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Abstract: In this paper, the authors obtain the continuity of a class of linear operators on variable anisotropic Hardy—
Lorentz spaces. In addition, the authors also obtain that the dual space of variable anisotropic Hardy—Lorentz spaces is
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is p.
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1. Introduction
As is known to all, Hardy space on the Euclidean space R™ is a good substitutes of Lebesgue space LP(R™) when
p € (0,1], and plays an important role in haronmic analysis and PDEs; see, for examples, [5, 11, 14, 20-22, 25].
Moreover, when studying the boundedness of some operators in the critical case, the weak Hardy space wHP(R™)
naturally appears and it is a good substitute of HP(R"™). wHP(R"™) with p € (0, 1) was first introduced by
Fefferman and Soria [10] to find out the biggest space from which the Riesz transform is bounded to the weak
Lebesgue space wL!(R™). In 2007, Abu-Shammala and Torchinsky [1] introduced the Hardy—Lorentz spaces
HP"(R™) for the full range p € (0, 1] and r € (0, o], and obtained some real-variable characterizations of
this space. In 2016, Liu et al. [16] introduced the anisotropic Hardy—Lorentz space H% " (R™) associated with
a general expansive dilation A, including the classical isotropic Hardy—Lorentz space of Abu-Shammala and
Torchinsky.

As a generalization, variable exponent function spaces have their applications in fluid dynamics [2], image

processing [4], PDEs and variational calculus [9, 25]. Let p(-) : R™ — (0, o) be a variable exponent function.

Recently, Liu et al. [17] introduced the variable anisotropic Hardy—Lorentz space ’HZ(')’T(R”), via the radial
grand maximal function, and then established its some real-variable characterizations, respectively, in terms
of atom, the radial and the nontangential maximal functions. For more information about variable function
spaces, see [6-8, 13, 18, 19, 24, 27].

To complete the theory of the variable anisotropic Hardy—Lorentz space ’HZ(')’T(R"), in this article, we

obtain the boundedness of a class of Calder6n—Zygmund operators from ’HZ(‘)’T(R") to variable Lorentz space
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LPO):7(R™) and from ’HZ(')’T(]R”) to itself. In addition, we also obtain the dual space of H’;l(')’r(]R”) is the
anisotropic BMO-type space with variable exponents.
Precisely, this article is organized as follows.

In Section 2, we recall some notations and definitions concerning expansive dilations, the variable Lorentz

space LP():"(R™) and the variable anisotropic Hardy-Lorentz space ’Hi(')’ "(R™), via the radial grand maximal

function.
Section 3 is devoted to establishing the boundedness of anisotropic convolutional §-type Calderdén—

Zygmund operators from ’Hi(')’r(R”) to LP():"(R™) and from Hi(')’T(R”) to itself.

In Section 4, we prove that the dual space of ’H,’;\(‘)’ "(R™) is the anisotropic BMO-type space with variable
exponents (see Theorem 4.6). For this purpose, we first introduce a new kind of anisotropic BMO-type spaces
with variable exponents BMO{Z‘(')’Q’S (R™) in Definition 4.1, which includes the space BMO(R™) of John and
Nirenberg [12]. It is worth pointing out that this result is also new, when Hi(')7T(R") is reduced to HL"(R™).

Finally, we make some conventions on notation. Let N := {1,2,...} and Z; := {0} UN. For any

[e5]
a:=(ay,...,an) €LY = (Z4)", let |a| == a1+ -+ o, and 0 := (8%1) (%)0‘ In this article, we
denote by C a positive constant which is independent of the main parameters, but it may vary from line to line.

For any ¢ € [1, o0, we denote by ¢ its conjugate index. For any a € R, |a] denotes the mazimal integer not
larger than a. The symbol D < F means that D < CF. If D < F and F < D, we then write D ~ F. If a
set E C R™, we denote by g its characteristic function. If there are no special instructions, any space X (R"™)

is denoted simply by X.

2. Preliminaries
Firstly, we recall the definitions of anisotropic dilations on R™; see [3, p.5]. A real n x n matrix A is called
an anisotropic dilation, shortly a dilation, if minye,(a) [A| > 1, where o(A) denotes the set of all eigenvalues

of A. Let A_ and Ay be two positive numbers such that
1< Ao <min{|A]: A€o(A)} <max{|A\|: A€c(A)} < Ay.

