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Abstract: The main purpose of this paper is to investigate various formulas, identities and relations involving Apostol
type numbers and parametric type polynomials. By using generating functions and their functional equations, we
give many relations among the certain family of combinatorial numbers, the Vieta polynomials, the two-parametric
types of the Apostol-Euler polynomials, the Apostol-Bernoulli polynomials, the Apostol-Genocchi polynomials, the
Fibonacci and Lucas numbers, the Chebyshev polynomials, and other special numbers and polynomials. Moreover, we
give some formulas related to trigonometric functions, special numbers and special polynomials. Finally, some remarks
and observations on the results of this paper are given.
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1. Introduction
Special functions involving generating functions, trigonometric functions, special numbers and polynomials have
been investigated by many researchers. There are many different applications of these functions in theory special
functions, applied mathematics, mathematical physics, and other areas. Furthermore, special polynomials and
special numbers with their generating functions can also be used to solve many different real-world problems
and mathematical problems.

The motivation of this paper is to give various kind novel computational formulas, relations and identities
with the aid of generating functions, their functional equations, and trigonometric functions. These formulas,
relations and identities include many special numbers and special polynomials, as well as some special combina-
torial sums. Some of these are the two-parametric types of the Apostol-Euler polynomials, the Apostol-Bernoulli
polynomials and the Apostol-Genocchi polynomials, the combinatorial numbers, the Apostol type numbers, the
Fibonacci numbers, the Lucas numbers, the Vieta-Fibonacci polynomials, the Vieta-Lucas polynomials and the
Chebyshev polynomials.

The notations and definitions involving special numbers and polynomials with their generating functions
are given as follows:

Let N = {1, 2, 3, · · · } , N0 = N ∪ {0} , R denotes the set of real numbers, C denotes the set of complex
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numbers and i2 = −1 . Furthermore,

0u =

{
1, (u = 0)
0, (u ∈ N)

and (
r

u

)
=

(r)u
u!

=
r (r − 1) (r − 2) · · · (r − u+ 1)

u!
(u ∈ N; r ∈ C) ,

with
(
r
0

)
= 1 and (r)0 = 1 (cf. [1–23]).

The Apostol-Bernoulli polynomials of order α are defined by

RB (w, x;α, γ) =

(
w

γew − 1

)α

exw =

∞∑
m=0

B(α)
m (x; γ)

wm

m!
, (1.1)

where |w| < 2π when γ = 1; |w| < |log (γ)| when γ ̸= 1; 1α := 1 (cf. [16, 18, 20–23]).
Substituting α = 0 into (1.1), we have

B(0)
m (x; γ) = xm.

When x = 0 in (1.1), we have the Apostol-Bernoulli numbers B(α)
m (γ) of order α :

B(α)
m (γ) = B(α)

m (0; γ).

Setting γ = 1 and x = 0 in (1.1), we have the Bernoulli polynomials and numbers of order α :

B(α)
m (x) = B(α)

m (x; 1) and B(α)
m = B(α)

m (0; 1)

(cf. [3, 11, 13, 18, 20–23]).
The Apostol-Euler polynomials of order α are defined by

(
2

γew + 1

)α

exw =

∞∑
m=0

E(α)
m (x; γ)

wm

m!
, (1.2)

where |w| < π when γ = 1; |t| < |log (−γ)| when γ ̸= 1; 1α := 1 (cf. [16, 18, 19, 22, 23]).
Substituting α = 0 into (1.2), we have

E(0)
m (x; γ) = xm.

When x = 0 in (1.2), we have the Apostol-Euler numbers of order α :

E(α)
m (γ) = E(α)

m (0; γ).

Substituting γ = 1 and x = 0 into (1.2), we have the Euler polynomials and numbers of order α :

E(α)
m (x) = E(α)

m (x; 1) and E(α)
m = E(α)

m (0; 1)

(cf. [3, 11, 13, 18–23]).
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The Apostol-Genocchi polynomials of order α are defined by

(
2w

γew + 1

)α

exw =

∞∑
m=0

G(α)
m (x; γ)

wm

m!
, (1.3)

where |w| < π when γ = 1; |w| < |log (−γ)| when γ ̸= 1; 1α := 1 (cf. [18, 22, 23]).
Substituting α = 0 into (1.3), we have

G(0)
m (x; γ) = xm.

