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Abstract: In the paper, a theorem on approximation of a wide class of analytic functions by generalized shifts
ζuT (s + iφ(τ)) of an absolutely convergent Dirichlet series ζuT (s) which in the mean is close to the Riemann zeta-
function is obtained. Here φ(τ) is a monotonically increasing differentiable function having a monotonic continuous
derivative such that φ(2τ) max

τ⩽t⩽2τ

1
φ′(t) ≪ τ as τ → ∞ , and uT → ∞ and uT ≪ T 2 as T → ∞ .
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1. Introduction
The Riemann zeta-function ζ(s) , s = σ + it , is defined for σ > 1 by

ζ(s) =

∞∑
m=1

1

ms
=
∏
p

(
1− 1

ps

)−1

,

where p runs over the set of all prime numbers and has the meromorphic continuation to the whole complex
plane with unique simple pole at the point s = 1 and residue 1 .

It is well known that the function ζ(s) has a good approximation property in the space of analytic
functions, i.e. its shifts ζ(s + iτ) , τ ∈ R , approximate a wide class of analytic functions. The latter property
of ζ(s) was discovered by Voronin [13] and is called the universality. Let D = {s ∈ C : 1/2 < σ < 1} , K be
the class of compact subsets of the strip D with connected complements, and let H0(K) with K ∈ K be the
class of continuous nonvanishing functions on K that are analytic in the interior of K . Let measA denote the
Lebesgue measure of a measurable set A ⊂ R . Then the modern version of the Voronin universality theorem is
the following statement, see [1, 4, 5, 9, 12].

Theorem 1.1 Let K ∈ K and f(s) ∈ H0(K) . Then, for every ε > 0 ,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K
|ζ(s+ iτ)− f(s)| < ε

}
> 0.

Using more general shifts ζ(s+ iφ(τ)) with a certain function φ(τ) in place of ζ(s+ iτ) is also possible.
In [11], the function φ(τ) = τα logβ τ with some class of real numbers α and β was applied. The paper [8]
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deals with the class U(T0) of monotonically increasing differentiable functions φ(τ) on [T0,∞) , T0 > 0 , having
a monotonic continuous derivative such that

φ(2τ) max
τ⩽u⩽2τ

1

φ′(u)
≪ τ, τ → ∞.

More precisely, the following theorem is valid.

Theorem 1.2 Suppose that φ(τ) ∈ U(T0) . Let K ∈ K and f(s) ∈ H0(K) . Then, for every ε > 0 ,

lim inf
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ] : sup

s∈K
|ζ(s+ iφ(τ))− f(s)| < ε

}
> 0.

Moreover, the limit

lim
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ] : sup

s∈K
|ζ(s+ iφ(τ))− f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0 .

The aim of this paper is the approximation of functions of the class H0(K) by generalized shifts of a
certain absolutely convergent Dirichlet series generated by the function ζ(s) . Let θ > 0 be a fixed number. For
m ∈ N and u > 0 , define

vu(m) = exp

{
−
(m
u

)θ}
,

where exp{a} = ea . Then the series

ζu(s) =

∞∑
m=1

vu(m)

ms

is absolutely convergent for σ > σ0 with arbitrary finite σ0 . The first universality theorem for the function
ζu(s) has been obtained in [6]. In [7], the latter theorem was extended for short intervals. Finally, in [3], a joint
universality theorem for the function ζu(s) was proven in short intervals. We will consider the approximation
by shifts ζu(s+ iφ(τ)) .

Denote by B(X) the Borel σ -field of the space X , and define the set

Ω =
∏
p

γp,

where γp = {s ∈ C : |s| = 1} for all primes p . With the product topology and pointwise multiplication, the
torus Ω is a compact topological Abelian group. Therefore, on (Ω,B(Ω)) , the probability Haar measure mH

exists, and we have the probability space (Ω,B(Ω),mH) . Denote by ω(p) the pth component of an element
ω ∈ Ω , and on the probability space (Ω,B(Ω),mH) , define the H(D) -valued random element

ζ(s, ω) =
∏
p

(
1− ω(p)

ps

)−1

.
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Recall that the latter product, for almost all ω ∈ Ω , is uniformly convergent on compact subsets of the strip D ,
see, for example, [5]. Here H(D) is the space of analytic functions on D endowed with the topology of uniform
convergence on compacta.