By [3, Lemma 2.2], we know that, for a given dilation A, there exist a number r € (1, o) and a set

A:={z € R": |Pz| < 1}, where P is some nondegenerate n X n matrix, such that
A CrA C AA,

and we can assume that |A| = 1, where |A| denotes the n-dimensional Lebesgue measure of the set A. Let

By, := A*A for k € Z. Then By, is open,
By, C rBy C Bryy and |By| = b*,

here and hereafter, b := |det A|. An ellipsoid z+ By, for some = € R" and k € Z is called a dilated ball. Denote
B:={zx+Br: R kelZ}. (2.1)

Throughout the whole paper, let o be the smallest integer such that 2By C A? By and, for any subset E of
R™, let EC :=R" \ E. Then, for all k, j € Z with k < j, it holds true that

By, + Bj C Bj+g, (2.2)
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By + (Bito)® C (Bi)®, (2.3)

where E + F' denotes the algebraic sum {x+y: z € E, y € F} of sets E, FF C R".

Recall a quasi-norm, associated with dilation A, is a Borel measurable mapping p : R" — [0,00),

satisfying
(i) p(z) >0 for all z € R™\ {0,}, here and hereafter, 0, denotes the origin of R™;
(ii) p(Ax) =bp(x) for all x € R™, where, as above, b := | det A|;
(iii) p(z+y) < H[p(z) + p(y)] for all z, y € R™, where H € [1, 00) is a constant independent of z and y.

By [3, Lemma 2.4], we know that all homogeneous quasi-norms associated with a given dilation A
are equivalent. Therefore, for a fixed dilation A, in what follows, for convenience, we always use the step

homogeneous quasi-norm p defined by setting, for all z € R",

plx) = ZkaBkJrl\Bk (z) if  # 0,, orelse p(0,):=0.
kEZ

By (2.2), we know that, for all z, y € R™,

p(z +y) < b7 [p(x) + p(y)l;

Moreover, (R™, p, dx) is a space of homogeneous type in the sense of Coifman and Weiss [5], where dx denotes
the n-dimensional Lebesgue measure.

A measurable function p(-) : R™ — (0, o0) is called a variable exponent. For any variable exponent p(-),
let

p— = essinf p(x) and py := esssup p(x). (2.4)
TER™ rER™

Denote by P the set of all variable exponents p(-) satisfying 0 < p_ < py < 00.
Let f be a measurable function on R™ and p(-) € P. Define

I fllLec := inf{/\ € (0, 00) = gp(y (f/A) < 1},
where

op( (f) = /Rn |f ()P da.

Moreover, the variable Lebesque space LP() is defined to be the set of all measurable functions f satisfying that

0p(y(f) < 00, equipped with the quasi-norm || f|| 1»c) -

Remark 2.1 [17] Let p(-) € P.

(i) For any 7 € (0, 00) and f € LPO | [||f"l .oy = Il 7o) - Moreover, for any p € C and f,g € LPU),
P P P
[ f o, = 10 fll oy and [1f + gl o0y < WFILee) + 1910 5 where
p:=min{p_, 1} (2.5)

with p_ as in (2.4).
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(ii) For any function f € LPO) with |f||,,, > O, op()(f/IIfllLecy) = 1 and, for [[f[[;») < 1, then
Qp()(f) < Hf||LP(~) .

Definition 2.2 Let p(-) € P. The variable Lorentz space LP)" is defined to be the set of all measurable
functions f such that

> . AT
[/ N xwermis@isallpoen 5| 0 7€ (0, 00),
I fllLecy.r = 0
sup [ A Xgzernt f@)>a || oo ] 5 r=o0

A€(0, 00)
1s finite.

We say that p(-) € P satisfy the globally log-Hélder continuous condition, denoted by p(-) € C'°8  if
there exist two positive constants Clog(p) and C, and ps € R such that, for any z,y € R”,

Clog(p)
Ip(z) —p(y)| < log(e+1/p(z —y))

and

O

Ip(z) — poo]| < m-

A C®° function ¢ is said to belong to the Schwartz class S if, for every integer ¢ € Z, and multiindex

@, |¢llar := sup [p(x)]/|0%p(x)| < co. The dual space of S, namely, the space of all tempered distributions
T€ER™

on R™ equipped with the weak-# topology, is denoted by &’. For any N € Z , let
Sni={peS: [lplae<1, o <N, £<N}.
In what follows, for ¢ € S, k € Z and z € R, let pp(z) :=b""p (A7 z).

Definition 2.3 Let ¢ € S and f € S'. For any given N € N, the radial grand mazimal function My (f) of
f €8 is defined by setting, for any x € R™,

My (f)(z) = Sup i?Z'f * o ()]

Definition 2.4 [17] Let p(-) € C'°, r € (0, 00), A be a dilation and N € [[(1/p — 1)Inb/InA_]| + 2, c0),

where p is as in (2.5). The variable anisotropic Hardy—Lorentz space HZ(')’T is defined as
HA = { e S My(f) e 2O

and, for any f € ’Hi(‘)’r, let Hf||Hz<->,r = [[Mn ()l Loy v

Remark 2.5 Let p(-) € C'%, r € (0, ).
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(i) When p(:) := p, where p € (0, 00), the space 7-[2(')’7’ is reduced to the anisotropic Hardy—Lorentz space
HE" studied in [16].