Setting x = 0 in (1.3), we get the Apostol-Genocchi numbers of order α :

G(α)
m (γ) = G(α)

m (0; γ).

Substituting γ = 1 and x = 0 into (1.3), we have the Genocchi polynomials and numbers of order α :

G(α)
m (x) = G(α)

m (x; 1) and G(α)
m = G(α)

m (0; 1)

(cf. [18, 22, 23]).
The Chebyshev polynomials of the first kind Tm(x) are defined by

1− xw

1− 2xw + w2
=

∞∑
m=0

Tm(x)wm (1.4)

(cf. [2–4]).
The Chebyshev polynomials of the second kind Um(x) are defined by

1

1− 2xw + w2
=

∞∑
m=0

Um(x)wm (1.5)

(cf. [2–4]).
The Vieta-Lucas polynomials vm (x) are defined by

2− xw

1− xw + w2
=

∞∑
m=0

vm (x)wm (1.6)

with

vm (x) =

[m2 ]∑
j=0

(−1)
j m

m− j

(
m− j

j

)
xm−2j , (1.7)

where v0 (x) = 2 and [k] is the largest integer ≤ k (cf. [5, 12]).
The Vieta-Fibonacci polynomials Vm (x) are defined by

1

1− xw + w2
=

∞∑
m=1

Vm (x)wm−1 (1.8)
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with

Vm (x) =

[m−1
2 ]∑

j=0

(−1)
j

(
m− 1− j

j

)
xm−2j−1, (1.9)

where V0 (x) = 0 (cf. [5, 12]).
Relations among the Vieta-Fibonacci polynomials, the Vieta-Lucas polynomials and the Chebyshev

polynomials are given by

vm (x) = 2Tm

(x
2

)
and

Vm (x) = Um−1

(x
2

)
,

where m ∈ N (cf. [12, Eqs. (47.40) and (47.41)]; see also [5]).
The Fibonacci-type polynomials in two variables Gn (x, y; k,m, l) are defined by

1

1− xkw − ymwm+l
=

∞∑
n=0

Gn (x, y; k,m, l)wn, (1.10)

where k,m, l ∈ N0 (cf. [17]). An explicit formula for the polynomials Gn (x, y; k,m, l) is given by

Gn (x, y; k,m, l) =

[ n
m+l ]∑
s=0

(
n− s (m+ l − 1)

s

)
ymsxnk−msk−lsk,

(cf. [17, 18]).
Substituting y = 1 and k = m = l = 1 into (1.10), we have

Fn (x) = Gn−1 (x, 1; 1, 1, 1) ,

where Fn (x) denotes the Fibonacci polynomials (cf. [1, 3, 12, 17, 18]).
By using the following functional equation, a relation between the vn (x) and the polynomials Gn (x, y; k,m, l)

is easily given:

(2− xw)

∞∑
n=0

Gn (x,−1; 1, 1, 1)wn =

∞∑
n=0

vn (x)w
n.

Therefore
∞∑

n=0

2Gn (x,−1; 1, 1, 1)wn −
∞∑

n=1

xGn−1 (x,−1; 1, 1, 1)wn =

∞∑
n=0

vn (x)w
n.

Comparing the coefficients of wn on both sides of the above equation, for n ∈ N, we one has

vn (x) = 2Gn (x,−1; 1, 1, 1)− xGn−1 (x,−1; 1, 1, 1) ,

(cf. [17]).
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By performing similar operations of the previous formula, a relation between the polynomials Vn (x) and
the polynomials Gn (x, y; k,m, l) is also given as follows:

∞∑
n=0

Gn (x,−1; 1, 1, 1)wn =

∞∑
n=0

Vn+1 (x)w
n.

