is called an equicontinuity point if A := S acts equicontinuously at x0 . Denoted by Eq(X) ,
the collection of all equicontinuity point x0 ∈ X . If Eq(X) = X , then (X, 〈Ts〉s∈S) is equicontinuous.

Definition 3.2 Let (X, d) be a compact metric space, K ⊆ X , S be a discrete infinite countable semigroup,
F be a left Følner sequence on S , and (X, 〈Ts〉s∈S) be a t.d.s. We call K is SF−equicontinuous sets, if for
any ϵ > 0 , there is δ = δ(ϵ) > 0 such that whenever x, y ∈ K with d(x, y) < δ , then

DF ({s ∈ S : d(Tsx, Tsy) ≥ ϵ}) = 0.

If X itself is SF−equicontinuous, then (X, 〈Ts〉s∈S) is called equicontinuous.

Lemma 3.3 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . If K ⊆ X is SF−equicontinuous
set, then
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(a) the closure cl(K) is an SF−equicontinuous set,

(b) any subset of K is an SF−equicontinuous set.

Proof It is obvious according to Definition 3.2. 2

Proposition 3.4 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . The union of finitely
many closed SF−equicontinuous sets is SF−equicontinuous set.

Proof Let A and B be two SF−equicontinuous subsets of X such that A ∪B is not a SF−equicontinuous
set. Then there exists ϵ > 0 such that, for each i ∈ N , there exist xi, yi ∈ A ∪B such that d(xi, yi) < 1/i and

DF ({s ∈ S : d(Tsxi, Tsyi) ≥ ϵ}) > 0.

Without loss of generality, since d(xi, yi) < 1/i and X is compact, we have limi→+∞ xi = limi→+∞ yi = z

for some z ∈ X . Also, A and B are closed; So, z ∈ A ∩B .
Furthermore, A and B are SF−equicontinuous sets; so, for every ϵ > 0 there exists δ > 0 such that

whenever x, y ∈ A or x, y ∈ B with d(x, y) < δ ,

DF ({s ∈ S : d(Tsx, Tsy) ≥ ϵ}) = 0.

Now, for ϵ/2 > 0 choose xi ∈ A and yi ∈ B and z ∈ A ∩ B such that d(xi, z) < δ and d(yi, z) < δ.

According to the definition of SF−equicontinuous sets for A and B , we have

DF ({s ∈ S : d(Tsxi, Tsz) ≥
ϵ

2
}) = 0,

and

DF ({s ∈ S : d(Tsyi, Tsz) ≥
ϵ

2
}) = 0.

We know that

d(Tsxi, Tsyi) ≤ d(Tsxi, Tsz) + d(Tsyi, Tsz).

Therefore,

{s ∈ S : d(Tsx, Tsy) ≥ ϵ} ⊆ {s ∈ S : d(Tsxi, Tsz) ≥
ϵ

2
} ∩ {s ∈ S : d(Tsz, Tsyi) ≥

ϵ

2
}.

On the other hand,

DF ({s ∈ S : d(Tsxi, Tsyi) ≥ ϵ}) = 0

is a contradiction. 2
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3.1. F -mean equicontinuous

We present the notion of mean in equicontinuous system on a left amenable semigroup.

Definition 3.5 Let (X,S) be a t.d.s., and F be a left Følner sequence on S . We say (X, 〈Ts〉s∈S) is F−mean
equicontinuous, if for any ϵ > 0 , there is δ > 0 such that

lim sup
n→+∞

1

|Fn|
∑
g∈Fn

d(Tg(x), Tg(y)) < ϵ,

whenever x, y ∈ X and d(x, y) < δ .

We notice that if (X, 〈Ts〉s∈S) is F -mean equicontinuous, then so is (X ×X,S × S) .

Definition 3.6 Let (X, 〈Ts〉s∈S) be a t.d.s., and F = {Fn}∞n=1 be a left Følner sequence on S . We call
(X, 〈Ts〉s∈S) is F−mean-L-stable, if for every ϵ > 0 , there is a δ > 0 with the property that d(x, y) < δ implies
d(Tsx, Tsy) < ϵ for all s ∈ S except a set of upper density less than ϵ. i.e. there exists δ > 0 such that for each
ϵ > 0 , we have

DF ({s ∈ S : d(Ts(x), Ts(y)) ≥ ϵ}) ≤ ϵ.

We need the following lemma for the next theorem.

Lemma 3.7 Let (X, 〈Ts〉s∈S) be a t.d.s., and F = {Fn}∞n=1 be a left Følner sequence on S . Then (X, 〈Ts〉s∈S)

is F -mean equicontinuous if and only if (X, 〈Ts〉s∈S) is F−mean-L-stable.