(ii) When A :=21,x, and p(-) :=p, the space ”Hi(')’r is reduced to the Hardy—Lorentz space HP'" studied in

[].
Definition 2.6 [17] Let p(-) € P, ¢ € (1, oo] and
se[l(1/p- —Inb/InA_], c0) NZ4

with p_ as in (2.4). An anisotropic (p(-), q, s)-atom is a measurable function a on R" satisfying

(i) (support) suppa:={z € R*:a(z) # 0} C B, where B € B and B is as in (2.1);

|B|!/

(ii) (size) [lallze < Ro—

(iii) (vanishing moment) [o, a(z)z“dxz =0 for any « € Z} with |a| <.

Definition 2.7 [17] Let p(-) € C'°8, r € (0, 00), q € (1, 0], s € [[(1/p— — 1)Inb/InA_|, 00) N Z; with p_
as in (2.4) and A be a dilation. The anisotropic variable atomic Hardy—Lorentz space Hi{;’tg’;’r is defined to

be the set of all distributions f € S’ satisfying that there exists a sequence of (p(-), ¢, s)-atoms, {a¥}ien rez,

supported, respectively, on {x¥ + By }ien ez C B and a positive constant C such that Y ien Xakt Ado B, () <

C for any x € R" and k € Z, with some jo € Z\N, and

F=Y) Maf in &,

k€Z ieN

where \F ~ 2k||xw§+3w lz»¢» for any k € Z and i € N with the equivalent positive constants independent of k

and 7.

Moreover, for any f € 'Hp(')’q’s"r, define

A, atom

py 1/p||" r

k
)\i X‘I"?jLBz’?

kEZ i€N

Y EDD ‘

X:b,’erBlk
e Lr()
3. The continuity of Calder6n—Zygmund operators

In this section, we get the continuity of anisotropic convolutional d-type Calderon—Zygmund operators from

HZ(V)J to LPC)" or from /Hi()’r to itself.

Let ¢ € (0, ITH’\; ). We call a linear operator T is an anisotropic convolutional §-type Calderén—Zygmund

operator, if T is bounded on L? with kernel K € S’ coinciding with a locally integrable function on R™\ {6n},
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and satisfying that there exists a positive constant C such that, for any z, y € R™ with p(x) > b7 p(y),

) Kla [p(y))°
Kl —) - k()| < c 2L

For any f € L?, define T(f)(z) := p.v.K * f(z).

Theorem 3.1 Let p(-) € C'°%, r € (0, >0) and § € (0, hllnAb*). Assume that T is an anisotropic convolutional

1

6 -type Calderén—Zygmund operator. If p_ € (m,

1) with p_ asin (2.4), then there exists a positive constant

C such that, for any ’Hg(')’r,
@) 1T zeerr < Cllfllype s
A

(i) [T lp0.» < Cllfllyper. -

Remark 3.2 When p(-) := p, Theorem 3.1 coincides with [16, Theorem 6.16].

To prove Theorem 3.1, we need some technical lemmas.

Lemma 3.3 [17, Theorem 4.8] Let p(-) € C°8, r € (0, o), ¢ € (max{p;, 1}, oo] with p; as in (2.4) and
se[l(1/p- — DInd/InA_], 00) NZ, with p_ asin (2.4). Then

Hi(')ﬂ” — 'HP(‘)MLSM"

A, atom
with equivalent quasi-norms.

By the proof of [17, Theorem 4.8], we obtain the following conclusion, which plays an important role in

this section.

Lemma 3.4 Let p(-) € C'°%, r € (0, o), q € (1, 00) and s € [|[(1/p— —1)Ilnb/InA_], 00) NZy with p_ as in
(2.4). Then, for any f € Hi(')’T N L7, there exist {\s}ien ez C C, dilated balls {z¥ + Byr}ienkez C B and

(p(+), oo, s)-atoms {aF}ienkez such that

f= ZZ)\faf in L? and 'Hi(')’r,

keZ ieN

where the series also converges almost everywhere.
Proof Let f e ”Hi(')’T N L?. For any k € Z, by the proof of [17, Theorem 4.8], we know that there exist
k ._ n . k k
{2 }icn C Q= {z e R": Myf(x) > 2"}, {£ }z‘EN,keZ CZ,

a sequence of (p(-), 0o, s)-atoms, {af}kez’ieN, supported on {xf+Be@+4g}k€ZJ€N7 respectively, and {)\?}kez,ieN -