Comparing the coefficients of wn on both sides of the above equation, we get the following relation:

Vn+1 (x) = Gn (x,−1; 1, 1, 1) ,

where n ∈ N0 (cf. [17]).
Let k ∈ N0 and γ ∈ C . The numbers y1(m, k; γ) are defined by

Ry(w, k; γ) =
(γew + 1)

k

k!
=

∞∑
m=0

y1(m, k; γ)
wm

m!
(1.11)

(cf. [19]).
By using (1.2) and (1.11), we have

E(−k)
m (γ) = k!2−ky1(m, k; γ) (1.12)

(cf. [19, Eq. (28)]).
Let k ∈ N0 and γ ∈ C . The numbers y2(m, k; γ) are defined by

Ry2
(w, k; γ) =

(
γew + γ−1e−w + 2

)k
(2k)!

=

∞∑
m=0

y2(m, k; γ)
wm

m!
(1.13)

(cf. [19]).
The polynomials Cm(x, y) and Sm(x, y) are defined, respectively, as follows:

RC (w, x, y) = exw cos (yw) =

∞∑
m=0

Cm(x, y)
wm

m!
(1.14)

and

RS (w, x, y) = exw sin (yw) =

∞∑
m=0

Sm(x, y)
wm

m!
(1.15)

(cf. [6, 8–10, 14, 15, 23]).
Using (1.14) and (1.15), we have

Cm(x, y) =

[m2 ]∑
s=0

(−1)
s

(
m

2s

)
xm−2sy2s (1.16)

and

Sm(x, y) =

[m−1
2 ]∑

s=0

(−1)
s

(
m

2s+ 1

)
xm−2s−1y2s+1 (1.17)
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(cf. [6, 8–10, 14, 15, 23]).
Substituting x = y into (1.16) and (1.17), we have

Cm(x, x) = xm
√
2m cos

(mπ

4

)
(1.18)

and

Sm(x, x) = xm
√
2m sin

(mπ

4

)
(1.19)

(cf. [9, 23]).
The two-parametric types of the Apostol-Bernoulli polynomials of order α are defined by

RBC (w, x, y;α, γ) =

(
w

γew − 1

)α

exw cos (yw) =

∞∑
m=0

B(C,α)
m (x, y; γ)

wm

m!
(1.20)

and

RBS (w, x, y;α, γ) =

(
w

γew − 1

)α

exw sin (yw) =

∞∑
m=0

B(S,α)
m (x, y; γ)

wm

m!
(1.21)

(cf. [23]).
By using (1.20) and (1.21), we have

B(C,α)
m (x, y; γ) =

m∑
j=0

(
m

j

)
B(α)
m−j (γ)Cj (x, y) (1.22)

and

B(S,α)
m (x, y; γ) =

m∑
j=0

(
m

j

)
B(α)
m−j (γ)Sj (x, y) (1.23)

(cf. [23]).
The two-parametric types of the Apostol-Euler polynomials of order α are defined by

REC (w, x, y;α, γ) =

(
2

γew + 1

)α

exw cos (yw) =

∞∑
m=0

E(C,α)
m (x, y; γ)

wm

m!
(1.24)

and

RES (w, x, y;α, γ) =

(
2

γew + 1

)α

exw sin (yw) =

∞∑
m=0

E(S,α)
m (x, y; γ)

wm

m!
(1.25)

(cf. [23]).
Using (1.24) and (1.25), we have

E(C,α)
m (x, y; γ) =

m∑
j=0

(
m

j

)
E(α)
m−j (γ)Cj (x, y) (1.26)
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and

E(S,α)
m (x, y; γ) =

m∑
j=0

(
m

j

)
E(α)
m−j (γ)Sj (x, y) (1.27)

(cf. [23]).
The two-parametric types of the Apostol-Genocchi polynomials of order α are defined by