Proof Sufficiency. Suppose that (X, 〈Ts〉s∈S) is F -mean equicontinuous. There exists a δ > 0 with the
property that for every ϵ > 0 and x, y ∈ X with d(x, y) < δ , we have

lim sup
n→+∞

1

|Fn|
∑
g∈Fn

d(Tg(x), Tg(y)) < ϵ2.

Let Eϵ = {s ∈ S : d(Ts(x), Ts(y)) ≥ ϵ} ; so, for any ϵ > 0 there exists δ(ϵ) > 0 such that if d(x, y) < δ(ϵ) , then

ϵ2 > lim sup
n→+∞

1

|Fn|
∑
g∈Fn

d(Tg(x), Tg(y)) ≥ lim sup
n→+∞

ϵ

|Fn|
|Eϵ ∩ Fn|,

so,

DF (Eϵ) ≤ ϵ.

Necessity. Let (X, 〈Ts〉s∈S) be F−mean-L-stable. Fix ϵ > 0 ; so, there is a δ > 0 such that for each
x, y ∈ X , d(x, y) < δ implies that DF (Eϵ) ≤ ϵ . Pick M := diamX = sup{d(x, y) : x, y ∈ X} . Therefore,
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lim sup
n→+∞

1

|Fn|
∑
g∈Fn

d(Tg(x), Tg(y)) ≤ lim sup
n→+∞

1

|Fn|

 ∑
g∈Fn∩Eϵ

d(Tg(x), Tg(y)) +
∑

g∈Fn\Eϵ

d(Tg(x), Tg(y))


≤ lim sup

n→+∞

1

|Fn|

 ∑
g∈Fn∩Eϵ

d(Tg(x), Tg(y)) + ϵ|Fn ∩ Ec
ϵ |


= lim sup

n→+∞

1

|Fn|
∑

g∈Fn∩Eϵ

d(Tg(x), Tg(y)) + lim sup
n→+∞

ϵ

|Fn|
|Fn ∩ Ec

ϵ |

≤ lim sup
n→+∞

(
M |Fn ∩ Eϵ|

|Fn|
+
ϵ|Fn ∩ Ec

ϵ |
|Fn|

)
≤MDF (Eϵ) + ϵDF (Eϵ)

≤Mϵ+ ϵ ≤ ϵ.

So, (X, 〈Ts〉s∈S) is F -mean equicontinuous. 2

We have the following characterization of uniquely ergodic of the dynamical system and F -mean equicon-
tinuous systems.

Theorem 3.8 Assume that (X,B, µ) is a probability space and (X, 〈Ts〉s∈S) is an m.p.s with the property that
for some s ∈ S , Ts is injective and F = {Fn}∞n=1 is a left Følner sequence on S . For every φ ∈ C(X) define
φF (x) :=

1
|F |

∑
g∈F φ(Tgx) =

1
|F |

∑
g∈F φ(gx), where F is a nonempty finite subset on S . Then the following

conditions are equivalent:

1. (X, 〈Ts〉s∈S) is F -mean equicontinuous;

2. For each φ ∈ C(X ×X) , the sequence {φFn}∞n=1 is uniformly equicontinuous;

3. For each φ ∈ C(X×X) , the sequence {φFn
}∞n=1 is uniformly convergent to a S×S− invariant continuous

function φ∗ ∈ C(X ×X) .

Proof The proof is similar to Theorem 2.5. We suppose that φ ∈ C(X) instead of φ ∈ C(X ×X) because
(X, 〈Ts〉s∈S) is F -mean equicontinuous, then so is (X ×X,S × S) .

(1) ⇒ (2) . Pick φ ∈ C(X). Therefore, it is shown that for any ϵ > 0, there exists δ > 0 such that for
every x, y ∈ X with d(x, y) < δ , we have

|φFn
(x)− φFn

(y)| < ϵ, ∀n ∈ N.