C, such that

F=Y 0 "Naf=> > b in &, (3.1)

k€Z ieN k€Z ieN
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and for any k € Z and i € N, suppb¥ C a2 + By, C %,
[ S 25 and £{ € N: (@5 + Boyag) 0 (@5 + B yag) # 0} < R, (3.2)

where R is as in [17, Lemma 4.7]. Moreover, by f € Hi(')’r N L%, we have, for almost every = € €y, there

exists a k(z) € Z such that 2¢®) < My f(x) < 2#@)+1 From this, suppbf C Q4 and (3.2), we deduce that,

for a.e. x € R™,

Yy @i~ Y @S Y Y, @ (3.3)

keZ ieN k€Z,ke(—o0,k(x)] iEN kE€Z,kE(—o0,k(x)] i€EN

~ > 2P Myf().

ke(—o0,k(x)]NZ

Therefore, there exists a subsequence of the series {3, ;> ez b¥} ken, denoted still by itself without loss of

generality, which converges to some measurable function F' almost everywhere in R™.
It follows from (3.3) that, for any K € N and a.e. z € R,

F(z) = Y (@) S IF(@)| + > > [bi@)|

|k|<K k€Z,ke(—o0,k(x)] i€EN

SIF(@)[+ My f(z) S My f(x).

From this, the fact that My(f) € L7, and the dominated convergence theorem, we conclude that F =
> pez 2ien bF in L9, By this and (3.3), we know f = F € L7 and hence

f= Zbe in LY and HZ\(')’T,
k€Z ieN

and also almost everywhere. O

In what follows, we also need the definition of anisotropic Hardy-Littlewood mazimal function M(f).

For any f € Ll and z € R,

loc

M(f)() = sup |—;| /B 1£(2)] d, (3.4)

reBeB
where B is as in (2.1).
Lemma 3.5 [17, Lemma 4.3] Let ¢ € (1, o). Assume that p(-) € C'® satisfies 1 < p_ < p; < oo, where

p— and py are as in (2.4). Then there exists a positive constant C' such that, for any sequence {fi}ren of

measurable functions,

1/q 1/q
{Z [M(fk)]q} <C (Z |fk|q> ,

keN Lp() keN Lp()

where M denotes the Hardy-Littlewood maximal operator as in (3.4).
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Lemma 3.6 [15, Lemma 4.5] Let p(-) € C'°8, r € (0, 00) and ¢ € (max{p,, 1}, 00). Then Hi(')’r N L7 is

dense in HZ)" .

The following Lemma show that variable anisotropic Hardy-Lorentz space Hi(')7 " is complete. Its proof
is similar to [26, Lemma 3.9], we only need to make some minor changes. To limit the length of this article, we

omit the concrete details.

Lemma 3.7 Let p(-) € C'%, r € (0, 00). Then HZV" is complete.

Proof [Proof of Theorem 3.1]
By the density, we only prove that (i) holds true for any f € ’HZ(')’T N L7 with ¢ € (1, co) N (p4, 00).

For any f € ’}—[Z(')7 "N L7, from Lemma 3.4, we know that there exist numbers {\*};en kez C C and a sequence

of (p(+), g, s)-atom, {a¥}ien ez, supported, respectively, on {x¥ + By }ienkez C B such that

f:ZZ)\faf in LY

k€Z ieN

where \F ~ 2’“HX1,§+BM oy forany k€ Z and i €N, Y7, Xab+Ai0 B, (x) 1 with some jo € Z\N for any

x € R™ and k € Z, and,

Z X$§+Bz’.€

i€EN ¢

r 1/r
1 . (3.5)

Lr()

kr
£l ~ [ZQ

kEZ

By the fact that T is bounded on L%, we have

T(f)=>_ > MT(af) in L.

keZ ieN

Set

ko—1 e’}

F= S SN S Y N Rt B 1)

k=—oc0 €N k=ko 1€N

Then
[X(zern: (5 @)>2001 | pocy S IXpwern: () @)> 2001 | ocy + HX{weEko:T(Fz><w>>2ko—1} ‘LM (3.6)
+ HX{xaEkO)G:T<f2>(m>>2k071} e
=L+ +1s,

where

By, = G U (xf —|—A”Bé§-).

k=ko 1€N

2473



WANG and WANG/Turk J Math

Therefore,
<
LS | Xfaern: 507t 50, T @)@,k s g0y (2)>2F0-2) (3.7)
o Lr()
_l’_ n L N o —
Xaern: ST Sien M@ @X 4 ar s, 0 (2)>25072)
i Lr()

=11 +1i2.