The main result of the paper is the following statement.

Theorem 1.3 Suppose that φ(τ) ∈ U(T0) , and uT → ∞ and uT ≪ T 2 as T → ∞ . Let K ∈ K and
f(s) ∈ H0(K) . Then the limit

lim
T→∞

1

T − T0
meas

{
τ ∈ [T0, T ] : sup

s∈K
|ζuT

(s+ iφ(τ))− f(s)| < ε

}
= mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω)− f(s)| < ε

}
> 0

exists for all but at most countably many ε > 0 .

For example, the function log Γ(τ) , where Γ(τ) is the Euler gamma-function, satisfies the hypotheses of
the class U(T0) .

Theorem 1.3 implies that there exists T̂ = T̂ (f, ε,K, φ) > 0 such that, for T > T̂ , there are infinitely
many shifts ζuT

(s+ iφ(τ)) approximating a given function f(s) ∈ H0(K) .

Since the function ζuT
(s) is given by a rapidly absolutely convergent series, Theorem 1.3, in some sense,

is more convenient than Theorem 1.2.
A proof of Theorem 1.3 is based on results of probabilistic type in the space H(D) .

2. Estimates in the mean

In this section, we will consider the distance between shifts ζ(s+ iφ(τ)) and ζuT
(s+ iφ(τ)) in the mean. We

start with a mean square estimates for ζ(s+ iφ(τ)) .

Lemma 2.1 Suppose that φ(τ) ∈ U(T0) , and 1/2 < σ < 1 is fixed. Then, for all t ∈ R and T > T0 + 1 ,

∫ T

T0

|ζ(σ + it+ iφ(τ))|2 dτ ≪σ,φ T (1 + |t|).

Proof It is well known that, for fixed 1/2 < σ < 1 ,

∫ T

−T

|ζ(σ + it)|2 dt ≪σ T. (2.1)
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Let X > T0 . Then the properties of the class U(T0) imply∫ 2X

X

|ζ(σ + it+ iφ(τ))|2 dτ =

∫ 2X

X

1

φ′(τ)
|ζ(σ + it+ iφ(τ))|2 dφ(τ)

=

∫ 2X

X

1

φ′(τ)
d

(∫ t+φ(τ)

T0

|ζ(σ + iv)|2 dv

)

≪ max
X⩽τ⩽2X

1

φ′(τ)

∫ 2X

X

d

(∫ t+φ(τ)

T0

|ζ(σ + iv)|2 dv

)

≪ max
X⩽τ⩽2X

1

φ′(τ)

∫ |t|+φ(2X)

−|t|−φ(2X)

|ζ(σ + iv)|2 dv

≪σ φ(2X) max
X⩽τ⩽2X

1

φ′(τ)
+ |t| ≪σ,φ X(|t|+ 1)

in view of (2.1). Now, taking X = T2−l and summing over l ∈ N , we obtain the estimate of the lemma. 2

Recall the distance in the space H(D) . There exists a sequence {Kl : l ∈ N} ⊂ D of compact embedded
subsets such that

D =

∞⋃
l=1

Kl,

and every compact set K ⊂ D lies in some Kl . For example, we can take closed embedded rectangles. Then

ρ(g1, g2) =

∞∑
l=1

2−l sups∈Kl
|g1(s)− g2(s)|

1 + sups∈Kl
|g1(s)− g2(s)|

, g1, g2 ∈ H(D),

is a metric in H(D) inducing the topology of uniform convergence on compacta.
In the sequel, the integral representation for the function ζu(s) will be useful. Define

lu(s) =
s

θ
Γ
(s
θ

)
us,

where θ is from the definition of vu(m) .

Lemma 2.2 Suppose that θ̂ > 1/2 . Then, for s ∈ D , the representation

ζu(s) =
1

2πi

∫ θ̂+i∞

θ̂−i∞
ζ(s+ z)

lu(z)

z
dz

holds.

