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Abstract: In the present article, making use of the (p,q)-Hurwitz zeta function, we provide and investigate a new
integral operator. Also, we define two families SMy 4 (€,(,0,u,7) and SCp g (A, , 9, u, T) of biunivalent and holomorphic
functions in the unit disc connected with (p,q)-Chebyshev Polynomials. Then we find coefficient estimates |az| and

|as| . Finally, we obtain Fekete-Szeg6 inequalities for these families.
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1. Introduction

Let © be the class of functions of the form
f(z) :z—l—Zajzj7 (1.1)
=2

where the class € is analytic in the open unit disk ¥ = {z : |z| < 1} . We also define to P as the class of all §2
functions that are univalent in 3.

By the Koebe One Quarter Theorem [17] it is clear that the function f € P has an inverse function f~!, which
is defined by

FHf () =2 and f(f1 (@) =n, (I&] <ro(f)sro(f) = 7).

where
@ =a+) g™
n=2
It is clear that
w=f (@) =@+ (92 +a2) @* + (95 — 2435 + a3) @ + (ga + 5a3 — Sasas + as) &* + - .
Assume that go = —asg, g3 = 243 — a3 and g4 = —5a3 + bagaz — a4, we find that

FH®@) =@ — aw® + (2a3 — a3) &° — (5aj — basas + as) @' + -+ . (1.2)
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If both f and f~! are univalent in €2, a function f € € is said to be biunivalent in Q. We denote the biunivalent
function by =. After that, many mathematicians have been interested in studying biunivalent functions and
they have provided and investigated the bounds for the coefficients |a,| (see, [10, 11], [20, 21], [25], and [32]).

The Fekete-Szeg6 inequality (problem), related to the Bieberbach conjecture, is an inequality for the coefficients
of univalent analytic functions f(z) in (1.1) discovered by Fekete and Szeg6 [19]. The Fekete-Szegd problem
is the search for the estimate of the maximum value of the coefficient functional ‘ag — Wagl. Many authors
have presented many subclasses of biunivalent analytic functions and examined applications of Fekete-Szego
inequality, such as Amourah et al. [4], Arikan et al. [6], Darus and Thomas [13], Deniz and Orhan [16], Yousef
et al. ([43] and [44]), and Srivastava et al. ([34]-[38]).

The function f(z) is called subordinate to /i(z), denoted by f(z) < h(z); if f(z) and h(z) are two analytic
functions in Q and there is a Schwarz function ¢ with ¢ (2) =0, |p(2)| <1 and f(2) = A(p (2)). In addition,

we get the following equivalence if the function A is univalent in 2
f(z) < h(z) & f(0) = A(0) and f(2) C A(2).

For any j > 2 and 0 < ¢ < p < 1, The second type of (p,q)-Chebyshev polynomial is known as the following

relationship:
‘Fj(xa a,p, Q) = (pJ + qj) :L'-Fj—l(xa «, p, q) + (pQ)jilafj—2 (xaavpa Q) (13)

with « is a variable and the initial values Fy (z,a,p,q) =1 and F; (z,0,p,9) = (p+ q) =.

Depending on the values of p,q, s, and z, we get special polynomials from (p, q)-Chebyshev polynomial such
as (Fibonacci polynomials, Pell polynomials, Jacobsthal polynomials, and Chebyshev polynomial of the second
type), it was presented by many researchers (see, [1], [3, 4], [10, 11], and [18]).

In 2019, Kizilates et al. [27] provided and investigated the first and second types of (p, q)- Chebyshev polynomial
and obtained derived formulas, generating functions, and some important results of this polynomial.

The generating function of the second type is defined as follows.

o0

=Y Fiwapqs(zen). (1.4)

Jj=0

1
1 —apezn, — mqan, — apgzing

Cp,q (2)

Let N(z) and (@) be two analytic functions in the unit disk Q with X (0) = ¢ (0) =0, |R(2)| < 1, |e(@)| < 1,

and

R(2) =012+ 022 +032° +--, and o (@) = ho + L + 3%+ (2,0 €X). (1.5)

The (p, q)-calculus denotes the possibility of extending the g-calculus to postquantum calculus. Chakrabarti
and Jagannathan [12] proposed the (p,¢)-calculus in quantum algebras to generalize the g-series, which has
numerous applications in science and engineering. After that, many articles provided and investigated the

application of (p, q)-calculus (see; [2], [7], [22], [23], [29], and [33]).

