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Abstract: In this paper, the Dirac type integro differential system with a nonlocal integral boundary condition is
considered. First, we derive the asymptotic expressions for the solutions and large eigenvalues. Second, we provide
asymptotic expressions for the nodal points and prove that a dense subset of nodal points uniquely determines the
boundary condition parameter and the potential function of the considered differential system. We also provide an
effective procedure for solving the inverse nodal problem.
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1. Introduction
In recent years, boundary value problems with nonlocal conditions are one of the fastest developing current
topics in mathematical physics. Nonlocal boundary conditions appear when we cannot measure data directly
at the boundary. Problems of this type arise in various fields of mathematical physics, biology, biotechnology,
mechanics, geophysics and other branches of natural sciences [2], [3], [4], [5], [6]. Such problems were studied
firstly by Samarskii and Bitsadze. They formulated and investigated the nonlocal boundary problem for an
elliptic equation [1].

Inverse spectral problems consist in recovering operators from their spectral characteristics. Results of
the inverse problem for various nonlocal operators can be found in [7], [8], [9], [10], [41], [42].

In a classical inverse spectral problem, the potential and the coefficients of the operators are to be
determined from spectral data (e.g., two sets of eigenvalues, or one set of eigenvalues and norming constants).
This is called the inverse eigenvalue problem. An alternative is to take as data the zeros (nodes) of the
eigenfunctions of the considered operators, which are just as experimentally observable as eigenvalues in some
situations. This is generally referred to as the ”Inverse Nodal Problem”.

In 1988, Mclaughlin raised and solved the inverse nodal problem for Sturm-Liouville problems for the
first time [31]. She showed that knowledge of a dense subset of zeros (nodes) of the eigenfunctions alone can
determine the potential function of the Sturm-Liouville problem up to a constant. Hald and McLaughlin [23]
provided some numerical schemes for the reconstruction of the potential for more general boundary conditions.
In 1997, Yang suggested a constructive procedure for reconstructing the potential and the boundary condition of
the Sturm-Liouville problem from nodes of its eigenfunctions [39]. Inverse nodal problems have been addressed
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by various researchers in several papers for different operators with different kinds of boundary conditions ([15],
[18], [19], [21], [22], [33], [34], [38], [37], [40], [35], [43], [44], [45] and references therein).

In recent years, integro-differential operators attracted much attention of mathematicians. Such operators
have important applications in many fields of science (see monographs [14], [32] and references therein).
Therefore, many researchers are currently working on inverse problems for these operators ([11], [12], [13],
[16], [17], [20], [24], [25], [30], [36] and [46]). The inverse nodal problem for Dirac type integro-differential
operators with Robin boundary conditions was first studied by [26]. This operator with parameter dependent
boundary conditions linearly and nonlinearly were studied by [27] and [28], respectively. In their studies, the
authors considered p(x) and r(x) , which are the components of the potential function Q(x) , as a special case
such that p(x)− r(x) = const.

In this study, the perturbation of the Dirac differential system by a Volterra type operator on a finite
interval with one classical boundary condition and another nonlocal integral boundary condition is considered.
We also consider p(x) and r(x) as two independent functions and investigate a more general case. In this
way, we have the opportunity to determine p(x) and r(x) separately. It is shown that the coefficients of the
differential part of the operator and the boundary condition parameter can be determined by using a dense
subset of the nodes. For this problem, we also give a constructive procedure for determining the coefficients as
well as the useful asymptotics regarding the solution, eigenvalues and nodes.

2. Main results

Consider the nonlocal boundary value problem of the Dirac type integro-differential system

BY ′ +Q(x)Y +

x∫
0

K(x, ς)Y dς = λY, x ∈ (0, π), (2.1)

with one classical boundary condition

y1(0) sin θ + y2(0) cos θ = 0 (2.2)

and nonlocal integral boundary condition

y1(π)−
π∫

0

y1(x)ω(x)dx = 0, (2.3)

where 0 < θ < π are real numbers, λ is the spectral parameter,

B =

(
0 1
−1 0

)
, Q(x) =

(
p(x) 0
0 r(x)

)
, K(x, ς) =

(
K11(x, ς) K12(x, ς)
K21(x, ς) K22(x, ς)

)
, Y =

(
y1
y2

)
, p(x) , r(x) ,

ω(x) and Kij (x, ς) , (i, j = 1, 2) are real-valued functions in W 1
2 (0, π) .

