Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: 2466 - 2484
© TÜBİTAK
doi:10.55730/1300-0098.3281

The dual spaces of variable anisotropic Hardy-Lorentz spaces and continuity of a class of linear operators

Wenhua WANG ${ }^{1}{ }^{(\bullet)}$, Aiting WANG ${ }^{2, *}$ ©
${ }^{1}$ School of Mathematics and Statistics, Wuhan University, Wuhan, Hubei, P. R. China
${ }^{2}$ School of Mathematics and Statistics, Qinghai Minzu University, Qinghai, P. R. China

| Received: 30.10 .2021 | Accepted/Published Online: $01.06 .2022 \quad$ Final Version: 04.07 .2022 |
| :--- | :--- | :--- |

Abstract

In this paper, the authors obtain the continuity of a class of linear operators on variable anisotropic HardyLorentz spaces. In addition, the authors also obtain that the dual space of variable anisotropic Hardy-Lorentz spaces is the anisotropic BMO-type spaces with variable exponents. This result is still new even when the exponent function $p(\cdot)$ is p.

Key words: Anisotropy, Hardy-Lorentz space, atom, Calderón-Zygmund operator, BMO space

1. Introduction

As is known to all, Hardy space on the Euclidean space \mathbb{R}^{n} is a good substitutes of Lebesgue space $L^{p}\left(\mathbb{R}^{n}\right)$ when $p \in(0,1]$, and plays an important role in haronmic analysis and PDEs; see, for examples, [5, 11, 14, 20-22, 25]. Moreover, when studying the boundedness of some operators in the critical case, the weak Hardy space $w \mathcal{H}^{p}\left(\mathbb{R}^{n}\right)$ naturally appears and it is a good substitute of $\mathcal{H}^{p}\left(\mathbb{R}^{n}\right)$. w $\mathcal{H}^{p}\left(\mathbb{R}^{n}\right)$ with $p \in(0,1)$ was first introduced by Fefferman and Soria [10] to find out the biggest space from which the Riesz transform is bounded to the weak Lebesgue space $w L^{1}\left(\mathbb{R}^{n}\right)$. In 2007, Abu-Shammala and Torchinsky [1] introduced the Hardy-Lorentz spaces $\mathcal{H}^{p, r}\left(\mathbb{R}^{n}\right)$ for the full range $p \in(0,1]$ and $r \in(0, \infty]$, and obtained some real-variable characterizations of this space. In 2016, Liu et al. [16] introduced the anisotropic Hardy-Lorentz space $\mathcal{H}_{A}^{p, r}\left(\mathbb{R}^{n}\right)$ associated with a general expansive dilation A, including the classical isotropic Hardy-Lorentz space of Abu-Shammala and Torchinsky.

As a generalization, variable exponent function spaces have their applications in fluid dynamics [2], image processing [4], PDEs and variational calculus [9, 25]. Let $p(\cdot): \mathbb{R}^{n} \rightarrow(0, \infty)$ be a variable exponent function.
Recently, Liu et al. [17] introduced the variable anisotropic Hardy-Lorentz space $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$, via the radial grand maximal function, and then established its some real-variable characterizations, respectively, in terms of atom, the radial and the nontangential maximal functions. For more information about variable function spaces, see $[6-8,13,18,19,24,27]$.

To complete the theory of the variable anisotropic Hardy-Lorentz space $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$, in this article, we obtain the boundedness of a class of Calderón-Zygmund operators from $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ to variable Lorentz space

[^0]
WANG and WANG/Turk J Math

$L^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ and from $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ to itself. In addition, we also obtain the dual space of $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ is the anisotropic BMO-type space with variable exponents.

Precisely, this article is organized as follows.
In Section 2, we recall some notations and definitions concerning expansive dilations, the variable Lorentz space $L^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ and the variable anisotropic Hardy-Lorentz space $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$, via the radial grand maximal function.

Section 3 is devoted to establishing the boundedness of anisotropic convolutional δ-type CalderónZygmund operators from $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ to $L^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ and from $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ to itself.

In Section 4, we prove that the dual space of $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ is the anisotropic BMO-type space with variable exponents (see Theorem 4.6). For this purpose, we first introduce a new kind of anisotropic BMO-type spaces with variable exponents $\mathcal{B M O}_{A}^{p(\cdot), q, s}\left(\mathbb{R}^{n}\right)$ in Definition 4.1, which includes the space $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$ of John and Nirenberg [12]. It is worth pointing out that this result is also new, when $\mathcal{H}_{A}^{p(\cdot), r}\left(\mathbb{R}^{n}\right)$ is reduced to $\mathcal{H}_{A}^{p, r}\left(\mathbb{R}^{n}\right)$.

Finally, we make some conventions on notation. Let $\mathbb{N}:=\{1,2, \ldots\}$ and $\mathbb{Z}_{+}:=\{0\} \cup \mathbb{N}$. For any $\alpha:=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}:=\left(\mathbb{Z}_{+}\right)^{n}$, let $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$ and $\partial^{\alpha}:=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}$. In this article, we denote by C a positive constant which is independent of the main parameters, but it may vary from line to line. For any $q \in[1, \infty]$, we denote by q^{\prime} its conjugate index. For any $a \in \mathbb{R},\lfloor a\rfloor$ denotes the maximal integer not larger than a. The symbol $D \lesssim F$ means that $D \leq C F$. If $D \lesssim F$ and $F \lesssim D$, we then write $D \sim F$. If a set $E \subset \mathbb{R}^{n}$, we denote by χ_{E} its characteristic function. If there are no special instructions, any space $\mathcal{X}\left(\mathbb{R}^{n}\right)$ is denoted simply by \mathcal{X}.

2. Preliminaries

Firstly, we recall the definitions of anisotropic dilations on \mathbb{R}^{n}; see [3, p.5]. A real $n \times n$ matrix A is called an anisotropic dilation, shortly a dilation, if $\min _{\lambda \in \sigma(A)}|\lambda|>1$, where $\sigma(A)$ denotes the set of all eigenvalues of A. Let λ_{-}and λ_{+}be two positive numbers such that

$$
1<\lambda_{-}<\min \{|\lambda|: \lambda \in \sigma(A)\} \leq \max \{|\lambda|: \lambda \in \sigma(A)\}<\lambda_{+} .
$$

By [3, Lemma 2.2], we know that, for a given dilation A, there exist a number $r \in(1, \infty)$ and a set $\Delta:=\left\{x \in \mathbb{R}^{n}:|P x|<1\right\}$, where P is some nondegenerate $n \times n$ matrix, such that

$$
\Delta \subset r \Delta \subset A \Delta
$$

and we can assume that $|\Delta|=1$, where $|\Delta|$ denotes the n-dimensional Lebesgue measure of the set Δ. Let $B_{k}:=A^{k} \Delta$ for $k \in \mathbb{Z}$. Then B_{k} is open,

$$
B_{k} \subset r B_{k} \subset B_{k+1} \text { and }\left|B_{k}\right|=b^{k}
$$

here and hereafter, $b:=|\operatorname{det} A|$. An ellipsoid $x+B_{k}$ for some $x \in \mathbb{R}^{n}$ and $k \in \mathbb{Z}$ is called a dilated ball. Denote

$$
\begin{equation*}
\mathfrak{B}:=\left\{x+B_{k}: x \in \mathbb{R}^{n}, k \in \mathbb{Z}\right\} . \tag{2.1}
\end{equation*}
$$