The (p, q)-derivative operator is a kind of derivative operator defined by

[ (p2) — f (g2)

Ipaf (2) = (p—q) =z

(z#£0,0<g<p<l, andp+#q).

2416



HADI and DARUS/Turk J Math

It is clear that for n € N={1,2,3,...} and z € &

o0 ) (oo} )
dpq Z a;z’ :Z [j]pqzjilv
j=1

where [jlpq = E=L=p/ ! 4+ p/2q+ p/ 3¢ + -+ pg? =2 + ¢/~ and (0], = 0.

s

This is a natural extension of the g-number ([24]),

lim [jlp.q =1j l-¢ 1.
p@% Ulpa = Ul = 1—¢ qF

We introduce the p,g-Hurwitz zeta function, which is a generalization of g—Hurwitz zeta function (see, [30],
[31], and [40]), motivated by the work cited above.

In the beginning, we define the (p, ¢)-Hurwitz zeta function ¢, ,(u,7;z) by the following form
o .
Cp.q(u, 73 2) Z
= j + u . q

where u € C\Z; ,7 € C, when |z| <1, and R(7) > 1 when |z| = 1.
Now, by the functions f(z) in (1.1), we present the (p,q)-Srivastava-Attiya operator 7!, f(2) : @ — Q as

follows
Tptanf (2) = (@2p,q;2) % f(2)) (2 € B,u € C\Zg ;7 € C) (1.6)
where

Y (p,g;2) = [1+ul, [Cp,q (u,T32) — (u);ﬂ . (1.7)

From (1.6) and (1.7), we note that

VA i ( q)Tajzj. (1.8)

From (1.8), we observe that
1. When p =1, we get a g-Srivastava-Attiya operator [39].

qui z+ Z < )Tanz".

2. When p =1 and ¢ — 1, we get a Srivastava-Attiya operator [34].

0o 1 T )
Tisrf(2) = Z+Z <31—Z> a; 2.

=2

The aim of this work is to define a (p, q)-integral operator by using (p,q)-Hurwitz zeta function, which is a
generalization of ¢-Srivastava-Attiya integral operator. After that, we determine initial coefficient bounds for
some classes of analytic functions defined by subordination. Finally, our results deal with the Fekete-Szego

problem for (p, q)-Chebyshev polynomials.
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2. New concepts and results

At he beginning, we introduce the concept of new families SM, 4(§,¢, 6, u,7) and SCp 4 (A, ¢, P, u, 7).

Definition 2.1 For 0 < £ < 1, > 0 and 0 < § < 1. A function f € = is said to be in the family
SM,, 4(&,¢, 6, u,T) if the following subordinate conditions are satisfied:

AT (2) ., (T f (N’
1-— 2 Too S (2 ——e - - Cpq (2 2.1
O e ) (F27) <G @)
and
O (Tt @) v  p1m '(jp“q,rf‘l (°~”>>6 N
(1-¢) A —— (T f (W) | =] =Cpq(w). (2.2)
[Tag F71 @) ¢ ( ) &

Remark 2.2 It is worth noting that the family SM, 4(€,¢,6,u,T) contains many subfamilies, we mention
them as follows:
1- We get the subfamily SM, 4(€,(,u, T), when 6 = 0; define as below

2Tt (2)

[j“ f (Z)] 1-¢ + g(qufq,‘rf (Z))I =< Cp,q (Z) 9

(1-¢)

and
I

B (T f (@)
_1/~\11—¢

[jplfqu L(@)]
2- We get the subfamily SM, 4(§,6,u,T), when ¢ = 1; define as below

(1-¢)

+E(Tarf @) < Cog @).