For the term I 1, from the fact that 7" is bounded on L7, Remark 2.1, (3.5) and a similar proof of [17, (4.7)],
we deduce that

T

Z X‘”f""Be’F

1/r
; ] ~ Il oo (3.8)
ieN

1/r
[Z 2kr (1171)7’] 5 [Z 2kr

kEZ kEZ

Lp()

For the term I; 5, from the Hélder inequality and the size condition of af(x), we conclude that, for any

T e (‘/I"f: + AUBZ’.")C7

ITak ()] < / Kz — y) — K(z — )| |k (@) dy

k
Ty "'Bzf +o

P(y_xk)g k k K
S /96?+ng+5 W ‘ai (y)’ dy < W Hai HLq

& 1/q
xi + Byx

146

k
Z; + B@is

<
~oplw —af)te

1 1

< [Mixan )] ‘

Xak+ B, Xzk+B
i i

Lr() Lr()

By this and a similar estimate of [17, p. 374], we obtain

T

Z X””f""Bz’?

1/r
i ] ~ ||f||7.[21“4(')1q,s,7~.
€N

, atom

1/r
[Z okr (11’2>T‘| 5 [Z okr

kEZ kEZ

Lr()
Therefore, it follows from (3.7) and (3.8) that
1/r
[Z 2+ (h)T] Sl oo (3.9)
A, atom
kEZ
For I and Is, by a proof similar to those of [17, (4.12) and (4.13)], we obtain
1/r 1/r
lz 2M (12)7'] 5 ||f||7'ifx(fl’tg;f’ - and lz 2M (13)T] 5 Hf”Hg(;;kg;:ﬂ‘- (3-10)
keZ k€EZ
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Combining the estimate of (3.6), (3.9) and (3.10), we obtain

- 11/r
I zoo - ~ | 32 (X were: 1 s1>29 [ o
LEEZ d
r 1/r 1 1/r 1/r
S+ Do)t + D2 (13)T]
LEEZ kEZ i keZ

S gz~ Mllyggorr

which implies that T(f) € LP):". This finishes the proof of Theorem 3.1(i).

Now we show Theorem 3.1(ii). By Lemma 3.6, we only need to prove that (ii) holds true for any
f e ’Hi(')’r N LY with ¢ € (1, 00) N (p4, o0). Let f € ’Hi(')’r N L?. From Lemma 3.4, we know that there
exist numbers {\}ien ez € € and a sequence of (p(-), g, s)-atom, {a¥};en rez, supported, respectively, on

{zF + By tienkez C B such that

F=>3 Maf inL

k€Z ieN

where \F ~ 2k\\xm§+32k oy forany k€ Z and i €N, Y7, Xak+Ai0 B, (z) S 1 with some jo € Z\N for any

r 1/r
] . (3.11)

Lr()

x €R™ and k € Z, and,

Z XI?"'BZ’P

iEN ‘

kr
I lz 2

kEZ

By the fact that T is bounded on L%, we have

T(f)=>_> MNT(af) in L.

kEZ i€N
Set
ko—l o0
F= 3 S M+ 3 NS Mab =R+ B Lo
k=—o0 i€N k=ko i€N
Then
HX{wER":MN(T(f))(;c)>2k0} Lr() (3.12)

S HX{xER”;MN(T(Fl))(z)>2ko—1} 150) + HX{ZL’EGkoiMN(T(Fz))(w)>2k0*1}‘

Lr()

+ HX{IG(GkO)BZ My (T(f2))(x)>2k0 =1 1|

=:Ji+J2+Js,

where My is as in Definition 2.3 and

G = U U (o + 4°B,).

k=ko 1€N
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Therefore,

<
TS | Xpern: siomt, e MMy (TN @p ao,, @520 | (3.13)
‘ i e
+ X{IER": Z:giloc >ien A§MN(T(G?))(1)X(mk+AUBlk )8 (z)>2k0—2}
‘ i r()
=: J1’1 =+ JLQ .