Fix ϵ > 0. Since φ is uniformly continuous, there exists δ1 > 0 with the property that if x, y ∈ X with
d(x, y) < δ1 , then

|φ(x)− φ(y)| < ϵ

2
. (3.1)

Also, (X, 〈Ts〉s∈S) is F -mean equicontinuous, by Lemma 3.7, (X, 〈Ts〉s∈S) is F−mean-L-stable. Now,
let Eϵ(x, y) = {s ∈ S : d(Ts(x), Ts(y)) ≥ ϵ} , then we have DF (Eϵ(x, y)) ≤ ϵ.
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Suppose that 0 < ζ < min{δ1, ϵ/2||φ||∞} . There is δ2 ∈ (0, δ1) such that for every x, y ∈ X , if
d(x, y) < δ2 then

DF (Eϵ(x, y)) < ζ. (3.2)

For every x, y ∈ X with d(x, y) < δ2 , there exists N ∈ N such that for every n ≥ N , we have

|φFn
(x)− φFn

(y)| =

∣∣∣∣∣∣ 1

|Fn|
∑
g∈Fn

φ(gx)− 1

|Fn|
∑
g∈Fn

φ(gy)

∣∣∣∣∣∣
≤ 1

|Fn|
∑
g∈Fn

|φ(gx)− φ(gy)|.

According to the formulae (3.1) and (3.2), we have

1

|Fn|
∑
g∈Fn

|φ(gx)− φ(gy)| ≤ 1

|Fn|

 ∑
g∈Fn∩Eϵ

|φ(gx)− φ(gy)|+
∑

g∈Fn\Eϵ

|φ(gx)− φ(gy)|


≤ 1

|Fn|

 ∑
g∈Fn∩Eϵ

|φ(gx− gy)|+
∑

g∈Fn\Eϵ

|φ(gx)− φ(gy)|


≤ ζ.||φ||∞ +

ϵ

2
< ϵ.

Since (X, d) is a compact metric space, there exists δ3 > 0 with the property that for every x, y ∈ X with
d(x, y) < δ3 , we have

|φFn
(x)− φFn

(y)| < ϵ, ∀n = 1, 2, . . . , N.

In the next step, we take 0 < δ < min{δ2, δ3} . Then for every x, y ∈ X with d(x, y) < δ , we have

|φFn
(x)− φFn

(y)| < ϵ, ∀n = 1, 2, . . . , N.

As a result, we have {φFn
}∞n=1 is uniformly equicontinuous.

(2) ⇒ (3) . Since the sequence {φFn
}∞n=1 is uniformly equicontinuous, it is uniformly bounded, too. In

this way, there exists a subsequence {φFnk
}∞k=1 which is uniformly convergent to φ∗ ∈ C(X) by the Arzela–

Ascoli Theorem. For every x ∈ X and for every s ∈ S ,
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|φ∗(Tsx)− φ∗(x)| = lim
k→+∞

1

|Fnk
|

∣∣∣∣∣∣
 ∑

g∈Fnk

φ(Tg(Ts(x)))−
∑

g∈Fnk

φ(Tg(x))

∣∣∣∣∣∣
= lim

k→+∞

1

|Fnk
|

∣∣∣∣∣∣
 ∑

g∈Fnk

(φ(Tgs(x))− φ(Tg(x)))

∣∣∣∣∣∣
≤ lim

k→+∞

||φ||∞ |sFnk
∆Fnk

|
|Fnk

|

= 0.

On the other hand, φ∗|
orb(x,S)

is constant for every x ∈ X , because φ∗ is continuous. By Theorem

2.5, (orb(x, S), 〈Ts〉s∈S) is a uniquely ergodic dynamical system. Therefore, limn→+∞ φFn
= φ∗ uniformly on

(orb(x, S), 〈Ts〉s∈S) .
Thus, for every x ∈ X , limn→+∞ φFn

(x) = φ∗(x) . Since {φFn
}∞n=1 is uniformly equicontinuous, we

notice that limn→+∞ φFn
(x) = φ∗(x) uniformly on X .

(3) ⇒ (1) . We notice that d(·, ·) is a continuous function on X × X ; so, the sequence {dFn
}∞n=1 is

uniformly equicontinuous where dFn
(x, y) = 1

|Fn|
∑

g∈Fn
d(Tg(x), Tg(y) . Thus, for every ϵ > 0 , there exists

δ > 0 such that dFn(x, y) < ϵ/2 for every x, y ∈ X with d(x, y) < δ . Then for every x, y ∈ X with d(x, y) < δ ,
we have

lim sup
n→+∞

1

|Fn|
∑
g∈Fn

d(Tg(x), Tg(y) ≤ sup
n
dFn(x, y) < ϵ.

Therefore, (X, 〈Ts〉s∈S) is F -mean equicontinuous. 2

It is shown in [11], if (X,T ) is a transitive dynamical system, then (X,T ) is uniquely ergodic. Similarly,
by Lemma 3.7, Theorem 2.5, and Theorem 3.8, we obtain that the following proposition for (X, 〈Ts〉s∈S) , where
S is a left amenable discrete infinite countable semigroup.

Proposition 3.9 Let (X,B, µ) be a probability space and (X, 〈Ts〉s∈S) be an m.p.s with the property that for
some s ∈ S , Ts be injective and F be a left Følner sequence on S .