RGC (w, x, y;α, γ) =

(
2w

γew + 1

)α

exw cos (yw) =

∞∑
m=0

G(C,α)
m (x, y; γ)

wm

m!
(1.28)

and

RGS (w, x, y;α, γ) =

(
2w

γew + 1

)α

exw sin (yw) =

∞∑
m=0

G(S,α)
m (x, y; γ)

wm

m!
(1.29)

(cf. [23]).
By (1.28) and (1.29), we have

G(C,α)
m (x, y; γ) =

m∑
j=0

(
m

j

)
G(α)
m−j (γ)Cj (x, y) (1.30)

and

G(S,α)
m (x, y; γ) =

m∑
j=0

(
m

j

)
G(α)
m−j (γ)Sj (x, y) (1.31)

(cf. [23]).
The rest of this paper is summarized as follows:
In Section 2, many formulas and identities including the combinatorial numbers, the Apostol type numbers

and polynomials, the two-parametric types of the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials
and the Apostol-Genocchi polynomials, and the trigonometric functions are obtained.

In Section 3, some relations related to the Vieta-Fibonacci polynomials, the Vieta-Lucas polynomials,
combinatorial numbers, the two-parametric types of the Apostol-Bernoulli polynomials, the Apostol-Euler
polynomials and the Apostol-Genocchi polynomials, and special numbers are given.

In Section 4, some formulas involving the Fibonacci numbers, the Lucas numbers, the two-parametric
types of the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials, the Apostol-Genocchi polynomials,
and combinatorial numbers are presented.

2. Relations containing parametric type polynomials and special polynomials and numbers

In this section, using functional equation methods by the aid of the generating functions for the special
polynomials, we obtain some relations and formulas related to the numbers y1 (m, v; γ) , the numbers y2 (m, v; γ) ,
the polynomials Cm (x, y) , the polynomials Sm (x, y) , the higher order of the Apostol-Euler numbers, the
Apostol-Bernoulli numbers, the two-parametric types of the Apostol-Bernoulli polynomials, the Apostol-Euler
polynomials and the Apostol-Genocchi polynomials, the sine and cosine functions.
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Theorem 2.1 Let m, d ∈ N0 . Then we have

Cm (x, y) =
γd (2d)!

22d

m∑
j=0

(
m

j

) j∑
s=0

(
j

s

)
dm−jy2 (s, d; γ) E(C,2d)

j−s (x, y; γ) . (2.1)

Proof Using (1.13), (1.14) and (1.24), we obtain the following functional equation

22d

(2d)!
RC (w, x, y) = γdewdRy2(w, d; γ)REC (w, x, y; 2d, γ) .

By using the above equation, we get

∞∑
m=0

Cm (x, y)
wm

m!
= γd2−2d (2d)!

∞∑
m=0

dm
wm

m!

∞∑
m=0

y2 (m, d; γ)
wm

m!

∞∑
m=0

E(C,2d)
m (x, y; γ)

wm

m!
.

Thus

∞∑
m=0

Cm (x, y)
wm

m!
= γd2−2d (2d)!

∞∑
m=0

m∑
j=0

(
m

j

)
dm−j

j∑
s=0

(
j

s

)
y2 (s, d; γ) E(C,2d)

j−s (x, y; γ)
wm

m!
.

Comparing the coefficients of wm

m! on both sides of this last equation, we get Equation (2.1). 2

Theorem 2.2 Let m, d ∈ N0 . Then we have

cos
(mπ

4

)
=

γd (2d)!

22dxm
√
2m

m∑
j=0

(
m

j

) j∑
s=0

(
j

s

)
dm−jy2 (s, d; γ)

j−s∑
k=0

(
j − s

k

) [ k2 ]∑
r=0

(−1)r
(
k

2r

)
xkE(2d)

j−s−k (γ) .

Proof Substituting x = y into (2.1), and combining the final equation with (1.18), we get

cos
(mπ

4

)
=

γd (2d)!

22dxm
√
2m

m∑
j=0

(
m

j

) j∑
s=0

(
j

s

)
dm−jy2 (s, d; γ) E(C,2d)

j−s (x, x; γ) .