For the term Jp 1, from the fact that My and T are bounded on L7, Remark 2.1, (3.11) and a similar proof
of [17, (4.7)], we deduce that

s

Z Xa:f+Be,_€

1/r
; ] ~ N llgrer,a o (3.14)
ieN

, atom

1/r
[Z 2kr (Jl,l)r‘| 5 [Z 2kr

kEZ kEZ

Lr()

For the term J; o, from the Holder inequality, the size condition of af (), and a similar proof of [20,

p.117, Lemma], we conclude that, for any z € (z¥ + A"BL,;_C)G,

MN(Taf)(m) = sup sup ‘(goj * Taf)(x)’ = sup sup |(gpj * IC af)(m)‘
pESN JEL @wESN JEL

<swowp [ (oK@ =) = (g )@ — ) lak )] dy
27 +Byk

PESN JEL
& 5
— kYo T, + sz l/q'
</ M ak(y) dy<17Z ok .T]-C—FBk
~ < "
i +Bok ., plz — zf)t+o | ' | p(x — xk)1+o H ’ HL" g ;
k 146
Z; + Bé’f 1 - 146 1
~ p(x — k)1 ~ M(XI§+B£?)(33) ‘
3 k X .
Xzk 4B, oE B,
i [lLp() e

From this and a similar estimate of [17, p.374], we deduce that

T

1/r
1 ~ W e

1/r
[Z 2k:r (Jl,Z)T‘| g [Z 21{:7‘

kEZL kEZ

ieN

Lr()

Therefore, it follows from (3.13) and (3.14) that
1/r
lz 2k (Jl)T] S I ey e (3.15)
A, atom
keZ
For Jy and Js, by a proof similar to those of [17, (4.12) and (4.13)], we obtain
1/r 1/r
[Z 2 (‘W] S W iy e lZ 2 (J?’)T] S Wb (3.16)
kez kez
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It follows from the estimates of (3.12), (3.15) and (3.16) that

IT() 0.0

which implies that T(f) € H% )"

A

IMn (T oo »

1/r
o waem|MN<Tf)<$>|>2k}||;p<.)]

LkEZ

r 1/r 1/r 1/r
szr (Jl)r Z2kr (Jz)r Z2kr (Jg)r‘|
LkEZ kEZ kEZ

||f‘|7{§‘(;;vtg;j=r ~ Hf”q{g(-)vra

. Therefore, we complete the proof of Theorem 3.1.

. . . ()7
4. The dual space of variable anisotropic Hardy—Lorentz space H'} /"

In this section, we establish the dual space of ’HZ(')’T. More precisely, we prove that the dual space of 'Hi(')’r

- - - - o’
is the variable anisotropic BMO-type space BMOY ™ ¢*.

Now, we define two new variable anisotropic BMO-type space as follows. In this article, for any m € Z ,

we use P, to denote the set of polynomials on R™ with order not more than m. For any B € B and any

locally integrable function g on R™, we use PJ'(g) to denote the minimizing polynomial of g with degree not

greater than m, which means that PJ'(g) is the unique polynomial f € P,, such that, for any h € P,,,

Definition 4.1 Let A be a given dilation, p(-) € P,

/B h(x)(g(x) — f(x)) dz = 0.

variable anisotropic BMO-type space BMOP( D8 g defined to be the set of all f € L{
11 ARt
»(),q,s (= SUP in dx < 00
BMOL T g per slle

where B is as in (2.1).

Definition 4.2 Let A be a given dilation, p(-) € P,

—_ (), s S
variable anisotropic BMO-type space BMOZ ! is defined to be the set of all f € L}

171 5576

BMO ,

where B is as in (2.1).

Lemma 4.3 [3, (8.9)] Let ¢ € [1, oo], A be a given dilation, f € L

loc

|B|1 1/q 1/q
I [/ @)~ Py @) da| < oo

pes X80

loc

B € B. Then there exists a positive constant C', independent of f and B, such that

[y (@) dz

jlelg\Pé(f)(w)I <C B

s be a nonnegative integer and q € [1, 00).

such that

s be a nonnegative integer and q € [1, 00).

such that

Then the

Then the

and s be a nonnegative integer and
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Lemma 4.4 Let A be a given dilation, p(-) € P, s be a nonnegative integer and q € [1, co). Then

(),a,8

_ >
BMOZ( e BMO 4
with equivalent quasi-norms.

Proof By the above definition, it is easy to see that

——p(-),q,s

BMOY " 2 BMO,

Conversely, from Lemma 4.3 and the Holder inequality, we conclude that, for any B € %8, @ € Ps,
1 , Ve
5 L@ n@ia] s [ jew - fa)as
1Bl /5 1Bl /5

<[ [, 1w - s -

Therefore, by the Minkowski inequality, we obtain

|B‘ r 1 / 1/q
T |1 [ 1PE(N)(@) = f(a)|? da
IxsllL-e LBl /B b
Bl [ [ ps e
— I [ 1P - @) + @) - QI d
IxsllL-o) LIBl /5
18] / ]1/‘1
57 Q(x o)[tdz|
x5l Lee |B|
which implies that
Y.a.s (), a,
BMOP 0 c GOy, "
This completes the proof of Lemma 4.4. O