1. If (X, 〈Ts〉s∈S) is F -mean equicontinuous, then for every x ∈ X, (orb(x, S), 〈Ts〉s∈S) is uniquely ergodic.
Especially, if (X, 〈Ts〉s∈S) is also transitive dynamical system, then (X, 〈Ts〉s∈S) is uniquely ergodic.

2. If the minimal dynamical system (X, 〈Ts〉s∈S) is F−mean-L-stable, then it is uniquely ergodic.

Definition 3.10 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . We say (X, 〈Ts〉s∈S) is
F−Banach mean equicontinuous if and only if for any ϵ > 0 , there is a δ > 0 such that for every y ∈ B(x, δ),

then BD({s ∈ S : d(Ts(x), Ts(y)) > ϵ}) ≤ ϵ .
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3.2. F -density equicontinuous

We express the notion of density in equicontinuous system with respect to Følner sequence.

Definition 3.11 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . For t ∈ [0, 1] , it is said
that (X, 〈Ts〉s∈S) is F -density-t-equicontinuous, if for any ϵ > 0 , there is a δ > 0 such that for any x, y ∈ X

with d(x, y) < δ , implies that

DF ({s ∈ S : d(Ts(x), Ts(y)) > ϵ}) ≤ 1− t.

It is evident that for t = 1 , we have the notion of F -density-equicontinuity.

Now, we examine the relationship between F -mean equicontinuous and F -density- equicontinuous in
the following statements. In particular conditions, these concepts will be equivalent.

Proposition 3.12 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . The (X, 〈Ts〉s∈S) is
F -mean equicontinuous if and only if (X, 〈Ts〉s∈S) is F -density-t-equicontinuous for every t ∈ [0, 1) .

Proof Sufficiency. Suppose that (X, 〈Ts〉s∈S) is F -mean equicontinuous and Eϵ(x, y) := {s ∈ S : d(Ts(x), Ts(y)) ≥ ϵ} .
By Lemma 3.7, we have DF (Eϵ(x, y)) ≤ ϵ. For ϵ ∈ (0, t] , take δ1 := δ(ϵ) . Then d(x, y) < δ1 such that
DF (Eϵ(x, y)) ≤ ϵ ≤ t. Also, for ϵ ∈ (t, 1] , take δ2 := δ(t) . Then d(x, y) < δ2 such that

DF (Eϵ(x, y)) ≤ DF (Et(x, y)) ≤ t.

Therefore, for every ϵ > 0 , δ := min{δ1, δ2} , we have DF (Eϵ(x, y)) ≤ t, whenever d(x, y) < δ .
It follows that (X, 〈Ts〉s∈S) is F -density-(1-t)-equicontinuous; so, (X, 〈Ts〉s∈S) is F -density-t-equicontinuous

for every t ∈ [0, 1) because t is arbitrary.
Necessity. Now, let (X, 〈Ts〉s∈S) be a F -density-t-equicontinuous for every t ∈ [0, 1) and pick ϵ ∈ (0, 1)

and t ∈ (1− ϵ, 1) . Therefore, there is a δ(ϵ, t) > 0 such that if x, y ∈ X with d(x, y) < δ(ϵ, t) , then

DF (Eϵ(x, y)) ≤ 1− t ≤ ϵ.

Hence, (X, 〈Ts〉s∈S) is F -mean equicontinuous, and the proof is completed. 2

Definition 3.13 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . For any ϵ > 0 , we call a
point x ∈ X is F -Banach density-equicontinuous point if there is a δ > 0 such that for every y ∈ B(x, δ)

BD({s ∈ S : d(Ts(x), Ts(y)) > ϵ}) = 0.

If every point of X is F -Banach density-equicontinuous point, then a t.d.s., (X, 〈Ts〉s∈S) is called an F -Banach
density-equicontinuous.

Theorem 3.14 Suppose that (X, 〈Ts〉s∈S) is a t.d.s., and F is a left Følner sequence on S . (X, 〈Ts〉s∈S) is
F -Banach density-equicontinuous if and only if it is F -density-equicontinuous.
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Proof Sufficiency. We assume that t.d.s., (X, 〈Ts〉s∈S) is F -density-quicontinuous and x ∈ X is a F -density-
equicontinuous point but not F -Banach density-equicontinuous point. Therefore, for any δ > 0 there is ϵ > 0

and xδ ∈ B(x, δ) such that

BD({s ∈ S : d(Ts(x), Ts(xδ)) > ϵ}) > 0.