J;q,Tf(z))é

(1= (Tt () + €t (1) (222

< Cpyg (),
and

5
w1 =y S INY  /  ) .
(1-9) (jpyq,rf ! (w)) + f(jpu;,rf ! (w)) <I)7Q7a> < Cpyq (@)
3- We get the subfamily SM, q(&, ¢, u, T), when £ = 0; define as below

(T, f (2)
[Tt f (2)]°

(1-¢)

< Cpyq (2),

and
] O/ S ) B

(1-¢) = = Cpq (@) .
[T f @)

Definition 2.3 For A € C\{0}, ¢ > 0 and 9 > 0. A function f € Z is said to be in the family
SCp.q (N, ¢, 0, u,T) if satisfies the following subordinate conditions:
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z

1— 29 2) + 922(TH 2))" /
% <( CH20)T50.f (2) +922(Tpg.r f (2)) +(C—20) (T f (2)) —1> < Cpq (2), (2.3)

and

w

20 L@) + 03 (T f T @) /
i<(1 CH20) Ty @) + 063 ( T 7 (@) +(C_219)(jp7fqﬂ_f_1((,~u>)—1>-<Cp,q(a)- (24)

Remark 2.4 It is worth noting that the family SC, 4 (X, ¢, 0, u,T) contains many subfamilies, we mention them
as follows:
1- We get the subfamily SC, 4 (X, ¥, u,T), when ¢ =1+ 20;

5 (92T f )+ (T (2)) = 1) < Gy (2),
and
5 (95T f @)+ (T @) 1) <Gy (B

2- We get the subfamily SCp q(X, C, u,T), when ¥ = 0;

(1-0 22l g @) 1) <o)

> =

and

A

w

! <(1 —¢) jz;q’Tf_l © + C(jpu,q,q-fil (‘;))/ - 1) < Cpq (W),

3- We get the subfamily SCp (A, u,T), when ( =1 and ¥ = 0;
1 U
T (Tt () =1) <G (2),

and

% ((jp%qu_l (a))l - 1) < Cpq (@).

Theorem 2.5 Let f(z) € Q be in the family SMy 4(€,¢,0,u,T), then

0+ 9] 2+ w0+ 9) 23+ )y,
T V2 (6C00.T) + Npga (6,C.0,0.7) = Qpga (6,C.0,u, 7))

|a2| (25)

and
as] < (p+q) x| (3+u), . (p+a) =2+ )i
T -OCHD G A+, (16 ¢+ 1)+ + 1P+ w)

where Hp. g0 (6,¢,8,u,7) = (p+q)°2? (1 — &) (C+1) + &5 +2) (1 + ), (2+ )27,
Noaw (6:¢,0,u,7) = (p+ )22 (3 (C = €0 (C+3) +£(3 (5 +1) = 2)) B+u)y, (1 +u)r,
and Qp g (€,¢,0,u,7) = (P2 +¢*) (P+ ) 22[(1 = &) (C+ 1) + &0+ 1B+ w)y, (1 + ).
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Proof Suppose that f(z) € SM, 4 (£, ¢, 0,u,T), there are two analytic functions R, ¢ as defined in (1.5), such
that

ATy f(2) T F N’
(1 - é-) = 1— +§ jpu,q,rf (Z) E— =< Cp,q (N(Z)) ’ (27)
[(Te,f ()] ( ) ( z )
and
G1=¢(qu -1 ! , u -1 3
(1-¢ “@“j~ﬁ1?+f@$mJ—%w»<j@”f()>-<@ﬂwmm. (238)
[(Tpgrf 1 (@)] w

From (2.7) and (2.8), we have

(T f (2)] Tptord (2))'
8 iael O (g, 0 ) (FoL ) <147 aman @+ Raama @7+
[Tsta.r ] ()]
(2.9)
and
(-6 Whadd JO) (1 @) (Hael D)’
[Tt @) T v
=1+ F1 (2,0,0,0) ¢ (@) + o (2,0,p,) (p(@))° + -+ (2.10)
Comparing Equations (1.5) and (2.7)—(2.10), we get the following relationship
PNl €98 (O)} u TEMBION
1= Tt F &(Tpiart () ( z )
=1+ ]:1 (:Eva7p7 CI) o1z + |:]:1 (.’L', Sapvq) oy + ]:2(‘7;7 Supvq)o—%:l 22 +ee (211)
and
(-9 T Bl O 4 (g, = @) (Tac DY
(T3 71 (@)] par ©
=1 + ]:1 (aﬁ,a,p, q) llONJ + []:1('/1:7 S, P, q)l2 + ]:2(337 S, P, Q)l%} &}2 +-- (212)
Since |X(z)] < 1,]¢(@)] < 1, then
loj| <1and |l;| <1 forall j €N. (2.13)