Combining the above equation with (1.16) and (1.26), we obtain

cos
(mπ

4

)
=

γd (2d)!

22dxm
√
2m

m∑
j=0

(
m

j

) j∑
s=0

(
j

s

)
dm−jy2 (s, d; γ)

j−s∑
k=0

(
j − s

k

) [ k2 ]∑
r=0

(−1)r
(
k

2r

)
xkE(2d)

j−s−k (γ) .

Thus proof of the theorem is completed. 2

Theorem 2.3 Let m, d ∈ N0 . Then we have

Sm (x, y) =
γd (2d)!

22d

m∑
k=0

k∑
j=0

(
m

k

)(
k

j

)
dm−ky2 (j, d; γ) E(S,2d)

k−j (x, y; γ) . (2.2)
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Proof By using (1.13), (1.15) and (1.25), we obtain the following functional equation

22d

(2d)!
RS (w, x, y) = γdewdRy2(w, d; γ)RES (w, x, y; 2d, γ) .

With the help of the above functional equation, the proof of (2.2) is completed by following exactly the same
lines as the proof of the assertion of (2.1), and so we omit it. 2

Theorem 2.4 Let m, d ∈ N0 . Then we have

sin
(mπ

4

)
=

γd (2d)!

22dxm
√
2m

m∑
k=0

k∑
j=0

(
m

k

)(
k

j

)
dm−ky2 (j, d; γ)

k−j∑
v=0

(
k − j

v

) [ v−1
2 ]∑

r=0

(−1)r
(

v

2r + 1

)
xvE(2d)

k−j−v (γ) .

Proof Substituting x = y into (2.2), and combining the final equation with (1.19), we get

sin
(mπ

4

)
=

γd (2d)!

22dxm
√
2m

m∑
k=0

k∑
j=0

(
m

k

)(
k

j

)
dm−ky2 (j, d; γ) E(S,2d)

k−j (x, x; γ) .

Combining the above equation with (1.17) and (1.27), we have

sin
(mπ

4

)
=

γd (2d)!

22dxm
√
2m

m∑
k=0

k∑
j=0

(
m

k

)(
k

j

)
dm−ky2 (j, d; γ)

k−j∑
v=0

(
k − j

v

) [ v−1
2 ]∑

r=0

(−1)r
(

v

2r + 1

)
xvE(2d)

k−j−v (γ) .

Thus proof of the theorem is completed. 2

Replacing m by 4m in Theorem 2.4, we arrive at the following theorem:

Theorem 2.5 Let m, d ∈ N0 . Then we have

4m∑
k=0

k∑
j=0

(
4m

k

)(
k

j

)
d4m−ky2 (j, d; γ)

k−j∑
v=0

(
k − j

v

) [ v−1
2 ]∑

r=0

(−1)r
(

v

2r + 1

)
xvE(2d)

k−j−v (γ) = 0.

By the aid of (1.11), (1.14) and (1.24), Kilar and Simsek [6] gave the following relation:

Cm (x, y) = 2−dd!

m∑
s=0

(
m

s

)
y1 (s, d; γ) E(C,d)

m−s (x, y; γ) . (2.3)

Combining (2.3) with (1.12), we derive the following result:

Corollary 2.6 Let m, d ∈ N0 . Then we have

Cm (x, y) =

m∑
s=0

(
m

s

)
E(−d)
s (γ) E(C,d)

m−s (x, y; γ) . (2.4)

Substituting x = y into (2.4), combining the final equation with (1.16) and (1.26), we arrive at the
following theorem:

2458



KILAR/Turk J Math

Theorem 2.7 Let m, d ∈ N0 . Then we have

[m2 ]∑
v=0

(−1)v
(
m

2r

)
=

m∑
s=0

(
m

s

)
E(−d)
s (γ)

m−s∑
r=0

(
m− s

r

) [ r2 ]∑
k=0

(−1)k
(

r

2k

)
xr−mE(d)

m−s−r (γ) .