Throughout the whole paper, let σ be the smallest integer such that $2 B_{0} \subset A^{\sigma} B_{0}$ and, for any subset E of \mathbb{R}^{n}, let $E^{\complement}:=\mathbb{R}^{n} \backslash E$. Then, for all $k, j \in \mathbb{Z}$ with $k \leq j$, it holds true that

$$
\begin{equation*}
B_{k}+B_{j} \subset B_{j+\sigma} \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
B_{k}+\left(B_{k+\sigma}\right)^{\complement} \subset\left(B_{k}\right)^{\complement} \tag{2.3}
\end{equation*}
$$

where $E+F$ denotes the algebraic sum $\{x+y: x \in E, y \in F\}$ of sets $E, F \subset \mathbb{R}^{n}$.
Recall a quasi-norm, associated with dilation A, is a Borel measurable mapping $\rho: \mathbb{R}^{n} \rightarrow[0, \infty)$, satisfying
(i) $\rho(x)>0$ for all $x \in \mathbb{R}^{n} \backslash\left\{\overrightarrow{0}_{n}\right\}$, here and hereafter, $\overrightarrow{0}_{n}$ denotes the origin of \mathbb{R}^{n};
(ii) $\rho(A x)=b \rho(x)$ for all $x \in \mathbb{R}^{n}$, where, as above, $b:=|\operatorname{det} A|$;
(iii) $\rho(x+y) \leq H[\rho(x)+\rho(y)]$ for all $x, y \in \mathbb{R}^{n}$, where $H \in[1, \infty)$ is a constant independent of x and y.

By [3, Lemma 2.4], we know that all homogeneous quasi-norms associated with a given dilation A are equivalent. Therefore, for a fixed dilation A, in what follows, for convenience, we always use the step homogeneous quasi-norm ρ defined by setting, for all $x \in \mathbb{R}^{n}$,

$$
\rho(x):=\sum_{k \in \mathbb{Z}} b^{k} \chi_{B_{k+1} \backslash B_{k}}(x) \text { if } x \neq \overrightarrow{0}_{n}, \quad \text { or else } \quad \rho\left(\overrightarrow{0}_{n}\right):=0 .
$$

By (2.2), we know that, for all $x, y \in \mathbb{R}^{n}$,

$$
\rho(x+y) \leq b^{\sigma}[\rho(x)+\rho(y)]
$$

Moreover, $\left(\mathbb{R}^{n}, \rho, d x\right)$ is a space of homogeneous type in the sense of Coifman and Weiss [5], where dx denotes the n-dimensional Lebesgue measure.

A measurable function $p(\cdot): \mathbb{R}^{n} \rightarrow(0, \infty)$ is called a variable exponent. For any variable exponent $p(\cdot)$, let

$$
\begin{equation*}
p_{-}:=\underset{x \in \mathbb{R}^{n}}{\operatorname{essinf}} p(x) \quad \text { and } \quad p_{+}:=\underset{x \in \mathbb{R}^{n}}{\operatorname{ess} \sup } p(x) . \tag{2.4}
\end{equation*}
$$

Denote by \mathcal{P} the set of all variable exponents $p(\cdot)$ satisfying $0<p_{-} \leq p_{+}<\infty$.
Let f be a measurable function on \mathbb{R}^{n} and $p(\cdot) \in \mathcal{P}$. Define

$$
\|f\|_{L^{p(\cdot)}}:=\inf \left\{\lambda \in(0, \infty): \varrho_{p(\cdot)}(f / \lambda) \leq 1\right\}
$$

where

$$
\varrho_{p(\cdot)}(f):=\int_{\mathbb{R}^{n}}|f(x)|^{p(x)} d x
$$

Moreover, the variable Lebesgue space $L^{p(\cdot)}$ is defined to be the set of all measurable functions f satisfying that $\varrho_{p(\cdot)}(f)<\infty$, equipped with the quasi-norm $\|f\|_{L^{p(\cdot)}}$.

Remark 2.1 [17] Let $p(\cdot) \in \mathcal{P}$.
(i) For any $r \in(0, \infty)$ and $f \in L^{p(\cdot)},\left\||f|^{r}\right\|_{L^{p(\cdot)}}=\|f\|_{L^{r p(\cdot)}}^{r}$. Moreover, for any $\mu \in \mathbb{C}$ and $f, g \in L^{p(\cdot)}$, $\|\mu f\|_{L^{p(\cdot)},}=|\mu|\|f\|_{L^{p(\cdot)}}$ and $\|f+g\|_{L^{p(\cdot)}}^{p} \leq\|f\|_{L^{p(\cdot)}}^{p}+\|g\|_{L^{p(\cdot)}}^{\frac{p}{p}}$, where

$$
\begin{equation*}
\underline{p}:=\min \left\{p_{-}, 1\right\} \tag{2.5}
\end{equation*}
$$

with p_{-}as in (2.4).
(ii) For any function $f \in L^{p(\cdot)}$ with $\|f\|_{L^{p(\cdot)}}>0, \varrho_{p(\cdot)}\left(f /\|f\|_{L^{p(\cdot)}}\right)=1$ and, for $\|f\|_{L^{p(\cdot)}} \leq 1$, then $\varrho_{p(\cdot)}(f) \leq\|f\|_{L^{p(\cdot)}}$.

Definition 2.2 Let $p(\cdot) \in \mathcal{P}$. The variable Lorentz space $L^{p(\cdot), r}$ is defined to be the set of all measurable functions f such that

$$
\|f\|_{L^{p(\cdot), r}}:= \begin{cases}{\left[\int_{0}^{\infty} \lambda^{r}\left\|\chi_{\left\{x \in \mathbb{R}^{n}:|f(x)|>\lambda\right\}}\right\|_{L^{p(\cdot)}}^{r} \frac{d \lambda}{\lambda}\right]^{1 / r},} & r \in(0, \infty), \\ \sup _{\lambda \in(0, \infty)}\left[\lambda\left\|\chi_{\left\{x \in \mathbb{R}^{n}:|f(x)|>\lambda\right\}}\right\|_{L^{p(\cdot)}}\right], & r=\infty\end{cases}
$$

is finite.
We say that $p(\cdot) \in \mathcal{P}$ satisfy the globally log-Hölder continuous condition, denoted by $p(\cdot) \in C^{\log }$, if there exist two positive constants $C_{\log }(p)$ and C_{∞}, and $p_{\infty} \in \mathbb{R}$ such that, for any $x, y \in \mathbb{R}^{n}$,

$$
|p(x)-p(y)| \leq \frac{C_{\log }(p)}{\log (e+1 / \rho(x-y))}
$$

and

$$
\left|p(x)-p_{\infty}\right| \leq \frac{C_{\infty}}{\log (e+\rho(x))} .
$$

A C^{∞} function φ is said to belong to the Schwartz class \mathcal{S} if, for every integer $\ell \in \mathbb{Z}_{+}$and multiindex $\alpha,\|\varphi\|_{\alpha, \ell}:=\sup _{x \in \mathbb{R}^{n}}[\rho(x)]^{\ell}\left|\partial^{\alpha} \varphi(x)\right|<\infty$. The dual space of \mathcal{S}, namely, the space of all tempered distributions on \mathbb{R}^{n} equipped with the weak-* topology, is denoted by \mathcal{S}^{\prime}. For any $N \in \mathbb{Z}_{+}$, let

$$
\mathcal{S}_{N}:=\left\{\varphi \in \mathcal{S}:\|\varphi\|_{\alpha, \ell} \leq 1,|\alpha| \leq N, \quad \ell \leq N\right\} .
$$