By calculating the right-hand side of two conditions in (2.11) and (2.12), and comparing the coefficients, we get

(1+u),
(1=8(+1)+&0+ 1]#% = F1(z,0,p,q) 01 (2.14)
Prq
(1+w)? (C—£0)(C+3)+E(5(54+1)—2)] (1+u) 27
[(1—€)(C+1)+€5+2] (3+jj)§:a3+[ o 1050 43

=F (x7sap7q)02+F2 (x,s,p,q)a% (215)
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(1+u)’
_[(1 - 5) (C + 1) + &0+ 1]ﬁa2 =F (xaa7p7q) Iy
Pq
and
(1+u), [(C—£0)(¢43)+E(5(5+1)—2)] (1+u) 2T
[(1 =) (C+1) + &0 + 2] Gyt (243 —ag) + pToRenE aj

= -Fl(xasap7 q)l2 +F2(x,5,p, q)l%
From (2.14) and (2.16), we have
o1 =

and

2[(1 — D+ &0+ 1°(1+u)
[(1-¢) (§+(2):u§)2:r J( +U)pqa§:flz(xva7p’q) (02 +13).

Now, by adding (2.15) to (2.17), we obtain

(tu)p, | 25(C—60)(C+3)+E(8(5+1)~2)](1+u)27
[2((1 - 5) (C + 1) + 55 + 2) (3""“);(1 2 (2+u)2; ]CL%

2
= ]:1 (l‘, S, D, q) (02 + 12) + ‘7:2('1:’ S, P, q)(O’% + ll)
By (2.19) we substitute the value of (o7 +13) into Equation (2.20), we get

272 (z,0,p,q) (1= &) (C+1) + &5 +2) (L+u)] (24 u)r
+ 277 (2,0,p,0) (5 (C— €O (C+3) +EG (6 +1) —2)) B+ )y (1 +u)ar
—2F5 (2,5.p,q) [(1= &) (C+ 1)+ &5+ 1*(3+u)] (14 u)>r a3

= F} (z,0,p,q) (2k +u)*" (3k +u) (0 + la).

From (1.3), (2.13), and (2.21), we have

(p+a) 2l 2+u)p, /(b +0) w3+ )y,

< .
|a2| - \/2 [Hp,q,:v (67 ¢, o, u, T) + Np,q,z (fa ¢, 0, u, T) - Qp,q,z (67 ¢, d,u, T)]

Now, to get the bound on |az|, using (2.18) and subtracting (2.17) from (2.15)

2[(1 75) (C+ 1) +€5+2] m(aiﬂ 7ag) = ]:1 (x,S,p,q) (02 - 12) +‘7:2 (CE,S,}%(]) (0’? 7l%)

)Pq

According to (2.18) and (2.22), we get

Fi(2,5,0,q) (3+u),, (02 —12) FE(z,0,p,9) 2+ u)sy (03
21—+ +&+2J(1+u),  2/(1-&) (C+1)+& +17°(1

az = 37
g

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)
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Then
(p+q) x| (3+u), N (p+9) 222+ U)i;
(1= C+D)+&+2](1+u),, [1—-6)C+1)+E5+1(1+u)’T

pq

las| <

The proof is complete.

For the special case § = 0, Theorem 2.5 becomes:

Corollary 2.6 Let f(z) € Q be in the family SM,, 4(&,(,u,T), then

[0+ a) ] (24w, /(0 +0) 23+ )y,

|az| <

)

\/2 {NP&@ (57 C’ U, T) + Kp,q,l’ (57 Cv u, T) - z’p,q,ac (57 Ca Uu, 7—):|

P+ )2l (3 +u), (p+a)°2*(2 +u)yy
C(l—§)+§+3](1+u);q [C(1_§)+€+2]2(1+u)§;-7

las| < [

where Npgo (€,C,u,7) = (p+q)°2? (C(1 =€) +€+3) (1+u) (2 +u)r,

Kpga (&6u,7) = (p+9)°2% (5 (C = €0) (€ +3) +4€)) (3 + u),, (1 +u)or, and
Lpga (€Cum)= (0P +¢%) (p+ @) a2(C(1— & +£+2)°B+u), (1+u).