Theorem 2.8 Let m, d ∈ N0 with m ≥ d . Then we have

(m)d Cm−d (x, y) = (−1)dd!

m∑
s=0

(
m

s

)
y1 (s, d;−γ)B(C,d)

m−s (x, y; γ) . (2.5)

Proof By using (1.11), (1.14) and (1.20), we obtain the following functional equation:

wdRC (w, x, y) = (−1)dd!Ry(w, d;−γ)RBC (w, x, y; d, γ) .

From the above equation, we get

∞∑
m=0

(m)d Cm−d (x, y)
wm

m!
= (−1)dd!

∞∑
m=0

y1 (m, d;−γ)
wm

m!

∞∑
m=0

B(C,d)
m (x, y; γ)

wm

m!
.

Therefore
∞∑

m=0

(m)d Cm−d (x, y)
wm

m!
= (−1)dd!

∞∑
m=0

m∑
s=0

(
m

s

)
y1 (s, d;−γ)B(C,d)

m−s (x, y; γ)
wm

m!
.

Comparing the coefficients of wm

m! on both sides of the previous equation, we get the desired result. 2

Theorem 2.9 Let m, d ∈ N0 . Then we have

Cm (x, y) =

m∑
s=0

(
m

s

)
B(−d)
s (γ)B(C,d)

m−s (x, y; γ) . (2.6)

Proof By (1.1), (1.14) and (1.20), we obtain

RC (w, x, y) = RB (w, 0;−d, γ)RBC (w, x, y; v, γ) .

From the above equation, we get

∞∑
m=0

Cm (x, y)
wm

m!
=

∞∑
m=0

B(−d)
m (γ)

wm

m!

∞∑
m=0

B(C,d)
m (x, y; γ)

wm

m!
.

Therefore
∞∑

m=0

Cm (x, y)
wm

m!
=

∞∑
m=0

m∑
s=0

(
m

s

)
B(−d)
s (γ)B(C,d)

m−s (x, y; γ)
wm

m!
.

Comparing the coefficients of wm

m! on both sides of the previous equation, we have the desired result. 2
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Theorem 2.10 Let m, d ∈ N0 . Then we have

Sm (x, y) =

m∑
j=0

(
m

j

)
B(−d)
j (γ)B(S,d)

m−j (x, y; γ) . (2.7)

Proof By using (1.1), (1.15) and (1.21), we get the following functional equation:

RS (w, x, y) = RB (w, 0;−d, γ)RBS (w, x, y; d, γ) .

With the help of the above functional equation, the proof of (2.7) is completed by following exactly the same
lines as the proof of the assertion of (2.6), and so we omit it. 2

Theorem 2.11 Let m, d ∈ N0 with m ≥ 2d . Then we have

Cm−2d (x, y) =
(2d)!γd

(m)2d 2
2d

m∑
k=0

(
m

k

) k∑
j=0

(
k

j

)
dm−ky2 (j, d; γ)G(C,2d)

k−j (x, y; γ) .

Proof By using (1.13), (1.14) and (1.28), we derive the following functional equation:

w2dRC (w, x, y) = 2−2d (2d)!γdewdRy2(w, d; γ)RGC (w, x, y; 2d, γ) .

From the above equation, we get

w2d
∞∑

m=0

Cm (x, y)
wm

m!
= 2−2d (2d)!γd

∞∑
m=0

dm
wm

m!

∞∑
m=0

y2 (m, d; γ)
wm

m!

∞∑
m=0

G(C,2d)
m (x, y; γ)

wm

m!
.

Hence,

∞∑
m=0

(m)2d Cm−2d (x, y)
wm

m!
= 2−2d (2d)!γd

∞∑
m=0

m∑
k=0

k∑
j=0

(
m

k

)(
k

j

)
dm−ky2 (j, d; γ)G(C,2d)

k−j (x, y; γ)
wm

m!
.