In what follows, for $\varphi \in \mathcal{S}, k \in \mathbb{Z}$ and $x \in \mathbb{R}^{n}$, let $\varphi_{k}(x):=b^{-k} \varphi\left(A^{-k} x\right)$.
Definition 2.3 Let $\varphi \in \mathcal{S}$ and $f \in \mathcal{S}^{\prime}$. For any given $N \in \mathbb{N}$, the radial grand maximal function $M_{N}(f)$ of $f \in \mathcal{S}^{\prime}$ is defined by setting, for any $x \in \mathbb{R}^{n}$,

$$
M_{N}(f)(x):=\sup _{\varphi \in \mathcal{S}_{N}} \sup _{k \in \mathbb{Z}}\left|f * \varphi_{k}(x)\right| .
$$

Definition 2.4 [17] Let $p(\cdot) \in C^{\log }, r \in(0, \infty), A$ be a dilation and $N \in\left[\left\lfloor(1 / \underline{p}-1) \ln b / \ln \lambda_{-}\right\rfloor+2, \infty\right)$, where \underline{p} is as in (2.5). The variable anisotropic Hardy-Lorentz space $\mathcal{H}_{A}^{p(\cdot), r}$ is defined as

$$
\mathcal{H}_{A}^{p(\cdot), r}:=\left\{f \in \mathcal{S}^{\prime}: M_{N}(f) \in L^{p(\cdot), r}\right\}
$$

and, for any $f \in \mathcal{H}_{A}^{p(\cdot), r}$, let $\|f\|_{\mathcal{H}_{A}^{p(\cdot), r}}:=\left\|M_{N}(f)\right\|_{L^{p(\cdot)}, r}$.
Remark 2.5 Let $p(\cdot) \in C^{\log }, r \in(0, \infty)$.
(i) When $p(\cdot):=p$, where $p \in(0, \infty)$, the space $\mathcal{H}_{A}^{p(\cdot), r}$ is reduced to the anisotropic Hardy-Lorentz space $\mathcal{H}_{A}^{p, r}$ studied in [16].
(ii) When $A:=2 \mathrm{I}_{n \times n}$ and $p(\cdot):=p$, the space $\mathcal{H}_{A}^{p(\cdot), r}$ is reduced to the Hardy-Lorentz space $\mathcal{H}^{p, r}$ studied in [1].

Definition 2.6 [17] Let $p(\cdot) \in \mathcal{P}, q \in(1, \infty]$ and

$$
s \in\left[\left\lfloor\left(1 / p_{-}-1\right) \ln b / \ln \lambda_{-}\right\rfloor, \infty\right) \cap \mathbb{Z}_{+}
$$

with p_{-}as in (2.4). An anisotropic $(p(\cdot), q, s)$-atom is a measurable function a on \mathbb{R}^{n} satisfying
(i) (support) $\operatorname{supp} a:=\overline{\left\{x \in \mathbb{R}^{n}: a(x) \neq 0\right\}} \subset B$, where $B \in \mathfrak{B}$ and \mathfrak{B} is as in (2.1);
(ii) (size) $\|a\|_{L^{q}} \leq \frac{|B|^{1 / q}}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}$;
(iii) (vanishing moment) $\int_{\mathbb{R}^{n}} a(x) x^{\alpha} d x=0$ for any $\alpha \in \mathbb{Z}_{+}^{n}$ with $|\alpha| \leq s$.

Definition $2.7[17]$ Let $p(\cdot) \in C^{\log }, r \in(0, \infty), q \in(1, \infty], s \in\left[\left\lfloor\left(1 / p_{-}-1\right) \ln b / \ln \lambda_{-}\right\rfloor, \infty\right) \cap \mathbb{Z}_{+}$with p_{-} as in (2.4) and A be a dilation. The anisotropic variable atomic Hardy-Lorentz space $\mathcal{H}_{A \text {, atom }}^{p(\cdot), s, r}$ is defined to be the set of all distributions $f \in \mathcal{S}^{\prime}$ satisfying that there exists a sequence of $(p(\cdot), q, s)$-atoms, $\left\{a_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}}$, supported, respectively, on $\left\{x_{i}^{k}+B_{\ell_{i}^{k}}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathfrak{B}$ and a positive constant \widetilde{C} such that $\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+A^{j} 0_{0} \ell_{\ell_{i}^{k}}}(x) \leq$ \widetilde{C} for any $x \in \mathbb{R}^{n}$ and $k \in \mathbb{Z}$, with some $j_{0} \in \mathbb{Z} \backslash \mathbb{N}$, and

$$
f=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k} \text { in } \mathcal{S}^{\prime}
$$

where $\lambda_{i}^{k} \sim 2^{k}\left\|\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}$ for any $k \in \mathbb{Z}$ and $i \in \mathbb{N}$ with the equivalent positive constants independent of k and i.

Moreover, for any $f \in \mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}$, define

$$
\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), s, r}}:=\inf \left[\sum_{k \in \mathbb{Z}}\left\|\left\{\sum_{i \in \mathbb{N}}\left[\frac{\lambda_{i}^{k} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}}{\left\|\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}}\right]^{\underline{p}}\right\}^{1 / \underline{p}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r}
$$

3. The continuity of Calderón-Zygmund operators

In this section, we get the continuity of anisotropic convolutional δ-type Calderón-Zygmund operators from $\mathcal{H}_{A}^{p(\cdot), r}$ to $L^{p(\cdot), r}$ or from $\mathcal{H}_{A}^{p(\cdot), r}$ to itself.

Let $\delta \in\left(0, \frac{\ln \lambda_{+}}{\ln b}\right)$. We call a linear operator T is an anisotropic convolutional δ-type Calderón-Zygmund operator, if T is bounded on L^{2} with kernel $\mathcal{K} \in \mathcal{S}^{\prime}$ coinciding with a locally integrable function on $\mathbb{R}^{n} \backslash\left\{\overrightarrow{0}_{n}\right\}$,

WANG and WANG/Turk J Math

and satisfying that there exists a positive constant C such that, for any $x, y \in \mathbb{R}^{n}$ with $\rho(x)>b^{2 \sigma} \rho(y)$,

$$
|\mathcal{K}(x-y)-\mathcal{K}(x)| \leq C \frac{[\rho(y)]^{\delta}}{[\rho(x)]^{1+\delta}}
$$

For any $f \in L^{2}$, define $T(f)(x):=$ p.v. $\mathcal{K} * f(x)$.

Theorem 3.1 Let $p(\cdot) \in C^{\mathrm{log}}, r \in(0, \infty)$ and $\delta \in\left(0, \frac{\ln \lambda_{+}}{\ln b}\right)$. Assume that T is an anisotropic convolutional δ-type Calderón-Zygmund operator. If $p_{-} \in\left(\frac{1}{1+\delta}, 1\right)$ with p_{-}as in (2.4), then there exists a positive constant C such that, for any $\mathcal{H}_{A}^{p(\cdot), r}$,
(i) $\|T(f)\|_{L^{p(\cdot), r}} \leq C\|f\|_{\mathcal{H}_{A}^{p(\cdot), r}} ;$
(ii) $\|T(f)\|_{\mathcal{H}_{A}^{p(\cdot), r}} \leq C\|f\|_{\mathcal{H}_{A}^{p(\cdot), r}}$.

Remark 3.2 When $p(\cdot):=p$, Theorem 3.1 coincides with [16, Theorem 6.16].
To prove Theorem 3.1, we need some technical lemmas.