For the special case ¢ = 1, Theorem 2.5 becomes:

Corollary 2.7 Let f(z) € Q be in the family SM,, 4(&,0,u,T), then

(p+q) x| (2+ u);q\/(p +q)z(3+ )y,

las| <

)

V2 (Vo (€.8.07) 4 Oy (€6:007) = Oy (6:6007)

P+ a)alB+u)y, (p+a)*=*(2+u);,
E(1—-96)+3) (l—l—u);q (5(5_1)+2)2(1+u)i;7

las| <
(

where Vy g0 (€,6,4,7) = (p+ ¢)°x? (§(1 = 6) +3) (1 + ), (2 + u)or .

Upga (€:0,u,7) = (p+¢)°2 (3606 (0+1) —2)) B+u)), (1+w)27, and
Opga (6,6,u,7) = (7 + ¢*) (p + @) 2?(€( = 1) +2)* (3 + )y, (1 + )7

Theorem 2.8 Let f(z) € Q be in the family SC, 4 (N, ¢, 0, u,T), then

[(p+ @) 2 (2 +u)p,\ /(P + @) 2(3 +u),,
|(12| S )
\/2 [Qp,q,w (Aa Ca ﬁa ka u, T) - Mp,q,w (A7 Ca ﬂa k7 u, T)]

and
(p+a)z(3+u),,
(1+2C+29) (1 +u),,’

las| < Jaz|® + 3
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where Qp.g.a (A, ¢, 0, u,7) = A (142 +20) (1 +u); (2 + u);f; (p+ q)%a
and My (A, C0,u,7) = (P2 +¢2) (p+ @) 221+ O)* (B +u), (1 +u)2r.

Proof Suppose that f(z) € SCp, 4 (N, ¢, 9, u, 7). There are two analytic functions R, ¢ as defined in (1.5),
such that

A

1 ((1 —C+20)Tp f (2) + 02T, f (2)” T 1) - 1) <e,. (), (2.23)

z

and

1"

1
A w

- NI, @)+ 9T @ )
((1 C+20)750,,8 71 @) + (T 1 (@) +(C_219)(%%]0_1@)_1>< G (o@). (220

From (2.23) and (2.24), we have

1—¢+20)T 3 f()+92° (T, . [(2))"” u
(( )7}021) +<c—w>(Jp,q,Tf<z>>’—1)

>l

z

=1 +]:1 ($7a7pa q) N (Z) + ]:2 (xua7p7Q) (N (Z))2 +- (225)
and
1—CH20)T Y f @) +95 (T, F @) v el
i<( T N ORIT T IO (e gg) (g 1(w)),_1>
=1+ 71 (2,0,p,0) (@) + Fa(x,0,p,q) (0(@))° + -+ . (2.26)

Comparing Equations (1.5) and (2.23)—(2.26), we get the following relationship

(1—¢+20) T, F(2)+922(Ty, . F(2)"
£ el DOMTTON (¢ 20) (7,8 (1) 1)
=1+ -/.'.1 (l‘, «, D, Q) o1z + [-Fl(xa S, P, Q)UZ + f?(xa S, P, Q)Uﬂ 22 + - (227)
and
(1—CH+20) T f (@) +932 (T, f (@) w1y
£ 0t MO +(C-20) (Ford @) 1)
=1 + ]:1 (37704710’ CZ) llw + []:1(*%" s, D, q)l2 + ]:2(1;7 S, D, q)l%} 52 + (228>

Since [R(z)] < 1, |p(w)| < 1, then
lojl <1and |l;| <1 forall j €N. (2.29)

By calculating the right-hand side of two conditions in (2.27) and (2.27), and comparing the coefficients, we get

T

1
(1 + C) EQ_—::Z;?IG‘Q = Fl (.’E, o, p, Q) 01, (230)
pq

> =
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1 (1+u),
—(14+20+29) —2a3 = Fi (2,5,p,q9) 02 + Fao (x,5,p,q) 02, 2.31
= Eran Jor 4 Fo (2,5,0.0) (2.31)
1 (1+u),
--(1 P, = l 2.32
)\( +C) (2+U);qa2 ]:1 (.T,Oé,p,q) 15 ( )
and
1 (1+u),
X (1+2¢+29) ﬁ@a% —a3) = Fi(z, 8,p,q)la + Falz, s, p, q)l%. (2.33)
pq
From (2.30) and (2.32), we have
01 — —ll (234)
and
9 (1 +u)2'r
p(1+C)2Tu§3a%=}? (z,0,p,q) (67 +13) . (2.35)