Proof The Mellin formula
1

2πi

∫ a+i∞

a−i∞
Γ(s)b−s ds = e−b, a, b > 0,

implies the equality

vu(m) =
1

2πi

∫ θ̂+i∞

θ̂−i∞
m−z lu(z)

z
dz.
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Therefore,

ζu(s) =
1

2πi

∫ θ̂+i∞

θ̂−i∞

∞∑
m=1

1

ms+z

lu(z)

z
dz =

1

2πi

∫ θ̂+i∞

θ̂−i∞
ζ(s+ z)

lu(z)

z
dz,

since Re(s+ z) > 1 for s ∈ D and Rez = θ̂ . 2

Now we are ready to prove an important lemma on the distance between ζ(s+ iφ(τ)) and ζuT
(s+ iφ(τ)) .

Lemma 2.3 Suppose that φ(τ) ∈ U(T0) , and uT → ∞ and uT ≪ T 2 as T → ∞ . Then

lim
T→∞

1

T − T0

∫ T

T0

ρ (ζ(s+ iφ(τ)), ζuT
(s+ iφ(τ))) dτ = 0.

Proof It suffices to show that, for arbitrary compact set K ⊂ D ,

lim
T→∞

1

T − T0

∫ T

T0

sup
s∈K

|ζ(s+ iφ(τ))− ζuT
(s+ iφ(τ))| dτ = 0. (2.2)

By the integral representation of Lemma 2.2, for s ∈ D ,

ζuT
(s) =

1

2πi

∫ θ̂+i∞

θ̂−i∞
ζ(s+ z)

luT
(z)

z
dz. (2.3)

Let K ⊂ D be arbitrary compact set. Fix ε > 0 such that, for s = σ+ it ∈ K , the inequalities 1/2+2ε ⩽ σ ⩽
1− ε would be satisfied. The integration function in (2.3) has simple poles at z = 0 and z = 1− s . Therefore,
taking

θ1 =
1

2
+ ε− σ < 0 and θ̂ = 1/2 + ε,

by the residue theorem, we find

ζuT
(s)− ζ(s) =

1

2πi

∫ θ1+i∞

θ1−i∞
ζ(s+ z)

luT
(z)

z
dz +

luT
(1− s)

1− s
.

Hence, for all s ∈ K ,

ζuT
(s+ iφ(τ))−ζ(s+ iφ(τ))

=
1

2πi

∫ ∞

−∞
ζ

(
1

2
+ ε+ it+ iv + iφ(τ)

)
luT

(1/2 + ε− σ + iv)

1/2 + ε− σ + iv
dv +

luT
(1− s− φ(τ))

1− s− φ(τ)

=
1

2πi

∫ ∞

−∞
ζ

(
1

2
+ ε+ iv + iφ(τ)

)
luT

(1/2 + ε− s+ iv)

1/2 + ε− s+ iv
dv +

luT
(1− s− φ(τ))

1− s− φ(τ)

≪
∫ ∞

−∞

∣∣∣∣ζ (1

2
+ ε+ iv + iφ(τ)

)∣∣∣∣ sup
s∈K

∣∣∣∣ luT
(1/2 + ε− s+ iv)

1/2 + ε− s+ iv

∣∣∣∣ dv + sup
s∈K

∣∣∣∣ luT
(1− s− φ(τ))

1− s− φ(τ)

∣∣∣∣ .
Therefore,

1

T − T0

∫ T

T0

sup
s∈K

|ζ(s+ iφ(τ))− ζuT
(s+ iφ(τ))| dτ ≪ I1 + I2, (2.4)
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where

I1 =

∫ ∞

−∞

(
1

T − T0

∫ T

T0

∣∣∣∣ζ (1

2
+ ε+ iv + iφ(τ)

)∣∣∣∣ dτ
)

sup
s∈K

∣∣∣∣ luT
(1/2 + ε− s+ iv)

1/2 + ε− s+ iv

∣∣∣∣ dv,
and

I2 =
1

T − T0

∫ T

T0

sup
s∈K

∣∣∣∣ luT
(1− s− φ(τ))

1− s− φ(τ)

∣∣∣∣ dτ.
It is well known that uniformly in σ , σ1 ⩽ σ ⩽ σ2 with arbitrary σ1 < σ2 , the gamma-function satisfies

the bound
Γ(σ + it) ≪ exp{−c|t|}. (2.5)

Thus, for all s ∈ K ,

luT
(1/2 + ε− s+ iv)

1/2 + ε− s+ iv
≪θ u

1/2+ε−σ
T

∣∣∣∣Γ(1

θ

(
1

2
+ ε− σ − it+ iv

))∣∣∣∣
≪θ u−ε

T exp
{ c
θ
|v − t|

}
≪θ,K u−ε

T exp{−c1|v|}, c1 > 0.