Lemma 3.3 [17, Theorem 4.8] Let $p(\cdot) \in C^{\log }, r \in(0, \infty), q \in\left(\max \left\{p_{+}, 1\right\}, \infty\right]$ with p_{+}as in (2.4) and $s \in\left[\left\lfloor\left(1 / p_{-}-1\right) \ln b / \ln \lambda_{-}\right\rfloor, \infty\right) \cap \mathbb{Z}_{+}$with p_{-}as in (2.4). Then

$$
\mathcal{H}_{A}^{p(\cdot), r}=\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}
$$

with equivalent quasi-norms.
By the proof of [17, Theorem 4.8], we obtain the following conclusion, which plays an important role in this section.

Lemma 3.4 Let $p(\cdot) \in C^{\log }, r \in(0, \infty), q \in(1, \infty)$ and $s \in\left[\left\lfloor\left(1 / p_{-}-1\right) \ln b / \ln \lambda_{-}\right\rfloor, \infty\right) \cap \mathbb{Z}_{+}$with p_{-}as in (2.4). Then, for any $f \in \mathcal{H}_{A}^{p(\cdot), r} \cap L^{q}$, there exist $\left\{\lambda_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{C}$, dilated balls $\left\{x_{i}^{k}+B_{\ell_{i}^{k}}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathfrak{B}$ and $(p(\cdot), \infty, s)$-atoms $\left\{a_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}}$ such that

$$
f=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k} \text { in } L^{q} \text { and } \mathcal{H}_{A}^{p(\cdot), r}
$$

where the series also converges almost everywhere.
Proof Let $f \in \mathcal{H}_{A}^{p(\cdot), r} \cap L^{q}$. For any $k \in \mathbb{Z}$, by the proof of [17, Theorem 4.8], we know that there exist

$$
\left\{x_{i}^{k}\right\}_{i \in \mathbb{N}} \subset \Omega_{k}:=\left\{x \in \mathbb{R}^{n}: M_{N} f(x)>2^{k}\right\}, \quad\left\{\ell_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{Z}
$$

a sequence of $(p(\cdot), \infty, s)$-atoms, $\left\{a_{i}^{k}\right\}_{k \in \mathbb{Z}, i \in \mathbb{N}}$, supported on $\left\{x_{i}^{k}+B_{\ell_{i}^{k}+4 \sigma}\right\}_{k \in \mathbb{Z}, i \in \mathbb{N}}$, respectively, and $\left\{\lambda_{i}^{k}\right\}_{k \in \mathbb{Z}, i \in \mathbb{N}} \subset$ \mathbb{C}, such that

$$
\begin{equation*}
f=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k}=: \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} b_{i}^{k} \text { in } \mathcal{S}^{\prime} \tag{3.1}
\end{equation*}
$$

and for any $k \in \mathbb{Z}$ and $i \in \mathbb{N}, \operatorname{supp} b_{i}^{k} \subset x_{i}^{k}+B_{\ell_{i}^{k}+4 \sigma} \subset \Omega_{k}$,

$$
\begin{equation*}
\left\|b_{i}^{k}\right\|_{L^{\infty}} \lesssim 2^{k} \text { and } \sharp\left\{j \in \mathbb{N}:\left(x_{i}^{k}+B_{\ell_{i}^{k}+4 \sigma}\right) \cap\left(x_{j}^{k}+B_{\ell_{j}^{k}+4 \sigma}\right) \neq \emptyset\right\} \leq R, \tag{3.2}
\end{equation*}
$$

where R is as in [17, Lemma 4.7]. Moreover, by $f \in \mathcal{H}_{A}^{p(\cdot), r} \cap L^{q}$, we have, for almost every $x \in \Omega_{k}$, there exists a $k(x) \in \mathbb{Z}$ such that $2^{k(x)}<M_{N} f(x) \leq 2^{k(x)+1}$. From this, $\operatorname{supp} b_{i}^{k} \subset \Omega_{k}$ and (3.2), we deduce that, for a.e. $x \in \mathbb{R}^{n}$,

$$
\begin{align*}
\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}}\left|b_{i}^{k}(x)\right| & \sim \sum_{k \in \mathbb{Z}, k \in(-\infty, k(x)]} \sum_{i \in \mathbb{N}}\left|b_{i}^{k}(x)\right| \lesssim \sum_{k \in \mathbb{Z}, k \in(-\infty, k(x)]} \sum_{i \in \mathbb{N}} 2^{k} \chi_{x_{i}^{k}+B_{e_{i}^{k}+4 \sigma}}(x) \tag{3.3}\\
& \sim \sum_{k \in(-\infty, k(x)] \cap \mathbb{Z}} 2^{k} \sim M_{N} f(x) .
\end{align*}
$$

Therefore, there exists a subsequence of the series $\left\{\sum_{|k|<K} \sum_{i \in \mathbb{Z}} b_{i}^{k}\right\}_{K \in \mathbb{N}}$, denoted still by itself without loss of generality, which converges to some measurable function F almost everywhere in \mathbb{R}^{n}.

It follows from (3.3) that, for any $K \in \mathbb{N}$ and a.e. $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\left|F(x)-\sum_{|k|<K} b_{i}^{k}(x)\right| & \lesssim|F(x)|+\sum_{k \in \mathbb{Z}, k \in(-\infty, k(x)]} \sum_{i \in \mathbb{N}}\left|b_{i}^{k}(x)\right| \\
& \lesssim|F(x)|+M_{N} f(x) \lesssim M_{N} f(x) .
\end{aligned}
$$

From this, the fact that $M_{N}(f) \in L^{q}$, and the dominated convergence theorem, we conclude that $F=$ $\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} b_{i}^{k}$ in L^{q}. By this and (3.3), we know $f=F \in L^{q}$ and hence

$$
f=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} b_{i}^{k} \text { in } L^{q} \text { and } \mathcal{H}_{A}^{p(\cdot), r},
$$

and also almost everywhere.
In what follows, we also need the definition of anisotropic Hardy-Littlewood maximal function $\mathcal{M}(f)$. For any $f \in L_{\mathrm{loc}}^{1}$ and $x \in \mathbb{R}^{n}$,

$$
\begin{equation*}
\mathcal{M}(f)(x):=\sup _{x \in B \in \mathfrak{B}} \frac{1}{|B|} \int_{B}|f(z)| d z, \tag{3.4}
\end{equation*}
$$

where \mathfrak{B} is as in (2.1).
Lemma 3.5 [17, Lemma 4.3] Let $q \in(1, \infty)$. Assume that $p(\cdot) \in C^{\log }$ satisfies $1<p_{-} \leq p_{+}<\infty$, where p_{-}and p_{+}are as in (2.4). Then there exists a positive constant C such that, for any sequence $\left\{f_{k}\right\}_{k \in \mathbb{N}}$ of measurable functions,

$$
\left\|\left\{\sum_{k \in \mathbb{N}}\left[\mathcal{M}\left(f_{k}\right)\right]^{q}\right\}^{1 / q}\right\|_{L^{p(.)}} \leq C\left\|\left(\sum_{k \in \mathbb{N}}\left|f_{k}\right|^{q}\right)^{1 / q}\right\|_{L^{p(.)}}
$$

where \mathcal{M} denotes the Hardy-Littlewood maximal operator as in (3.4).