Lemma 4.5 Let A be a given dilation, p(-) € C°¢, r € (0, 1], s be a nonnegative integer and q € [1, o0).

p(),q, 8,7

Then, for any continuous linear functional L on H%')’T =HA atom

10 e ryo =5p { LA NS g mnr <1

=sup{|L(a)| : a is (p(*), ¢, s)—atom},

where (Hp )8, "")* denotes the dual space of HA atq o

A, atom om

Proof Let a bea (p(-), ¢, s)-atom. Then we have that |[a|[,¢).q,s,» <1. Therefore,
A, atom

sup{|£(a)] s @ is (p(), g, 5)—atom} < sup {|L()| < | Fllyn0000r <1}
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A, atom

Moreover, let f € 'Hp 45T and ||fHHp(.>,q,3,r < 1. Then, for any ¢ > 0, we know that there exist
A, atom

{\}ien ez C C and a sequence of (p(-), ¢, s)-atoms, {a¥},  vcz» supported, respectively, on {z¥ + By }ienkez C
B such that

f:ZZ)\f ¥ in & and a. e.

k€EZ ieN

and

§ Xﬂ:k+Bik

r 1/r
1 <l+e.
1€EN Lr()

=

kEZ

Therefore, from the boundedness of £, \¥ ~ 2’“||szy+B£k lz»» and r € (0, 1], we further conclude that

Eg)|§ZZ‘)\§|\£ |<ZZ|Ak’sup{\£ |:ais (p(-), g, s)—atom}

keZ ieN keZ ieN
1/r
5 [Z 2k7' ZXQ:QH»B% ‘| Sup{lﬁ(a’” tals (p()a q, S)_atom}
kez ieN ‘e

S(1+e)sup{|L(a)| : a is (p(-), ¢, s)—atom}.

Combined with the arbitrariness of € and hence finishes the proof of Lemma 4.5. O

For any ¢ € [1, oo] and s € Z, . Denote by L4 the set of all functions f € L? with compact support

comp

and
L, = {f € Ly : / f@)x®dx =0, |a] < 8}.
R’!L
The main result of this section is as follows.

Theorem 4.6 Let A be a given dilation, r € (0, 1], p(-) € C°8, p, € (0, 1], q € (max{py, 1}, 00) and
€[l(1/p- —DInd/InA_|, o0) NZ4 with p_ as in (2.4). Then

L, r . S, T\ % - ! S )
GEOT) = ey = BMOYO " = BAO,
N s ()
in the following sense: for any v € BMOQ( pds BM(’)Z . , the linear functional
Ly(g) = | (x)g(x)dz, (4.1)

Rn

initial defined for all g € L% , has a bounded extension to HEC) D 8T HZ(')’T.

comp ? A, atom

Conversely, if L is a bounded linear functional on Hi( bt — ’HZ‘(')’T, then L has the form as in (4.1)
p().q' ;s

with a unique Y € B./\/l@le(')’q”s or BMO 4 o Moreover,

”7/}”%17(‘)&’,5 ~ Hw”BMOf{')'q/’S ||£'¢||(7-LPU D 5Ty
A

atom

where the implicit positive constants are independent of 1.
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Remark 4.7 We should point that, when p(-) := p € (0, 1], this result is also new.

Proof [Proof of Theorem 4.6] By Lemmas 3.3 and 4.4, we only need to show

BMOY T = (Lo

om
Firstly, we prove that
BMOZ(')’q’ (HA mtq,s 7‘)*.

om

Let ¢ € BMO{Z\(')’q/’S and a be a (p(-), g, s)-atom with suppa C B € B. Then, by the vanishing moment

condition of a, Holder’s inequality and the size condition of a, we obtain

/w 2)a(x) do

1/q
< llaler juf | / 0(@) — Pl dx]

|B|1/q / 1/q'
< ‘1 d
el Aok, |, V@)~ P@IT do

< ||¢||BM0Z(‘)7(1/15'

(4.2)

Therefore, for {A\};enrez C C and a sequence {af}ienrez of (p(+), ¢, s)-atoms supported, respectively, on
{zi + By fienkez C B and
k DR
g=>_ > AadF e HyLET
k€EZ ieN

from (4.2), we deduce that

Lol = | [ vlalato)ds

<D N

/|1/J Ha |dx

k€Z ieN
< ZZ ’/\f‘ H’(/)HBMOZ(')’QI‘S
k€Z ieN
1/r
S” [Z 2kr ZX;C;CJ"BQ? ] HQ/J”BMOZ(')‘QI‘S
keZ €N Lr()

5 ||g||7{i(y'i’tg;jv r ”,ZZJHBMOZ(')’ q, s

This implies that BMOY ) * ¢ (HELE5T)"