Moreover, in virtue of Lemma 2.1,

1

T − T0

∫ T

T0

∣∣∣∣ζ (1

2
+ ε+ iv + iφ(τ)

)∣∣∣∣ dτ ⩽
(

1

T − T0

∫ T

T0

∣∣∣∣ζ (1

2
+ ε+ iv + iφ(τ)

)∣∣∣∣2 dτ

)1/2

≪ε,φ (1 + |v|)1/2 ≪ε,φ 1 + |v|.

Therefore, the latter two estimates show that

I1 ≪ε,θ,K,φ u−ε
T

∫ ∞

−∞
(1 + |v|) exp{−c1|v|}dv ≪ε,θ,K,φ u−ε

T . (2.6)

Using (2.5), similarly as above, we find that, for all s ∈ K ,

luT
(1− s− φ(τ))

1− s− φ(τ)
≪θ u1−σ

T

∣∣∣∣Γ(1

θ
(1− σ − it− φ(τ))

)∣∣∣∣
≪θ u

1/2−2ε
T exp

{
− c

θ
|t+ φ(τ)|

}
≪θ,K u

1/2−2ε
T exp{−c2φ(τ)}, c2 > 0.

Hence,

I2 ≪θ,K u
1/2−2ε
T

1

T − T0

∫ T

T0

exp{−c2φ(τ)} dτ. (2.7)

The definition of the class U(T0) implies that φ(τ) ⩾ τ c3 with certain c3 > 0 . Thus, by (2.7), and the estimate
uT ≪ T 2

I2 ≪θ,K,φ u
1/2−2ε
T

1

T − T0

∫ T

T0

exp{−c2τ
c3}dτ ≪θ,K,φ u−ε

T .

This, (2.6), and (2.4) prove (2.2). The lemma is proven. 2
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3. Limit theorems
We will derive Theorem 1.3 from a probabilistic limit theorem in the space H(D) for the function ζuT

(s) which
follows from a similar theorem for the function ζ(s) .

For A ∈ B(H(D)) , define

PT (A) =
1

T − T0
meas{τ ∈ [T0, T ] : ζ(s+ iφ(τ)) ∈ A}.

Lemma 3.1 Suppose that φ(τ) ∈ U(T0) . Then PT converges weakly to the distribution of the random element
ζ(s, ω) , i.e. to the measure

Pζ(A)
def
= mH{ω ∈ Ω : ζ(s, ω) ∈ A}, A ∈ B(H(D)),

as T → ∞ . Moreover, the support of Pζ is the set S
def
= {g ∈ H(D) : g(s) ̸= 0 or g(s) ≡ 0} .

A proof of Lemma 3.1 is given in [8], Theorem 5.
For A ∈ B(H(D)) , define

QT (A) =
1

T − T0
meas{τ ∈ [T0, T ] : ζuT

(s+ iφ(τ)) ∈ A}.

Lemma 3.2 Suppose that φ(τ) ∈ U(T0) , and uT → ∞ and uT ≪ T 2 as T → ∞ . Then QT converges weakly
to Pζ as T → ∞ .

Proof On a certain probability space with the measure P ,define the random variable θT which is uniformly
distributed on the interval [T0, T ] . On the mentioned probability space, define the H(D) -valued random
elements

XT = ζ(s+ iφ(θT )) and YT = ζuT
(s+ iφ(θT )).

Then we have, for A ∈ B(H(D)) ,

PT (A) = P{XT ∈ A} and QT (A) = P{YT ∈ A}. (3.1)

We will apply the equivalent of weak convergence of probability measures in terms of closed sets. Namely, [2]
Pn converges weakly to P as n → ∞ in the space X if and only if, for every closed set F ⊂ X ,

lim sup
n→∞

Pn(F ) ⩽ P (F ).

Thus, let F ⊂ H(D) be an arbitrary closed set, and ε > 0 be fixed. Denote by ρ(g1, F ) = infg∈F ρ(g1, g) , and
define Fε = {g ∈ H(D) : ρ(g, F ) ⩽ ε} . Then the set Fε is closed as well. Moreover,

{YT ∈ F} ⊂ {XT ∈ Fε} ∪ {ρ(XT , YT ) ⩾ ε}.