Lemma 3.6 [15, Lemma 4.5] Let $p(\cdot) \in C^{\log }, r \in(0, \infty)$ and $q \in\left(\max \left\{p_{+}, 1\right\}, \infty\right)$. Then $\mathcal{H}_{A}^{p(\cdot), r} \cap L^{q}$ is dense in $\mathcal{H}_{A}^{p(\cdot), r}$.

The following Lemma show that variable anisotropic Hardy-Lorentz space $\mathcal{H}_{A}^{p(\cdot), r}$ is complete. Its proof is similar to [26, Lemma 3.9], we only need to make some minor changes. To limit the length of this article, we omit the concrete details.

Lemma 3.7 Let $p(\cdot) \in C^{\log }, r \in(0, \infty)$. Then $\mathcal{H}_{A}^{p(\cdot), r}$ is complete.
Proof [Proof of Theorem 3.1]
By the density, we only prove that (i) holds true for any $f \in \mathcal{H}_{A}^{p(\cdot), r} \cap L^{q}$ with $q \in(1, \infty) \cap\left(p_{+}, \infty\right)$. For any $f \in \mathcal{H}_{A}^{p(\cdot), r} \cap L^{q}$, from Lemma 3.4, we know that there exist numbers $\left\{\lambda_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{C}$ and a sequence of $(p(\cdot), q, s)$-atom, $\left\{a_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}}$, supported, respectively, on $\left\{x_{i}^{k}+B_{\ell_{i}^{k}}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathfrak{B}$ such that

$$
f=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k} \quad \text { in } L^{q}
$$

where $\lambda_{i}^{k} \sim 2^{k}\left\|\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}$ for any $k \in \mathbb{Z}$ and $i \in \mathbb{N}, \sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+A^{j_{0}} B_{\ell_{i}^{k}}}(x) \lesssim 1$ with some $j_{0} \in \mathbb{Z} \backslash \mathbb{N}$ for any $x \in \mathbb{R}^{n}$ and $k \in \mathbb{Z}$, and,

$$
\begin{equation*}
\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}} \sim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}\right]^{1 / r} \tag{3.5}
\end{equation*}
$$

By the fact that T is bounded on L^{q}, we have

$$
T(f)=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} T\left(a_{i}^{k}\right) \text { in } L^{q}
$$

Set

$$
f=\sum_{k=-\infty}^{k_{0}-1} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k}+\sum_{k=k_{0}}^{\infty} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k}=: F_{1}+F_{2} \text { in } L^{q} .
$$

Then

$$
\begin{align*}
\left\|\chi_{\left\{x \in \mathbb{R}^{n}: T(f)(x)>2^{k_{0}}\right\}}\right\|_{L^{p(\cdot)}} \lesssim & \left\|\chi_{\left\{x \in \mathbb{R}^{n}: T\left(F_{1}\right)(x)>2^{k_{0}-1}\right\}}\right\|_{L^{p(\cdot)}}+\left\|\chi_{\left\{x \in E_{k_{0}}: T\left(F_{2}\right)(x)>2^{k_{0}-1}\right\}}\right\|_{L^{p(\cdot)}} \tag{3.6}\\
& +\left\|\chi_{\left\{x \in\left(E_{k_{0}}\right)^{\mathrm{C}}: T\left(f_{2}\right)(x)>2^{k_{0}-1}\right\}}\right\|_{L^{p(\cdot)}} \\
= & : \mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3},
\end{align*}
$$

where

$$
E_{k_{0}}:=\bigcup_{k=k_{0}}^{\infty} \bigcup_{i \in \mathbb{N}}\left(x_{i}^{k}+A^{\sigma} B_{\ell_{i}^{k}}\right)
$$

WANG and WANG/Turk J Math

Therefore,

$$
\begin{align*}
\mathrm{I}_{1} \lesssim & \left\|\chi_{\left\{x \in \mathbb{R}^{n}: \sum_{k=-\infty}^{k_{0}-1} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} T\left(a_{i}^{k}\right)(x) \chi_{x_{i}^{k}+A^{\sigma_{B_{\ell_{i}^{k}}}}}(x)>2^{k_{0}-2}\right\}}\right\|_{L^{p(\cdot)}} \tag{3.7}\\
& +\left\|\chi_{\left\{x \in \mathbb{R}^{n}: \sum_{k=-\infty}^{k_{0}-1} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} T\left(a_{i}^{k}\right)(x) \chi_{\left(x_{i}^{k}+A^{\sigma_{B}}{ }_{\ell_{i}^{k}}\right)}(x)>2^{k_{0}-2}\right\}}\right\|_{L^{p(\cdot)}} \\
& =: \mathrm{I}_{1,1}+\mathrm{I}_{1,2} .
\end{align*}
$$

For the term $\mathrm{I}_{1,1}$, from the fact that T is bounded on L^{q}, Remark 2.1, (3.5) and a similar proof of $[17,(4.7)]$, we deduce that

$$
\begin{equation*}
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{I}_{1,1}\right)^{r}\right]^{1 / r} \lesssim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r} \sim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), s, r}} \tag{3.8}
\end{equation*}
$$

For the term $\mathrm{I}_{1,2}$, from the Hölder inequality and the size condition of $a_{i}^{k}(x)$, we conclude that, for any $x \in\left(x_{i}^{k}+A^{\sigma} B_{\ell_{i}^{k}}\right)^{\complement}$,

$$
\begin{aligned}
\left|T a_{i}^{k}(x)\right| & \leq \int_{x_{i}^{k}+B_{\ell_{i}^{k}+\sigma}}\left|\mathcal{K}(x-y)-\mathcal{K}\left(x-x_{i}^{k}\right)\right|\left|a_{i}^{k}(y)\right| d y \\
& \lesssim \int_{x_{i}^{k}+B_{\ell_{i}^{k}+\sigma}} \frac{\rho\left(y-x_{i}^{k}\right)^{\delta}}{\rho\left(x-x_{i}^{k}\right)^{1+\delta}}\left|a_{i}^{k}(y)\right| d y \lesssim \frac{\left|x_{i}^{k}+B_{\ell_{i}^{k}}\right|^{\delta}}{\rho\left(x-x_{i}^{k}\right)^{1+\delta}}\left\|a_{i}^{k}\right\|_{L^{q}}\left|x_{i}^{k}+B_{\ell_{i}^{k}}\right|^{1 / q^{\prime}} \\
& \lesssim \frac{\left|x_{i}^{k}+B_{\ell_{i}^{k}}\right|^{1+\delta}}{\rho\left(x-x_{i}^{k}\right)^{1+\delta}} \frac{1}{\left\|\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}} \lesssim\left[\mathcal{M}\left(\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right)(x)\right]^{1+\delta} \overline{\left\|\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}}
\end{aligned}
$$

By this and a similar estimate of [17, p. 374], we obtain

$$
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{I}_{1,2}\right)^{r}\right]^{1 / r} \lesssim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r} \sim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}}
$$

Therefore, it follows from (3.7) and (3.8) that

$$
\begin{equation*}
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{I}_{1}\right)^{r}\right]^{1 / r} \lesssim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}} \tag{3.9}
\end{equation*}
$$

For I_{2} and I_{3}, by a proof similar to those of $[17$, (4.12) and (4.13)], we obtain

$$
\begin{equation*}
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{I}_{2}\right)^{r}\right]^{1 / r} \lesssim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), r}} \text { and }\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{I}_{3}\right)^{r}\right]^{1 / r} \lesssim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, r}} \tag{3.10}
\end{equation*}
$$