Since xδ ∈ B(x, δ) , we consider a sequence xn such that limn→+∞ xn = x and

BD({s ∈ S : d(Ts(x), Ts(xn)) > ϵ}) > 0.

Let En = {s ∈ S : d(Ts(x), Ts(xn)) > ϵ} , then for some subsequence {Fnk
}∞n=1 we have

lim
k→+∞

|En ∩ Fnk
|

|Fnk
|

> 0,

for every n ∈ N . So, we take that

lim
k→+∞

1

|Fnk
|

∑
g∈Fnk

δ(Tg(x),Tg(xn)) = µn,

under the weak* topology and µn ∈M(X,S).

Also, for s ∈ S we have µn ∈ M(X × X,S × S) , and supp (µn) ⊆ (orb(x, xn), Ts × Ts). Since d is a
continuous function on X ×X, the set Uϵ = {(y1, y2) ∈ X ×X : d (y1, y2) > ϵ} is a nonempty open subset of
X ×X . Then by Lemma 1.1, we have

0 < BDF (En) ≤ lim sup
k→+∞

1

|Fnk
|

∑
g∈Fnk

δ(Tg(x),Tg(xn))

(
Uϵ

)
≤ µn

(
Uϵ

)
.

On the other hand, x is a F−density-equicontinuous point; so, for some large enough number n ∈ N , the set
Hn = {s ∈ S : d(Ts(x), Ts(xn)) > ϵ/2} has zero upper density. i.e. DF (Hn) = 0.

Also, X is F−density-equicontinuous, then so is X ×X and so (orb(x, xn), S × S) is uniquely ergodic,
by Proposition 3.9. Therefore,

0 = DF (Hn) ≥ lim inf
k→+∞

1

|Fnk
|

∑
g∈Fnk

δ(Tg(x),Tg(xn))

(
Uϵ/2

)
≥ µn

(
Uϵ/2

)
,

because µn

(
Uϵ/2

)
≥ µn

(
Uϵ

)
, it is a contradiction. Therefore, (X, 〈Ts〉s∈S) is F−Banach density-equicontinuous.

Necessity. It is obvious. 2

Definition 3.15 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . We call

i) a point x ∈ X is an F−density-equicontinuous point (resp. F−Banach density-equicontinuous point) if,
for any ϵ > 0 , there is a δ > 0 with the property that if y ∈ B(x, δ), then d(Ts(x), Ts(y)) < ϵ for all s ∈ S

except a set of zero upper density with respect to F (resp. zero upper F−Banach density).

ii) (X, 〈Ts〉s∈S) is almost F−density-equicontinuous if there exists a transitive and F−density-equicontinuous
point.
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Denote by D(X,S) , the set of all F−density-equicontinuous points in X. For every ϵ > 0 define

Dϵ(X,S) = {x ∈ X : ∀y, z ∈ B(x, δ) , ∃δ > 0 , DF ({s ∈ S : d(Ts(y), Ts(z)) > ϵ}) = 0}.

It is obvious that if 0 < ϵ1 < ϵ2 then Dϵ1(X,S) ⊇ Dϵ2(X,S) .

Proposition 3.16 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S .

(1) For each ϵ > 0 , Dϵ(X,S) is open, T−1
s (Dϵ(X,S)) ⊂ Dϵ(X,S) for every s ∈ S and

D(X,S) = lim
k→+∞

k⋂
n=1

D 1
|Fn|

(X,S)

is a Gδ subset of X .

(2) If (X, 〈Ts〉s∈S) is transitive dynamical system, then D(X,S) is either residual or empty. If additionally
(X, 〈Ts〉s∈S) is almost F−density-equicontinuous, then every transitive point belongs to D(X,S) .

(3) If (X, 〈Ts〉s∈S) is minimal dynamical system and almost F−density-equicontinuous, then it is F−density-
equicontinuous.

Proof Suppose that x ∈ Dϵ(X,S) . We consider δ > 0 satisfying the properties of the definition of Dϵ(X,S)

for x ∈ X . Now, fix y ∈ B(x, δ/2) . If z, w ∈ B(y, δ/2) , then z, w ∈ B(x, δ) ; so, DF ({s ∈ S : d(Ts(z), Ts(w)) >

ϵ}) = 0 . Therefore, B(x, δ/2) ⊂ Dϵ(X,S) and Dϵ(X,S) are open.
Let x ∈ X with T−1

s (x) ∈ Dϵ(X,S), for every s ∈ S . We can choose δ > 0 satisfying the properties
of the definition of Dϵ(X,S) for T−1

s (x) ∈ X . There exists ζ > 0 and g, g′ ∈ S with the property that
d(Tg(y), Tg(z)) < ϵ for any y, z ∈ B(x, ζ) . If y, z ∈ B(x, ζ) , then Tg(y), Tg(z) ∈ B(Tg(x), δ) . Therefore,

d(Tg(y), Tg(z)) = d(Tg(g
′y), Tg(g

′z)) < ϵ.