Comparing the coefficients of wm

m! on both sides of the above equation, we arrive at the desired result. 2

Theorem 2.12 Let m, d ∈ N0 with m ≥ 2d . Then we have

Sm−2d (x, y) =
(2d)!γd

22d (m)2d

m∑
k=0

k∑
j=0

(
m

k

)(
k

j

)
dm−ky2 (j, d; γ)G(S,2d)

k−j (x, y; γ) .

Proof By aid of (1.13), (1.15) and (1.29), we get

w2dRS (w, x, y) = 2−2d (2d)!γdewdRy2
(w, d; γ)RGS (w, x, y; 2d, γ) .

With the help of the above functional equation, the proof of the Theorem 2.12 is completed by following exactly
the same lines as the proof of the assertion of the Theorem 2.11, and so we omit it. 2
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3. Some identities involving Vieta polynomials and parametric type polynomials

In this section, with the help of the results obtained in the previous section, we give many novel formulas and
identities involving the Vieta-Fibonacci polynomials, the Vieta-Lucas polynomials, the numbers y2 (m, v; γ) , the
Apostol type numbers, and the two-parametric types of the Apostol-Bernoulli polynomials, the Apostol-Euler
polynomials, the Apostol-Genocchi polynomials.

Setting y =
√
1− x2 in (1.16) and (1.17), then combining the final equations with (1.7) and (1.9), we

have the following identities, respectively

vr (2x) = 2Cr

(
x,
√
1− x2

)
(3.1)

and

Vr (2x) =
Sr

(
x,

√
1− x2

)
√
1− x2

. (3.2)

Note that throughout in this section we assume that |x| < 1 .

Substituting y =
√
1− x2 into the following identity

Cr (mx,my) = mrCr (x, y)

(cf. [7]), and combining the final equation with (3.1), we obtain the following theorem:

Theorem 3.1 Let m, r ∈ N0 . Then we have

Cr

(
mx,m

√
1− x2

)
=

vr (2x)m
r

2
.

Combining (2.1) with (3.1), we get a formula including the numbers y2 (s, d; γ) , the polynomials vr (2x)

and the two-parametric types of the Apostol-Euler polynomials by the following theorem:

Theorem 3.2 Let r, d ∈ N0 . Then we have

vr (2x) = γd21−2d (2d)!

r∑
j=0

j∑
s=0

(
r

j

)(
j

s

)
dr−jy2 (s, d; γ) E(C,2d)

j−s

(
x,
√
1− x2; γ

)
.

Combining (2.2) with (3.2), we obtain the following theorem:

Theorem 3.3 Let r, d ∈ N0 . Then we have

Vr (2x) =
γd (2d)!

22d
√
1− x2

r∑
k=0

k∑
j=0

(
r

k

)(
k

j

)
dr−ky2 (j, d; γ) E(S,2d)

k−j

(
x,
√

1− x2; γ
)
.

Combining (2.6) with (3.1), we obtain a relation including the numbers B(−v)
s (γ) , the polynomials vr (2x)

and the two-parametric types of the Apostol-Bernoulli polynomials by the following theorem:
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Theorem 3.4 Let r, d ∈ N0 . Then we have

vr (2x) = 2

r∑
s=0

(
r

s

)
B(−d)
s (γ)B(C,d)

r−s

(
x,
√

1− x2; γ
)
.

Combining (2.7) with (3.2), we arrive at the following theorem:

Theorem 3.5 Let r, d ∈ N0 . Then we have

Vr (2x) =
1√

1− x2

r∑
j=0

(
r

j

)
B(−d)
j (γ)B(S,d)

r−j

(
x,
√
1− x2; γ

)
.

Combining Theorem 2.11 with Equation (3.1), we derive a relation among the numbers y2 (n, d; γ) ,
the polynomials vn (2x) and the two-parametric types of the Apostol-Genocchi polynomials by the following
theorem:

Theorem 3.6 Let r, d ∈ N0 with r ≥ 2d . Then we have

vr−2d (2x) =
(2d)!γd

22d−1 (r)2d

r∑
k=0

(
r

k

) k∑
j=0

(
k

j

)
dr−ky2 (j, d; γ)G(C,2d)

k−j

(
x,
√
1− x2; γ

)
.