WANG and WANG/Turk J Math

Combining the estimate of $(3.6),(3.9)$ and (3.10), we obtain

$$
\begin{aligned}
\|T(f)\|_{L^{p(\cdot), r}} & \sim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\chi_{\left\{x \in \mathbb{R}^{n}:|T f(x)|>2^{k}\right\}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r} \\
& \lesssim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{I}_{1}\right)^{r}\right]^{1 / r}+\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{I}_{2}\right)^{r}\right]^{1 / r}+\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{I}_{3}\right)^{r}\right]^{1 / r} \\
& \lesssim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), ~}, s} \sim\|f\|_{\mathcal{H}_{A}^{p(\cdot), r}}
\end{aligned}
$$

which implies that $T(f) \in L^{p(\cdot), r}$. This finishes the proof of Theorem 3.1(i).
Now we show Theorem 3.1(ii). By Lemma 3.6, we only need to prove that (ii) holds true for any $f \in \mathcal{H}_{A}^{p(\cdot), r} \cap L^{q}$ with $q \in(1, \infty) \cap\left(p_{+}, \infty\right)$. Let $f \in \mathcal{H}_{A}^{p(\cdot), r} \cap L^{q}$. From Lemma 3.4, we know that there exist numbers $\left\{\lambda_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{C}$ and a sequence of $(p(\cdot), q, s)$-atom, $\left\{a_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}}$, supported, respectively, on $\left\{x_{i}^{k}+B_{\ell_{i}^{k}}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathfrak{B}$ such that

$$
f=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k} \text { in } L^{q}
$$

where $\lambda_{i}^{k} \sim 2^{k}\left\|\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}$ for any $k \in \mathbb{Z}$ and $i \in \mathbb{N}, \sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+A^{j}{ }_{0} B_{\ell_{i}^{k}}}(x) \lesssim 1$ with some $j_{0} \in \mathbb{Z} \backslash \mathbb{N}$ for any $x \in \mathbb{R}^{n}$ and $k \in \mathbb{Z}$, and,

$$
\begin{equation*}
\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}} \sim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}\right]^{1 / r} \tag{3.11}
\end{equation*}
$$

By the fact that T is bounded on L^{q}, we have

$$
T(f)=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} T\left(a_{i}^{k}\right) \text { in } L^{q}
$$

Set

$$
f=\sum_{k=-\infty}^{k_{0}-1} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k}+\sum_{k=k_{0}}^{\infty} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k}=: F_{1}+F_{2} \text { in } L^{q} .
$$

Then

$$
\begin{align*}
& \left\|\chi_{\left\{x \in \mathbb{R}^{n}: M_{N}(T(f))(x)>2^{k_{0}}\right\}}\right\|_{L^{p(\cdot)}} \tag{3.12}\\
\lesssim & \left\|\chi_{\left\{x \in \mathbb{R}^{n}: M_{N}\left(T\left(F_{1}\right)\right)(x)>2^{k_{0}-1}\right\}}\right\|_{L^{p(\cdot)}}+\left\|\chi_{\left\{x \in G_{k_{0}}: M_{N}\left(T\left(F_{2}\right)\right)(x)>2^{k_{0}-1}\right\}}\right\|_{L^{p(\cdot)}} \\
& +\left\|\chi_{\left\{x \in\left(G_{k_{0}}\right)^{\mathrm{c}}: M_{N}\left(T\left(f_{2}\right)\right)(x)>2^{k_{0}-1}\right\}}\right\|_{L^{p(\cdot)}} \\
= & : \mathrm{J}_{1}+\mathrm{J}_{2}+\mathrm{J}_{3},
\end{align*}
$$

where M_{N} is as in Definition 2.3 and

$$
G_{k_{0}}:=\bigcup_{k=k_{0}}^{\infty} \bigcup_{i \in \mathbb{N}}\left(x_{i}^{k}+A^{\sigma} B_{\ell_{i}^{k}}\right)
$$

WANG and WANG/Turk J Math

Therefore,

$$
\begin{align*}
\mathrm{J}_{1} \lesssim & \left\|\chi_{\left\{x \in \mathbb{R}^{n}: \sum_{k=-\infty}^{k_{0}-1} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} M_{N}\left(T\left(a_{i}^{k}\right)\right)(x) \chi_{x_{i}^{k}+A^{\sigma_{B}}{ }_{\ell_{i}^{k}}}(x)>2^{k_{0}-2}\right\}}\right\|_{L^{p(\cdot)}} \tag{3.13}\\
& +\left\|\chi_{\left\{x \in \mathbb{R}^{n}: \sum_{k=-\infty}^{k_{0}-1} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} M_{N}\left(T\left(a_{i}^{k}\right)\right)(x) \chi_{\left(x_{i}^{k}+A^{\sigma_{B}}{ }_{\ell_{i}^{k}}\right)}(x)>2^{k}-2\right\}}\right\|_{L^{p(\cdot)}} \\
= & \mathrm{J}_{1,1}+\mathrm{J}_{1,2} .
\end{align*}
$$

For the term $\mathrm{J}_{1,1}$, from the fact that M_{N} and T are bounded on L^{q}, Remark 2.1, (3.11) and a similar proof of $[17,(4.7)]$, we deduce that

$$
\begin{equation*}
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{~J}_{1,1}\right)^{r}\right]^{1 / r} \lesssim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r} \sim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}} \tag{3.14}
\end{equation*}
$$

For the term $\mathrm{J}_{1,2}$, from the Hölder inequality, the size condition of $a_{i}^{k}(x)$, and a similar proof of [20, p.117, Lemma], we conclude that, for any $x \in\left(x_{i}^{k}+A^{\sigma} B_{\ell_{i}^{k}}\right)^{\complement}$,

$$
\begin{aligned}
M_{N}\left(T a_{i}^{k}\right)(x) & =\sup _{\varphi \in \mathcal{S}_{N}} \sup _{j \in \mathbb{Z}}\left|\left(\varphi_{j} * T a_{i}^{k}\right)(x)\right|=\sup _{\varphi \in \mathcal{S}_{N}} \sup _{j \in \mathbb{Z}}\left|\left(\varphi_{j} * \mathcal{K} * a_{i}^{k}\right)(x)\right| \\
& \leq \sup _{\varphi \in \mathcal{S}_{N}} \sup _{j \in \mathbb{Z}} \int_{x_{i}^{k}+B_{\ell_{i}^{k}+\sigma}}\left|\left(\varphi_{j} * \mathcal{K}\right)(x-y)-\left(\varphi_{j} * \mathcal{K}\right)\left(x-x_{i}^{k}\right)\right|\left|a_{i}^{k}(y)\right| d y \\
& \lesssim \int_{x_{i}^{k}+B_{\ell_{i}^{k}+\sigma}} \frac{\rho\left(y-x_{i}^{k}\right)^{\delta}}{\rho\left(x-x_{i}^{k}\right)^{1+\delta}}\left|a_{i}^{k}(y)\right| d y \lesssim \frac{\left|x_{i}^{k}+B_{\ell_{i}^{k}}\right|^{\delta}}{\rho\left(x-x_{i}^{k}\right)^{1+\delta}}\left\|a_{i}^{k}\right\|_{L^{q}}\left|x_{i}^{k}+B_{\ell_{i}^{k}}\right|^{1 / q^{\prime}} \\
& \lesssim \frac{\left|x_{i}^{k}+B_{\ell_{i}^{k}}\right|^{1+\delta}}{\rho\left(x-x_{i}^{k}\right)^{1+\delta}} \frac{1}{\left\|\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}}
\end{aligned}
$$