So, x ∈ Dϵ(X,S) . On the other hand T−1
s (Dϵ(X,S)) ⊂ Dϵ(X,S) for every s ∈ S .

If x ∈ X belongs to all intersections of D 1
|Fn|

(X,S) , then obviously, x ∈ D(X,S) . Conversely, if x ∈ D(X,S)

then there exists δ > 0 for all y ∈ B(x, δ) such that

d(Tg(x), Tg(y)) <
1

2|Fn|
.

If y, z ∈ B(x, δ), then

d(Tg(y), Tg(z)) ≤ (d(Tg(x), Tg(y)) + d(Tg(x), Tg(z))

≤ 1

2|Fn|
+

1

2|Fn|

=
1

|Fn|
.
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Thus, x ∈ D 1
|Fn|

(X,S) .

By the transitivity of (X, 〈Ts〉s∈S) , every Dϵ(X,S) is either dense or empty; since Dϵ(X,S) is inversely
invariant and open; therefore, D(X,S) is either residual or empty by the Baire category theorem. If D(X,S)

is residual, then every Dϵ(X,S) is dense and open. If ϵ > 0 and x ∈ X is a transitive point, then there
exists some g ∈ S such that gx ∈ Dϵ(X,S) . So, x ∈ Dϵ(X,S) ; since Dϵ(X,S) is inversely invariant. Thus,
x ∈ D(X,S) . 2

4. F -density-sensitivity

In this section, we show the notion of sensitivity. Let (X, 〈Ts〉s∈S) be a dynamical system where S is a discrete
(infinite) left amenable countable semigroup and (X, d) is a compact metric space and U ⊆ X . We define

NT (U, δ) = {s ∈ S : there exists x, y ∈ U such that d(Ts(x), Ts(y)) > δ}.

Here δ will be referred to as a constant of sensitivity.

Definition 4.1 A dynamical system (X, 〈Ts〉s∈S) is sensitive, (thickly syndetically sensitive, thickly sensitive,
respectively) if the set NT (U, δ) is a nonempty set (thickly syndetic set, thick set, respectively) for every nonempty
open subset U of X.

By Definitions 4.1, we have syndetically sensitive from thickly sensitive.

Definition 4.2 A dynamical system (X, 〈Ts〉s∈S) is multisensitive, if the collection
{NT (U, δ) : U is an open and nonempty subset of X} has the finite intersection property. Here δ will be
referred to as a constant of sensitivity.

Proposition 4.3 Let (X, 〈Ts〉s∈S) be a dynamical system and Ts be a homeomorphism for each s ∈ S . If
(X, 〈Ts〉s∈S) is multisensitive, then (X, 〈Ts〉s∈S) is thickly sensitive.

Proof Let (X, 〈Ts〉s∈S) be a multisensitive with a constant of sensitivity δ . Let F := {s1, s2, . . . , sk} and U

be an open subset of X . Pick Ui := siU . For any finite collection of nonempty open subsets U1, U2, . . . , Uk of
X , we have

⋂k
i=1NT (Ui, δ) 6= ∅ . Then for every 1 ≤ i ≤ k there are xi, yi ∈ U such that d(Tsixi, Tsiyi) > δ .

Let x = Tsixi and y = Tsixj . Thus d(Tsx, Tsy) = d(TsTsixi, TsTsiyi) > δ , for some s ∈
⋂k

i=1NT (Ui, δ) .
Therefore, there exists s ∈ S such that ssi ⊆ NT (U, δ) for i = 1, 2, . . . , k . The set NT (U, δ) is thick, and
(X, 〈Ts〉s∈S) is thickly sensitive. 2

Especially the thickly sensitive is equivalent to the multisensitive. In the following statement, we prove
it.

Proposition 4.4 Suppose that (X, 〈Ts〉s∈S) is a dynamical system with the point transitive system and Ts is
a homeomorphism for every s ∈ S . If (X, 〈Ts〉s∈S) is thickly sensitive, then (X, 〈Ts〉s∈S) is multisensitive.