Let φ(x, λ) = (φ1(x, λ), φ2(x, λ))
T be the solution of (2.1) satisfying the initial condition φ(0, λ) =

2431



KESKİN/Turk J Math

(cos θ,− sin θ)T . φ(x, λ) is an entire function of λ and satisfies:

φ1(x, λ) = cos θ cosλx+ sin θ sinλx

+

∫ x

0

sinλ(x− ς)p(ς)φ1(ς, λ)dς +

∫ x

0

cosλ(x− ς)r(ς)φ2(ς, λ)dς (2.4)

+

∫ x

0

∫ ς

0

sinλ(x− ς) {K11(ς, ξ)φ1(λ, ξ) +K12(ς, ξ)φ2(λ, ξ)} dξdς

+

∫ x

0

∫ ς

0

cosλ(x− ς) {K21(ς, ξ)φ1(λ, ξ) +K22(ς, ξ)φ2(λ, ξ)} dξdς

φ2(x, λ) = cos θ sinλx− sin θ cosλx

−
∫ x

0

cosλ(x− ς)p(ς)φ1(ς, λ)dς +

∫ x

0

sinλ(x− ς)r(ς)φ2(ς, λ)dς

−
∫ x

0

∫ ς

0

cosλ(x− ς) {K11(ς, ξ)φ1(λ, ξ) +K12(ς, ξ)φ2(λ, ξ)} dξdς

+

∫ x

0

∫ ς

0

sinλ(x− ς) {K21(ς, ξ)φ1(λ, ξ) +K22(ς, ξ)φ2(λ, ξ)} dξdς.

Theorem 2.1 ([25], the case: α = 1) For |λ| → ∞, the following asymptotic formulae are valid:

φ1(x, λ) = cos (λx− σ(x)− θ) +
1

2λ
η(x) cos (λx− σ(x)− θ)

− 1

2λ
η(0) cos (λx− σ(x) + θ) +

1

2λ
sin (λx− σ(x)− θ)

∫ x

0

η2(ς)dς (2.5)

− 1

2λ
K+ (x) cos (λx− σ(x)− θ)− 1

2λ
K− (x) sin (λx− σ(x)− θ)

+o

(
1

λ
exp(|τ |x)

)
,

φ2(x, λ) = sin (λx− σ(x)− θ)− 1

2λ
η(x) sin (λx− σ(x)− θ)

− 1

2λ
η(0) sin (λx− σ(x) + θ)− 1

2λ
cos (λx− σ(x)− θ)

∫ x

0

η2(ς)dς (2.6)

− 1

2λ
K+ (x) sin (λx− σ(x)− θ) +

1

2λ
K− (x) cos (λx− σ(x)− θ)

+o

(
1

λ
exp(|τ |x)

)
,

uniformly in x ∈ [0, π], where σ(x) =
1

2

∫ x

0
(p(ς) + r(ς))dς, η(x) =

1

2
(p(x)− r(x)) ,

K+(x) =
∫ x

0
(K11(ς, ς) +K22(ς, ς))dς, K−(x) =

∫ x

0
(K12(ς, ς)−K21(ς, ς))dς

and τ = Imλ.
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The zero-sequences {λn}n∈Z of the entire function

Λ(λ) := φ1(π, λ)−
π∫

0

φ1(x, λ)ω(x)dx = 0

are the spectra of the boundary value problem (2.1)–(2.3) and Λ satisfies

Λ(λ) = cos (λπ − σ(π)− θ) +
1

2λ
η(π) cos (λπ − σ(π)− θ)

− 1

2λ
η(0) cos (λπ − σ(π) + θ) +

1

2λ
sin (λπ − σ(π)− θ)

∫ π

0

η2(ς)dς

− 1

2λ
K+ (π) cos (λπ − σ(π)− θ)− 1

2λ
K− (π) sin (λπ − σ(π)− θ) (2.7)

− 1

λ
sin (λπ − σ(π)− θ)ω(π) + o

(
1

λ
exp(|τ |π)

)
,

for sufficiently large |λ| . Since the eigenvalues of the problem (2.1)–(2.3) are the roots of Λ(λn) = 0 , we can
write the following equation for them:

(
1 +

1

2λn
η(π)− 1

2λn
η(0) cos 2θ − 1

2λn
K+(π)

)
tan(λnπ − σ(π)− π

2
− θ) =

1

2λn
η(0) sin 2θ +

1

2λn

∫ π

0
η2(ς)dς − 1

2λn
K−(π)−

1

λn
ω(π) + o

(
1

λn

)

from this expression, for sufficiently large |n| ,

λn =

(
n+

1

2

)
+

θ + σ(π)

π
(2.8)

+
1

2nπ

(
η(0) sin 2θ +

∫ π

0

η2(ς)dς −K−(π)− 2ω(π)

)
+ o

(
1

n

)
, n ≥ 1,

and similarly

λn =

(
n− 1

2

)
+

θ + σ(π)

π
(2.9)

− 1

2nπ

(
η(0) sin 2θ +

∫ π

0

η2(ς)dς −K−(π)− 2ω(π)

)
+ o

(
1

n

)
, n ≤ −1 .

Lemma 2.2 For sufficiently large n , φ1(x, λn) has exactly n nodes
{
xk
n : k = 0, 1, · · · , n− 1

}
in the interval
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(0, π) : 0 < x0
n < x1

n < ... < xn−1
n < π . Moreover,

xk
n =

(k + 1/2)π

n
+

σ(xk
n) + θ

n

− (k + 1/2)π

n

(π + 2θ + 2σ (π))

2nπ
−
(
σ(xk

n) + θ
) (π + 2θ + 2σ (π))

2n2π

(k + 1/2)π

n

1

2n2π

(
η(0) sin 2θ +

∫ π

0

η2(ς)dς −K− (π)− 2ω (π)

)
(2.10)

+
(k + 1/2)π

n

(π + 2θ + 2σ (π))
2

4n2π2
+

1

2n2

(
η(0) sin 2θ +

∫ x

0

η2(ς)dς −K− (x)

)
σ(xk

n) + θ

2n3π

(
η(0) sin 2θ +

∫ π

0

η2(ς)dς −K− (π)− 2ω (π)

)
−

+
(
σ(xk

n) + θ
) (π + 2θ + 2σ (π))

2

4n3π2
+O

(
1

n4

)
.

uniformly with respect to k ∈ Z+.

Proof The first component φ1(x, λn) of the eigenfunction φ(x, λn) has the following asymptotic formula:

φ1(x, λn) = cos (λnx− σ(x)− θ) +
1

2λn
η(x) cos (λnx− σ(x)− θ)

− 1

2λn
η(0) cos (λnx− σ(x) + θ) +

1

2λn
sin (λnx− σ(x)− θ)

∫ x

0

η2(ς)dς (2.11)

− 1

2λn
K+ (x) cos (λx− σ(x)− θ)− 1

2λn
K− (x) sin (λnx− σ(x)− θ)

+o

(
1

λn
exp(|τ |x)

)
,

for n → ∞ uniformly in x. Then for the nodal points xk
n of φ1(x, λn), from φ1(x

k
n, λn) = 0, we obtain

(
1 +

1

2λn
η(xk

n)−
1

2λn
η(0) cos 2θ − 1

2λn
K+

(
xk
n

))
tan

(
λnx− σ(xk

n)− θ − π

2

)
=

1

2λn
η(0) sin 2θ +

1

2λn

∫ xk
n

0

η2(ς)dς − 1

2λn
K−

(
xk
n

)
+ o

(
1

λn

)
.

Taking into account Taylor’s expansions, we get

λnx
k
n − σ(xk

n)− θ − π

2
= kπ +

1

2λn

(
η(0) sin 2θ +

∫ xk
n

0

η2(ς)dς −K−
(
xk
n

))
+ o

(
1

λn

)
.

It follows from the last equality
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xk
n =

(
k + 1

2

)
π + σ(xk

n) + θ

λn
+

1

2λ2
n

(
η(0) sin 2θ +

∫ xk
n

0

η2(ς)dς −K−
(
xk
n

))
+ o

(
1

λ2
n

)
.