Hence,
P{YT ∈ F} ⩽ P{XT ∈ Fε}+ P{ρ(XT , YT ) ⩾ ε}. (3.2)
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By the definitions of XT and YT , and Lemma 2.3,

lim
T→∞

P{ρ(XT , YT ) ⩾ ε} ⩽ lim
T→∞

1

ε(T − T0)

∫ T

T0

ρ (ζ(s+ iφ(τ)), ζuT
(s+ iφ(τ))) dτ = 0.

Therefore, in view of (3.2),
lim sup
T→∞

P{YT ∈ F} ⩽ lim sup
T→∞

P{XT ∈ Fε},

or, by (3.1),
lim sup
T→∞

QT (F ) ⩽ lim sup
T→∞

PT (Fε). (3.3)

Lemma 3.1 and the mentioned above equivalent of weak convergence in terms of closed sets imply the inequality

lim sup
T→∞

PT (Fε) ⩽ Pζ(Fε).

Thus, by (3.3),
lim sup
T→∞

QT (F ) ⩽ Pζ(Fε).

Now, taking ε → +0 , we obtain that
lim sup
T→∞

QT (F ) ⩽ Pζ(F ),

i.e. QT converges weakly to Pζ as T → ∞ . 2

4. Proof of Theorem 1.3
Theorem 1.3 follows from Lemma 3.2 and the Mergelyan theorem on approximation of analytic functions by
polynomials. For convenience, we recall it, see [10].

Lemma 4.1 Suppose that K ⊂ C is a compact set with connected complement, and g(s) is a continuous
function on K that is analytic in the interior of K . Then, for every ε > 0 , there exists a polynomial pε(s)

such that
sup
s∈K

|g(s)− pε(s)| < ε.

Proof [Proof of Theorem 1.3] Firstly, we prove the existence of the limit. For g ∈ H(D) , define

h(g) = sup
s∈K

|g(s)− f(s)|.

Then the function h : H(D) → R is continuous. Therefore, the property of preservation of weak convergence,
see, for example, Theorem 5.1 of [2], and Lemma 3.2 imply that

1

T − T0
meas

{
τ ∈ [T0, T ] : sup

s∈K
|ζuT

(s+ iφ(τ))− f(s)| ∈ A

}
, A ∈ B(R),

converges weakly to the measure

mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω)− f(s)| ∈ A

}
, A ∈ B(R),
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as T → ∞ . It is well known that the weak convergence of probability measures in (R,B(R)) is equivalent to
that of the corresponding distribution functions. Thus, the above remark shows that the distribution function

1

T − T0
meas

{
τ ∈ [T0, T ] : sup

s∈K
|ζuT

(s+ iφ(τ))− f(s)| < ε

}
(4.1)

converges weakly to the distribution function

mH

{
ω ∈ Ω : sup

s∈K
|ζ(s, ω)− f(s)| < ε

}
(4.2)

as T → ∞ . Since the weak convergence of distribution functions means the convergence at all continuity points
of the limit function, and each distribution function has at most countable set of discontinuity points, we obtain
that (4.1) converges to (4.2) as T → ∞ for all but at most countably many ε > 0 .

It remains to prove the positivity of (4.2). By Lemma 4.1, there exists a polynomial p(s) such that

sup
s∈K

∣∣∣f(s)− ep(s)
∣∣∣ < ε

2
. (4.3)

Since, in view of Lemma 3.1, the support of the measure Pζ is the set S , and ep(s) ∈ S , we have by a property
of the support

mH

{
ω ∈ Ω : sup

s∈K

∣∣∣ζ(s, ω)− ep(s)
∣∣∣ < ε

2

}
> 0. (4.4)

However, inequality (4.3) implies the inclusion

{
ω ∈ Ω : sup

s∈K

∣∣∣ζ(s, ω)− ep(s)
∣∣∣ < ε

2

}
⊂
{
ω ∈ Ω : sup

s∈K
|ζ(s, ω)− f(s))| < ε

}
.

This and (4.4) prove the positivity of (4.2). The theorem is proven. 2
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