Proof Assume that (X, 〈Ts〉s∈S) is a thickly sensitive with a constant of sensitivity δ . Let U1, U2, . . . , Un be
nonempty open subsets of X. Let z ∈ X be a transitive point of (X, 〈Ts〉s∈S) . Then there is si ∈ S such that
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siz ∈ Ui where 1 ≤ i ≤ n. i.e. N(z, Ui) 6= ∅. Choose a nonempty open subset U ⊆ X such that siU ⊆ Ui for
all i ∈ {1, 2, . . . , n}. Since (X, 〈Ts〉s∈S) is thickly sensitive, NT (Ui, δ) is a thick set.

So, for F := {s1, s2, . . . , sn} ⊆ S there exists s ∈ S such that sF ⊆ NT (U, δ) . Since
⋂k

i=1NT (siU, δ) ⊆⋂k
i=1NT (Ui, δ) , we have s ∈

⋂k
i=1NT (siU, δ) and hence s ∈

⋂k
i=1NT (Ui, δ) . This implies that (X, 〈Ts〉s∈S) is

multisensitive. 2

Definition 4.5 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . We say that F -mean
sensitive if there exists δ > 0 such that for every x ∈ X and every ϵ > 0 there is y ∈ B(x, ϵ) satisfying

lim sup
n→+∞

1

|Fn|
∑
g∈Fn

d(Tg(x), Tg(y)) > δ.

Definition 4.6 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . We call (X, 〈Ts〉s∈S) is
F -density-n-sensitive, if there is δ > 0 with the property that for any nonempty open subset U of X there are
x1, . . . , xn ∈ U for 2 ≤ n ∈ N such that the set

DF ({s ∈ S : min
1≤i ̸=j≤n

d(Tsxi, Tsxj) > δ}) > 0.

Here δ will be referred to as a constant of sensitivity. When n = 2 , for simplicity, we call that (X, 〈Ts〉s∈S) is
F -density-sensitive.

Definition 4.7 Let (X, 〈Ts〉s∈S) be a t.d.s., and F be a left Følner sequence on S . We call the nondiagonal
tuple (x1, x2, . . . , xn) ∈ X(n) for 2 ≤ n ∈ N , is a F -density-n-sensitive tuple point (or say F -density-sensitive-
n-tuple point) if for any δ > 0 and nonempty open subset U of X , there exist y1, y2, . . . , yn ∈ U such that

DF ({s ∈ S : Tsyi ∈ B(xi, δ), i = 1, 2, . . . , n}) > 0.

Denote by DSn(X,S) all F -density-sensitive n-tuples points. A tuple (x1, x2, . . . , xn) ∈ DSn(X,S) is referred
to be essential if xi 6= xj for any 1 ≤ i < j ≤ n . We show the collection of all such n-tuples points as
DSe

n(X,S) .

Proposition 4.8 Let (X, 〈Ts〉s∈S) be a t.d.s., and let F be a left Følner sequence on S . We have:

1. If (X, 〈Ts〉s∈S) is a transitive dynamical system, then it is either F -density-sensitive or almost F -density-
equicontinuous;

2. If (X, 〈Ts〉s∈S) is a minimal dynamical system, then it is either F -density-sensitive or F -density-
equicontinuous.

Proof Suppose that (X, 〈Ts〉s∈S) is not almost F -density-equicontinuous, see Definition 3.15. There is a
transitive point x ∈ X which is not an F -density-equicontinuous point, by Proposition 3.16. Let U be a
nonempty open subset of X . So, there are s ∈ S and ϵ0 > 0 such that TsB(x, ϵ0) ⊂ U . Since x is not an
F -density-equicontinuous point, there is a δ > 0 such that for any ℓ ∈ N with 0 < 1/ϵ0 < ℓ , there are nℓ ∈ N
and yℓ ∈ X with d(x, yℓ) < 1/ℓ such that
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DF ({s ∈ S : d(Tsx, Tsyℓ) > δ}) > 0.

Pick u = Tsx and vℓ = Tsyℓ . Thus, u, vℓ ∈ U and

DF ({s ∈ S : d(Tsu, Tsvℓ) > δ}) = DF ({s ∈ S : d(Tsx, Tsyℓ) > δ}) > 0.

It follows that (X, 〈Ts〉s∈S) is F -density-sensitive.
The the proof of part (2) follows from Proposition 3.16 and part (1). 2

The following proposition states that F -density-n-sensitivity can be characterized by F -density-sensitive-
n-tuples.

Proposition 4.9 Suppose that (X, 〈Ts〉s∈S) is a transitive t.d.s., and 2 ≤ n ∈ N and F is a left Følner
sequence on S . Then (X, 〈Ts〉s∈S) is F -density-n-sensitive if and only if DSe

n(X,S) 6= ∅.