From this and a similar estimate of [17, p. 374], we deduce that

$$
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{~J}_{1,2}\right)^{r}\right]^{1 / r} \lesssim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r} \sim\|f\|_{\mathcal{H}_{A, a t o m}^{p(\cdot), q, s, r}}
$$

Therefore, it follows from (3.13) and (3.14) that

$$
\begin{equation*}
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{~J}_{1}\right)^{r}\right]^{1 / r} \lesssim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), r, s, r}} \tag{3.15}
\end{equation*}
$$

For J_{2} and J_{3}, by a proof similar to those of $[17$, (4.12) and (4.13)], we obtain

$$
\begin{equation*}
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{~J}_{2}\right)^{r}\right]^{1 / r} \lesssim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, r}} \text { and }\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{~J}_{3}\right)^{r}\right]^{1 / r} \lesssim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}} \tag{3.16}
\end{equation*}
$$

It follows from the estimates of (3.12), (3.15) and (3.16) that

$$
\begin{aligned}
\|T(f)\|_{\mathcal{H}_{A}^{p(\cdot), r}} & =\left\|M_{N}(T(f))\right\|_{L^{p(\cdot), r}} \\
& \sim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\chi_{\left\{x \in \mathbb{R}^{n}:\left|M_{N}(T f)(x)\right|>2^{k}\right\}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r} \\
& \lesssim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{~J}_{1}\right)^{r}\right]^{1 / r}+\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{~J}_{2}\right)^{r}\right]^{1 / r}+\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left(\mathrm{~J}_{3}\right)^{r}\right]^{1 / r} \\
& \lesssim\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), r}} \sim\|f\|_{\mathcal{H}_{A}^{p(\cdot), r}},
\end{aligned}
$$

which implies that $T(f) \in \mathcal{H}_{A}^{p(\cdot), r}$. Therefore, we complete the proof of Theorem 3.1.

4. The dual space of variable anisotropic Hardy-Lorentz space $\mathcal{H}_{A}^{p(\cdot), r}$

In this section, we establish the dual space of $\mathcal{H}_{A}^{p(\cdot), r}$. More precisely, we prove that the dual space of $\mathcal{H}_{A}^{p(\cdot), r}$ is the variable anisotropic BMO-type space $\mathcal{B M O}_{A}^{p(\cdot), q, s}$.

Now, we define two new variable anisotropic BMO-type space as follows. In this article, for any $m \in \mathbb{Z}_{+}$, we use P_{m} to denote the set of polynomials on \mathbb{R}^{n} with order not more than m. For any $B \in \mathfrak{B}$ and any locally integrable function g on \mathbb{R}^{n}, we use $P_{B}^{m}(g)$ to denote the minimizing polynomial of g with degree not greater than m, which means that $P_{B}^{m}(g)$ is the unique polynomial $f \in P_{m}$ such that, for any $h \in P_{m}$,

$$
\int_{B} h(x)(g(x)-f(x)) d x=0
$$

Definition 4.1 Let A be a given dilation, $p(\cdot) \in \mathcal{P}$, s be a nonnegative integer and $q \in[1, \infty)$. Then the variable anisotropic BMO-type space $\mathcal{B M O}_{A}^{p(\cdot), q, s}$ is defined to be the set of all $f \in L_{\text {loc }}^{q}$ such that

$$
\|f\|_{\mathcal{B M O}_{A}^{p(\cdot), q, s}}:=\sup _{B \in \mathfrak{B}} \inf _{P \in P_{s}} \frac{|B|^{1-1 / q}}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}\left[\int_{B}|f(x)-P(x)|^{q} d x\right]^{1 / q}<\infty
$$

where \mathfrak{B} is as in (2.1).
Definition 4.2 Let A be a given dilation, $p(\cdot) \in \mathcal{P}$, s be a nonnegative integer and $q \in[1, \infty)$. Then the variable anisotropic BMO-type space $\widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q, s}$ is defined to be the set of all $f \in L_{\text {loc }}^{q}$ such that

$$
\|f\|_{\widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q, s}}:=\sup _{B \in \mathfrak{B}} \frac{|B|^{1-1 / q}}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}\left[\int_{B}\left|f(x)-P_{B}^{s}(f)(x)\right|^{q} d x\right]^{1 / q}<\infty
$$

where \mathfrak{B} is as in (2.1).
Lemma $4.3[3,(8.9)]$ Let $q \in[1, \infty], A$ be a given dilation, $f \in L_{\mathrm{loc}}^{q}$ and s be a nonnegative integer and $B \in \mathfrak{B}$. Then there exists a positive constant C, independent of f and B, such that

$$
\sup _{x \in B}\left|P_{B}^{s}(f)(x)\right| \leq C \frac{\int_{B}|f(x)| d x}{|B|}
$$

Lemma 4.4 Let A be a given dilation, $p(\cdot) \in \mathcal{P}$, s be a nonnegative integer and $q \in[1, \infty)$. Then

$$
\mathcal{B M O}_{A}^{p(\cdot), q, s}=\widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q, s}
$$

with equivalent quasi-norms.
Proof By the above definition, it is easy to see that

$$
\mathcal{B M O}_{A}^{p(\cdot), q, s} \supseteq \widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q, s}
$$

Conversely, from Lemma 4.3 and the Hölder inequality, we conclude that, for any $B \in \mathfrak{B}, Q \in P_{s}$,

$$
\begin{aligned}
{\left[\frac{1}{|B|} \int_{B}\left|P_{B}^{s}(Q-f)(x)\right|^{q} d x\right]^{1 / q} } & \lesssim \frac{1}{|B|} \int_{B}|Q(x)-f(x)| d x \\
& \lesssim\left[\frac{1}{|B|} \int_{B}|Q(x)-f(x)|^{q} d x\right]^{1 / q}
\end{aligned}
$$

Therefore, by the Minkowski inequality, we obtain

$$
\begin{aligned}
& \frac{|B|}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}\left[\frac{1}{|B|} \int_{B}\left|P_{B}^{s}(f)(x)-f(x)\right|^{q} d x\right]^{1 / q} \\
= & \frac{|B|}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}\left[\frac{1}{|B|} \int_{B}\left|P_{B}^{s}(Q-f)(x)+f(x)-Q(x)\right|^{q} d x\right]^{1 / q} \\
\lesssim & \frac{|B|}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}\left[\frac{1}{|B|} \int_{B}|Q(x)-f(x)|^{q} d x\right]^{1 / q}
\end{aligned}
$$

which implies that

$$
\mathcal{B M O}_{A}^{p(\cdot), q, s} \subseteq \widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q, s}
$$

This completes the proof of Lemma 4.4.