Pq
Now, by adding (2.31) to (2.33), we obtain

(1+u),

(3_’_7“2(10'3 = ‘Fl (377 S, D, Q) (02 + 12) + ]:2(:5’ 5D, Q)(O—% + l?) (236)

2
3 (142 +20) 7

By (2.35) we substitute the value of (o7 + %) into Equation (2.36), we get

2[A(1+2¢+20) (1+ w2+ w27 FR (@,0,p,0) = Fa (25,0,0) (1 + QP 3+ w)p, (1 + )2 | a3

= F} (@, 0,p,q) N2(2k + u)*T (3k +u) (0, + lo). (2.37)

From (1.3), (2.29) and (2.37), we have

< JoraaNes W/ 0+ @) 23+ )y,
O 2 Qe NGO 7) — Myge (NG 0,0, )]

Now, to get the bound on |az|, using (2.34) and subtracting (2.33) from (2.31)

T 2 T T
(1+2¢+20) (1+u),,a3 = X (I+2¢+29)(1+ u)pqag + (B3 +u),,F1(z,8p,9) (02— 12). (2.38)

>N

According to (2.34) and (2.38), we get

2 , 2 ; .
S (1420 +20) (14w, las] < 5 (1+2C+20) (1+ ] Jasl” + 203 + W)}, Fi (2,5.p,0)

Then
[(p+q) x| (3 +u),,
(1+2C+29) (1 +u),,

2
las| < |aa|” + 3

Here, the proof is complete. O

For the special case { =1+ 29, Theorem 2.8 becomes:

2424



HADI and DARUS/Turk J Math

Corollary 2.9 Let f(z) € Q be in the family SC, 4 (A, 9, u,T), then

0+ 9) 2N 2+ )y, /(0 + @) 2(3 4+ u)p,

\/2 {an,w (A, O, u, 1) — Mpﬂ@ (A, 9, u, T)}

las] <

)

[(p+q)x[ (3 +u),,

2
< + M,
3] < la| A(1+20) (1 +u);,

where vaqu (N u, ) =3A(1+29) (1 + u) (2 + u)pq (p+ q)
and My g0 (\9,u,7) =2 (p* + ¢%) (p+q) 2 (1 + O)* (3 +u),, (1 + U)f,;

For the special case ¢ = 0, Theorem 2.8 becomes:

Corollary 2.10 Let f(z) € Q be in the family SCp 4(N,(,u,T), then

(0 + )2 <2+u>;q¢<p+q>x(3+u>;q

\/2 [Dp,q,w ()‘aCaUﬂ') Fpqz (>\ ¢ u,T)

9

las| <

[(p+q)z[ (3 +u),,

2
3] < lazf” + e+20)(L+u),’

where Dyqe (A G usm) = A(1+2¢) (1+u);,(2+u)pr (p+ )2
and Fpge (A Cu7) = (02 +¢%) (0 + @) 22(1+ Q)3 + u)p, (1 + ),

3. Fekete-Szego6 inequality
Theorem 3.1 Let f(z) be in the family SM,, 4(£,(,0,u,7) and v € R, then

l(p+aq) x| (3+u),
(1= C+1)+&+2](1+u),
as — 70| < |0+ 0% @+ w3+ w)j, 11—
[(p+q) (A&, ¢, 0,u,7) + B(E,¢,0,u,7)) — (0 +¢*) G (£,¢,0,u,7)] (p+ q) 22 — pgaG (£,¢,6,u,T)|’
if y—=1>x1

|’Y_1| lea

where A(€,¢,0,u,7) = (1— &) (C+1)+&+2) (L +u)] (2 +u)r,
B(&,¢.0u,7) = (3(C—€60)(C+3)+E(0 (0 +1)—2) (B+u)l (1+u)r,
G(&¢0um)=[1-8C+1)+&+1°B+u) (1+u)r,