The relation (2.10) is proven by using the asymptotic formula

λ−1
n =

1

n

(
1− π + 2θ + 2σ(π)

2nπ
−
(
η(0) sin 2θ +

∫ π

0
η2(ς)dς −K−(π)− 2ω(π)

)
2n2π(

π + 2θ + 2σ(π)

2nπ

)2

+ o

(
1

n2

))

as n → ∞ uniformly in k ∈ Z+. 2

Theorem 2.3 Let X be the set of nodal points. Fix x ∈ (0, π) . Let a sequence
{
xk
n

}
⊂ X be chosen such

that xk
n converges to x as n → ∞. Then the following limits exist and finite and corresponding equalities hold:

lim
|n|→∞

n

(
xk
n − (k + 1/2)π

n

)
= σ(x) + θ − x

π + 2θ + 2σ (π)

2π

∆
= f(x), (2.12)

lim
|n|→∞

2n2π

(
xk
n − (k + 1/2)π

n
+

σ(xk
n) + θ

n

+
(k + 1/2)π

n

(π + 2θ + 2σ (π))

2nπ

)
= − (σ(x) + θ) (π + 2θ + 2σ (π)) (2.13)

−x

(
η(0) sin 2θ +

∫ π

0

η2(ς)dς −K− (π)− 2ω (π)

)
+ x

(π + 2θ + 2σ (π))
2

2π

+π

(
η(0) sin 2θ +

∫ x

0

η2(ς)dς −K− (x)

)
∆
= g(x),

and

lim
|n|→∞

2n3π

(
xk
n − (k + 1/2)π

n
+

σ(xk
n) + θ

n

+
(k + 1/2)π

n

(π + 2θ + 2σ (π))

2nπ
+
(
σ(xk

n) + θ
) (π + 2θ + 2σ (π))

2n2π

+
(k + 1/2)π

n

1

2n2π

(
η(0) sin 2θ +

∫ π

0

η2(ς)dς −K− (π)− 2ω (π)

)
(2.14)

− (k + 1/2)π

n

(π + 2θ + 2σ (π))
2

4n2π2
− 1

2n2

(
η(0) sin 2θ +

∫ x

0

η2(ς)dς −K− (x)

)
=
(
σ(xk

n) + θ
)(

η(0) sin 2θ +

∫ π

0

η2(ς)dς −K− (π)− 2ω (π)

)

+(σ(x) + θ)
(π + 2θ + 2σ (π))

2

2π

∆
= h(x).
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Therefore, proof of the following theorem is clear.

Theorem 2.4 Let σ(π) = 0. The given dense subset of nodal points X uniquely determines the coefficients θ

and ω(π) of the boundary conditions and if K−(x) is known, X also uniquely determines the potential Q(x)

a.e. on (0, π) . Moreover, Q(x), ω(π) and θ can be determined via the following algorithm:
(1) For each x ∈ (0, π) choose a sequence

{
xk
n

}
⊂ X such that lim

|n|→∞
xk
n = x;

(2) Find the function f(x) from (2.12) and calculate

θ = f(0)

2σ′(x) = p(x) + r(x) = 2f ′(x) +
π + 2f(0)

π

(3) Find the function g(x) from (2.13) and calculate

η(0) =
g(0)− θπ − 2θ2

π sin 2θ

ω(π) =
g(π)− 3θπ − 4θ2 − π2/2

2π

(4) If K
′

−(x) is known then from (2.12)-(2.14) calculate

p(x) = f ′(x) +
π + 2f(0)

2π
+ ρ(x)

r(x) = f ′(x) +
π + 2f(0)

2π
− ρ(x),

where

ρ2(x) =
1

π

(
g′(x) +

(
f ′(x) + f(0) +

π

2

)
(π + 2θ) +

h(0)

θ
+K ′

−(x)

)
.

Thus, we have shown that we can reconstruct the potential function and obtain the coefficients of the
boundary conditions using only dense subset of a nodal points. Our reconstruction formulae also directly imply
the uniqueness of this inverse problem.

3. Conclusion
In this work, we study inverse nodal problems for Dirac type integro-differential systems with one classical
boundary condition and another nonlocal integral boundary condition. We get useful asymptotics regarding the
solution, eigenvalues, and nodes. And we present a constructive procedure to solve the inverse nodal problems.
It makes sense for the theoretical integrity of the inverse nodal problem with nonlocal integral conditions.
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