A, atom

Next we show that (H%;l’tg’nf’?a)* C BMOZ(')’QI’S. For any B € B, let

SB : Ll(B) — Rg

be the natural projection satisfying, for any ¢ € L' and Q € P,
| sp@@Q@) iz = [ g@)@(@)d.
B B
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By a similar proof of [3, (8.9)], we obtain that, for any B € B and g € L*(B),

g9(2)| dz
sup (S5 (g) (x)| < L1942
TEB ‘B‘

Define
L{(B) :={g € LY(B) : Sp(g)(x) = 0 and g is not zero almost everywhere},
where LY(B) :={f € L?: suppf C B} with ¢ € (1, o] and B € B,
For any g € L{(B), set

EIRG

IxBll oo

ala) = 9l sy 9()x8 (@)

Then a is a (p(-), ¢, s)-atom. By this and Lemma 4.5, we obtain, for any L € (Hp(')’q’s’r)* and g € L{(B),

A, atom

‘ﬁ(g)| < ”XB“LP(‘)

= B|Ya ”g”Lq(B)”L:”(Hi(,'i'tg;f’r)*' (4.3)

Thus, by the Hahn-Banach theorem, it can be extended to a bounded linear functional on L?(B) with the same
norm.

If ¢ € (1, 9], by the duality of Lq(B) is LY (B), we see that there exists a ® € L7 (B) such that,
for any f € L{(B), = [5f x)dz. In what follows, for any B € B, let P,(B) denote all the P,

elements vanishing outside B. Now we prove that, if there exists another function & € L9 (B) such that, for
any f € L§(B) and L(f) = [ f( z)dz, then & — & € P,(B). For this, we only need to show that, if
®, & € L'(B) such that, for any f e LF(B), [5[( z)dr = [ f(x)®(x)dz, then & — " € Py(B). In
fact, for any f € L (B), we have

0= /B () — SN @)@ () — B(2)] da

- [ H@e) o@lds = [ f@)S5@' () - 9w) do
- [ £@1#/(@) = 9(a) = S5(@' ~ ) (@)
Therefore, for a.e. x € B € B, we have
o' () — ®(x) = Sp(P — ®)(2).

Hence @' — ® € Py(B). From this, we see that, for any ¢ € (1, o] and f € L{(B), there exists a unique
® € L9(B)/Py(B) such that L(f) = [, f(z)®(x) da.

For any j € N and g € Lg(Bj) with ¢ € (1, 00), let f; € LY (B;)/Ps(B;) be a unique function such
that L(g fB fij(@)g(z) dz. Then, for any 4, j € N with i < j, f; . From this and the fact that,

p(: ),q,s,r)*
A, atom

for any g € (H , there exists a number jo € N such that g € L{(B;,), we conclude that, for any
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g€ (’Hp(‘)’q’s’T)*, we have

A, atom

amzéwmwmm, (4.4)

where ¢(z) := f;(z) with = € B;.

Next we show that ¢ € BMO%)’Q”S. By [3, (8.12)], (4.3) and (4.4), we have that, for any ¢ € (1, o0),
B € B,

: x5l e
Plg]f,s [l — P||Lq’(B) = ||¢H(L3(B))* < WHEH(HM-),q,m)*-

A, atom

Therefore, we have that, for any ¢ € (1, 00),

B|Ye B4
= sup 5] inf ||¢) = P|e 5y = sup Ll

gl M w q *
Bes |IXB Lr) PEP: Bes |IxBll Lo | H(LO(B))

||1/}HBM@Z(-),<1’,S

IN

£l e,y

which implies ¢ € BM(’)Z(‘)"]/’ *. This finishes the proof of Theorem 4.6. O

From Theorem 4.6, we easily obtain the following two conclusions. Moreover, the proof of Corollary 4.8

is similar to [28, Lemma 2.21], we omit the details.

Corollary 4.8 Let A be a given dilation, p(-) € C°8 and s € [[(1/p— — DInb/InA_], c0)NZy with p_ as in

(2.4). Assume that f € BMOZ(J’LS and py € (0, 1]. Then there exist two positive constants ¢; and ca, such
that, for any B € B and X € (0, 00),

coM\|B
o€ B: () — PHD()| > A < er exp 2AIB] |
||f||BMol/;(')=LS XB”LP(')

Corollary 4.9 Let A be a given dilation, p(-) € C, p, € (0,1], ¢ € (1,0) and s € [|(1/p- —
Dind/InA_], 00) NZ4 with py, p— as in (2.4). Then

BMOZ(.)’ s _ BMO:Z('%%S
with equivalent quasi-norms.
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