Proof Sufficiency. Assume that (x1, . . . , xn) ∈ DSe
n(X,S). Set δ = 1

2 min{d(xi, xj) : 1 ≤ i 6= j ≤ n} .
Since a tuple (x1, x2, . . . , xn) ∈ DSn(X,S) is mentioned to be essential if xi 6= xj for each 1 ≤ i < j ≤ n .
Let U1, . . . , Un be open neighbourhoods of x1, . . . , xn for 1 ≤ i 6= j ≤ n , respectively. Since (x1, . . . , xn) ∈
DSe

n(X,S) , then for every nonempty open subset U of X there are y1, y2, . . . , yn ∈ U by

DF ({s ∈ S : Tsyi ∈ Ui, i = 1, 2, . . . , n}) > 0.

Hence,

DF ({s ∈ S : min
1≤i ̸=j≤n

d(Tsyi, Tsyj) > δ}) > 0.

So, (X, 〈Ts〉s∈S) is F -density-n-sensitive.
Necessity. First, suppose that (X, 〈Ts〉s∈S) is F -density-n-sensitive. Assume that

Xn
δ = {(x1, x2, . . . , xn) ∈ X(n) : min

1≤i<j≤n
d(xi, xj) ≥ δ}.

It is obvious that Xn
δ is a closed subset of X(n). Let x ∈ X be a transitive point. There are x1m, x2m, . . . , xnm ∈

B(x, 1/m) for every m ∈ N such that

DF ({s ∈ S : (Tsx
1
m, . . . , Tsx

n
m) ∈ Xn

δ }) > 0,

because (X, 〈Ts〉s∈S) is F -density-n-sensitive. Now, we can take an open cover {A1
1, . . . , A

N1
1 } of Xn

δ for some
N1 ∈ N with the property that max{diam(Ai

1) : i = 1, . . . , n} < 1. So, there is 1 ≤ Nm
1 ≤ N1 for every m ∈ N

such that

DF ({s ∈ S : (Tsx
1
m, . . . , Tsx

n
m) ∈ A

Nm
1

1 ∩Xn
δ }) > 0.

Without restriction of generality, we suppose that Nm
1 = 1 for all m ∈ N and

DF ({s ∈ S : (Tsx
1
m, . . . , Tsx

n
m) ∈ A1

1 ∩Xn
δ }) > 0.
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By repeating the above method, for every ℓ ≥ 1 we have cover A1
ℓ ∩Xn

δ by finite nonempty open subsets with

diameters less than 1/(ℓ+1) , i.e. A1
ℓ ∩Xn

δ ⊂
⋃Nℓ+1

i=1 Aℓ+1
i and diam(Aℓ+1

i ) < 1/(ℓ+1). Then for every m ∈ N ,
there is 1 ≤ Nm

ℓ+1 ≤ Nℓ+1 such that

DF ({s ∈ S : (Tsx
1
m, . . . , Tsx

n
m) ∈ A

Nm
ℓ+1

ℓ+1 ∩Xn
δ }) > 0.

There is no loss of generality in assuming Nm
ℓ+1 = 1 for all m ∈ N and

DF ({s ∈ S : (Tsx
1
m, . . . , Tsx

n
m) ∈ A1

ℓ+1 ∩X
n
δ }) > 0.

Obviously, there is a unique point (z1, . . . , zn) ∈
⋂∞

l=1A
1
ℓ+1 ∩ Xn

δ . Now, we must show that (z1, . . . , zn) ∈

DSe
n(X,S) . For any ϵ > 0 there is ℓ ∈ N such that A1

ℓ+1 ∩ Xn
δ ⊂ V1 × · · · × Vn, where Vi = B(zi, ϵ) for

i = 1, . . . , n.

By the above construction, for every B(x, 1/m) , there are x1m, . . . , xnm ∈ B(x, 1/m) such that

DF ({s ∈ S : (Tsx
1
m, . . . , Tsx

n
m) ∈ A1

ℓ ∩X
n
δ }) > 0.

Furthermore, for all m ∈ N ,

DF ({s ∈ S : (Tsx
1
m, . . . , Tsx

n
m) ∈ V1 × · · · × Vn}) > 0.

For every nonempty open subset U of X , since x is a transitive point, there is t ∈ S such that Tkx ∈ U and
so for some m0 ∈ N , we have TtB(x, 1/m0) ⊂ U. It means that Ttx1m0

, . . . , Ttx
n
m0

∈ U and

DF ({s ∈ S : (Tt(Tsx
1
m), . . . , Tt(Tsx

n
m)) ∈ V1 × · · · × Vn}) > 0.

Thus, (z1, . . . , zn) ∈ DSe
n(X,S) and the proof is completed. 2
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