Combining Theorem 2.12 with Equation (3.2), we arrive at the following theorem:

Theorem 3.7 Let r, d ∈ N0 with r ≥ 2d . Then we have

Vr−2d (2x) =
(2d)!γd

22d (r)2d
√
1− x2

r∑
k=0

(
r

k

) k∑
j=0

(
k

j

)
dr−ky2 (j, d; γ)G(S,2d)

k−j

(
x,
√
1− x2; γ

)
.

4. Formulas for Fibonacci and Lucas numbers and parametric type polynomials
In this section, we derive some identities and formulas involving the Fibonacci numbers, the Lucas numbers,
the numbers y2 (m, v; γ) , the Apostol Bernoulli numbers of the negative higher order, the two-parametric types
of the Apostol-Bernoulli polynomials, the Apostol-Euler polynomials, the Apostol-Genocchi polynomials.

By using the following well-known identities

Tr

(
i

2

)
=

ir

2
Lr

and

Ur

(
i

2

)
= irFr+1,

where F0 = 0 , F1 = 1 , Fr+2 = Fr+1 + Fr and L0 = 2 , L1 = 1 , Lr+2 = Lr+1 + Lr (cf. [9, 12]), we
have the following identities including the Fibonacci numbers Fr , the Lucas numbers Lr , the Vieta-Fibonacci
polynomials Vr (x) , and the Vieta-Lucas polynomials vr (x) :

vr (i) = irLr (4.1)
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and
Vr (i) = ir−1Fr (4.2)

(cf. [12, Eqs. (47.1) and (47.2)]; see also [5]).
Substituting x = i

2 into the Theorem 3.2, and using (4.1), we obtain the following result:

Corollary 4.1 Let r, d ∈ N0 . Then we have

Lr =
γd (2d)!

ir22d−1

r∑
j=0

j∑
s=0

(
r

j

)(
j

s

)
dr−jy2 (s, d; γ) E(C,2d)

j−s

(
i

2
,

√
5

2
; γ

)
.

Substituting x = i
2 into the Theorem 3.3, and using (4.2), we get the following result:

Corollary 4.2 Let r, d ∈ N0 . Then we have

Fr =
γd21−2d (2d)!

ir−1
√
5

r∑
k=0

k∑
j=0

(
r

k

)(
k

j

)
dr−ky2 (j, d; γ) E(S,2d)

k−j

(
i

2
,

√
5

2
; γ

)
.

Substituting x = i
2 into the Theorems 3.4 and 3.5, and using (4.1) and (4.2), we obtain the following

corollaries:

Corollary 4.3 Let r, d ∈ N0 . Then we have

Lr =
2

ir

r∑
s=0

(
r

s

)
B(−d)
s (γ)B(C,d)

r−s

(
i

2
,

√
5

2
; γ

)
.

Corollary 4.4 Let r, d ∈ N0 . Then we have

Fr =
2i1−r

√
5

r∑
j=0

(
r

j

)
B(−d)
j (γ)B(S,d)

r−j

(
i

2
,

√
5

2
; γ

)
.

Substituting x = i
2 into the Theorems 3.6 and 3.7, and using (4.1) and (4.2), we have the following

corollaries:

Corollary 4.5 Let r, d ∈ N0 with r ≥ 2d . Then we have

Lr−2d =
(−1)d (2d)!γd

ir22d−1 (r)2d

r∑
k=0

k∑
j=0

(
r

k

)(
k

j

)
dr−ky2 (j, d; γ)G(C,2d)

k−j

(
i

2
,

√
5

2
; γ

)
.

Corollary 4.6 Let r, d ∈ N0 with r ≥ 2d . Then we have

Fr−2d =
(−1)d21−2d (2d)!γd

ir−1
√
5 (r)2d

r∑
k=0

k∑
j=0

(
r

k

)(
k

j

)
dr−ky2 (j, d; γ)G(S,2d)

k−j

(
i

2
,

√
5

2
; γ

)
.
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