[(P+9) (A(£,¢,8,u,7)+B(E,6,0,u,7))— (" +4%)G(£,6,0,u,7)] (p+q)x° —pgad (£,¢,6,u )
(p+a)?22[(1-&) (¢+1)+€6+2] (2+u) 27 (14+u)

and x1 =
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Proof By Equations (2.21) and (2.22), it follows that

2 Fi (x,s,p,q) (3+U);q (0—2*12)

9~ 702 = 2[(1—5)(C+1)+§5+2](1+u);q+(1_7)a§

- —7:1 (x,s,p, Q) (3 +u);q (02 - 12)
T2[1-(C+ ) +E+2(T+u),

Fi (2,0,p,q) 3+ )y, (2+u)pi (05 +12) (1=7)

‘Fl2 (x7a’p7q) (A(§7C757U7T) +B(§7C75’u77—)) 7‘F2 (x’s’p’q)g(f’c75’u77)

=~ (3+u);q ~ (3+u);q
= Fi (w.0.0.) [( (€.C.6.9) + r=ganrertoray; ) o2+H(9 (€ €.0.9) — sr=grensgimmrar, ) )

- B F2(2.0.p.0)(34u)T, (24w)2T (1-7)
where G (£,€,0,7) = P aapAECIuNFBET S 0= Falers p ) OE Lo

Thus, according to (p, ¢)-Chebyshev polynomials in (1.3), we conclude that

(3k—+u)"

(p+a)z(3+u)T ~
mocrer T 0 S19E60N)| S qraenreraarar,

’03 - 703| <
(3+u)7,

o Tor 19660 2 s nre Ty,

21(p+ ) o[ (€.€,9)
After making several simplifications, the proof of Theorem 3.1 is complete.

Theorem 3.2 Let f(z) be in the family SCp, 4 (X, ¢, 0, u,7) and v € R, then

[(p+q) x| (3+u),,
A1 +2¢+29) (1 +u),

3 3012 T 2T
|0+ @) | X3 + W), (2 + w2y 11— 5

ag — ya3| <

o+ @) A C0u,7) = (02 + @) BOLC, 6,0, 7))+ )& = paaB (A, €, 6,0, 7)
if |y —11>x2
where A(N, ¢, 0,u,7) = A(1+2¢ + 29) (1 + ), (2 + u)i;,
~ 2
B\ ¢ 0u,7) = (1+¢) B+u),(1+u),
d . [(p+Q)-’Z(>"<x57u>T)7(p2+q2)g(/\xCxa»uﬂ—)](p+Q)w27pqag()‘7C757u)T)
ant Xz = (pra) e x(1+2+20) (1)), (2+u)2; :

Proof By Equations (2.37) and (2.38), it follows that

G — Va2 = (3+u);qf1(xasapvq)(02_12) (17 )aQ
PTRT TN 2+ 20) (T ), 12

T

A (z,0,p,q) oy
=— 5 [<T (7. G A 0) + A(1+2<+219)pgl+“);q> "
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(3 +u),, l
(1+2¢+20) (1+u), 2]

+ <T('y,§,/\,19)— B

where
F2 (2,0,p,) €23+ u)], (2 + w27 (1 — )
-7:12 (xvavpa q)A(é,C,é,U,T) - .7:2(35737177 q)B (f,CMS,U,T)

Thus, according to (p, q)-Chebyshev polynomials in (1.3), we conclude that

T (7,¢,69) =

|(p+a)x|(3+u);, (34+u)7q
, sarecan ity 0 ST GAN < gamcran i,
2 (p + q) Z |T (’Y? C7 )\a ﬁ)l ) fOT ‘T (77 C) )‘a 19) l 2 ,\(1+2(+219)Iz(i+u);q
After making several simplifications, the proof of Theorem 3.2 is complete. O

4. Conclusion

In this article, we introduced a new integral operator defined by (p,q)-Hurwitz zeta function, which is a
generalization of the g-Srivastava-Attiya operator. We also provided two families SM, ,(&,¢,0,u,7) and
SCpq (A, ¢,9,u, ) of biunivalent and holomorphic functions in the unit disk, which is defined by (p,q)-

Chebyshev polynomials, and we obtained Fekete-Szegd inequalities for these families. We also think that

this construction has many applications.
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