Lemma 4.5 Let A be a given dilation, $p(\cdot) \in C^{\log }, r \in(0,1]$, s be a nonnegative integer and $q \in[1, \infty)$. Then, for any continuous linear functional \mathcal{L} on $\mathcal{H}_{A}^{p(\cdot), r}=\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, r}$,

$$
\begin{aligned}
\|\mathcal{L}\|_{\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}\right)^{*}} & :=\sup \left\{|\mathcal{L}(f)|:\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}} \leq 1\right\} \\
& =\sup \{|\mathcal{L}(a)|: a \text { is }(p(\cdot), q, s)-\text { atom }\}
\end{aligned}
$$

where $\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}\right)^{*}$ denotes the dual space of $\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s}$.
Proof Let a be a $(p(\cdot), q, s)$-atom. Then we have that $\|a\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}} \leq 1$. Therefore,

$$
\sup \{|\mathcal{L}(a)|: a \text { is }(p(\cdot), q, s)-\text { atom }\} \leq \sup \left\{|\mathcal{L}(f)|:\|f\|_{\mathcal{H}_{A}^{p(\cdot), q, s, r}} \leq 1\right\}
$$

Moreover, let $f \in \mathcal{H}_{A \text {, atom }}^{p(\cdot), q, s, r}$ and $\|f\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}} \leq 1$. Then, for any $\varepsilon>0$, we know that there exist $\left\{\lambda_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{C}$ and a sequence of $(p(\cdot), q, s)$-atoms, $\left\{a_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}}$, supported, respectively, on $\left\{x_{i}^{k}+B_{\ell_{i}^{k}}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset$ \mathfrak{B} such that

$$
f=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k} \text { in } \mathcal{S}^{\prime} \text { and a. e. }
$$

and

$$
\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r} \leq 1+\varepsilon
$$

Therefore, from the boundedness of $\mathcal{L}, \lambda_{i}^{k} \sim 2^{k}\left\|\chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}$ and $r \in(0,1]$, we further conclude that

$$
\begin{aligned}
|\mathcal{L}(g)| & \leq \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}}\left|\lambda_{i}^{k}\right|\left|\mathcal{L}\left(a_{i}^{k}\right)\right| \leq \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}}\left|\lambda_{i}^{k}\right| \sup \{|\mathcal{L}(a)|: a \text { is }(p(\cdot), q, s)-\text { atom }\} \\
& \lesssim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{e_{i}^{k}}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r} \sup \{|\mathcal{L}(a)|: a \text { is }(p(\cdot), q, s)-\text { atom }\} \\
& \lesssim(1+\varepsilon) \sup \{|\mathcal{L}(a)|: a \text { is }(p(\cdot), q, s)-\text { atom }\} .
\end{aligned}
$$

Combined with the arbitrariness of ε and hence finishes the proof of Lemma 4.5.
For any $q \in[1, \infty]$ and $s \in \mathbb{Z}_{+}$. Denote by $L_{\text {comp }}^{q}$ the set of all functions $f \in L^{q}$ with compact support and

$$
L_{\mathrm{comp}}^{q, s}:=\left\{f \in L_{\mathrm{comp}}^{q}: \int_{\mathbb{R}^{n}} f(x) x^{\alpha} d x=0,|\alpha| \leq s\right\}
$$

The main result of this section is as follows.
Theorem 4.6 Let A be a given dilation, $r \in(0,1], p(\cdot) \in C^{\mathrm{log}}, p_{+} \in(0,1], q \in\left(\max \left\{p_{+}, 1\right\}, \infty\right)$ and $s \in\left[\left\lfloor\left(1 / p_{-}-1\right) \ln b / \ln \lambda_{-}\right\rfloor, \infty\right) \cap \mathbb{Z}_{+}$with p_{-}as in (2.4). Then

$$
\left(\mathcal{H}_{A}^{p(\cdot), r}\right)^{*}=\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}\right)^{*}=\mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}=\widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q^{\prime}, s}
$$

in the following sense: for any $\psi \in \mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}$ or $\widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q^{\prime}, s}$, the linear functional

$$
\begin{equation*}
\mathcal{L}_{\psi}(g):=\int_{\mathbb{R}^{n}} \psi(x) g(x) d x \tag{4.1}
\end{equation*}
$$

initial defined for all $g \in L_{\text {comp }}^{q, s}$, has a bounded extension to $\mathcal{H}_{A \text {, atom }}^{p(\cdot), s, r}=\mathcal{H}_{A}^{p(\cdot), r}$.
Conversely, if \mathcal{L} is a bounded linear functional on $\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}=\mathcal{H}_{A}^{p(\cdot), r}$, then \mathcal{L} has the form as in (4.1) with a unique $\psi \in \mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}$ or $\widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q^{\prime}, s}$. Moreover,

$$
\|\psi\|_{\widetilde{\mathcal{B M O}}_{A}^{p(\cdot), q^{\prime}, s}} \sim\|\psi\|_{\mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}} \sim\left\|\mathcal{L}_{\psi}\right\|_{\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}\right)^{*}}
$$

where the implicit positive constants are independent of ψ.

Remark 4.7 We should point that, when $p(\cdot):=p \in(0,1]$, this result is also new.
Proof [Proof of Theorem 4.6] By Lemmas 3.3 and 4.4, we only need to show

$$
\mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}=\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, r}\right)^{*}
$$

Firstly, we prove that

$$
\mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s} \subset\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s}\right)^{*}
$$

Let $\psi \in \mathcal{B M}_{\mathcal{A}}^{p(\cdot), q^{\prime}, s}$ and a be a $(p(\cdot), q, s)$-atom with $\operatorname{supp} a \subset B \in \mathfrak{B}$. Then, by the vanishing moment condition of a, Hölder's inequality and the size condition of a, we obtain

$$
\begin{align*}
\left|\int_{\mathbb{R}^{n}} \psi(x) a(x) d x\right| & =\inf _{P \in P_{s}}\left|\int_{B}(\psi(x)-P(x)) a(x) d x\right| \tag{4.2}\\
& \leq\|a\|_{L^{q}} \inf _{P \in P_{s}}\left[\int_{B}|\psi(x)-P(x)|^{q^{\prime}} d x\right]^{1 / q^{\prime}} \\
& \leq \frac{|B|^{1 / q}}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}} \inf _{P \in P_{s}}\left[\int_{B}|\psi(x)-P(x)|^{q^{\prime}} d x\right]^{1 / q^{\prime}} \\
& \leq\|\psi\|_{\mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}}
\end{align*}
$$

Therefore, for $\left\{\lambda_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathbb{C}$ and a sequence $\left\{a_{i}^{k}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}}$ of $(p(\cdot), q, s)$-atoms supported, respectively, on $\left\{x_{i}+B_{\ell_{i}^{k}}\right\}_{i \in \mathbb{N}, k \in \mathbb{Z}} \subset \mathfrak{B}$ and

$$
g=\sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}} \lambda_{i}^{k} a_{i}^{k} \in \mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}
$$

from (4.2), we deduce that

$$
\begin{aligned}
\left|\mathcal{L}_{\psi}(g)\right| & =\left|\int_{\mathbb{R}^{n}} \psi(x) g(x) d x\right| \leq \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}}\left|\lambda_{i}^{k}\right|\left|\int_{B}\right| \psi(x)-P(x)| | a_{i}^{k}(x)|d x| \\
& \leq \sum_{k \in \mathbb{Z}} \sum_{i \in \mathbb{N}}\left|\lambda_{i}^{k}\right|\|\psi\|_{\mathcal{B} \mathcal{M} \mathcal{O}_{A}^{p(\cdot), q^{\prime}, s}} \\
& \lesssim\left[\sum_{k \in \mathbb{Z}} 2^{k r}\left\|\sum_{i \in \mathbb{N}} \chi_{x_{i}^{k}+B_{\ell_{i}^{k}}}\right\|_{L^{p(\cdot)}}^{r}\right]^{1 / r}\|\psi\|_{\mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}} \\
& \lesssim\|g\|_{\mathcal{H}_{A, \text { atom }}^{p(\cdot), r}}\|\psi\|_{\mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}} .
\end{aligned}
$$

This implies that $\mathcal{B M} \mathcal{M O}_{A}^{p(\cdot), q^{\prime}, s} \subset\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s}\right)^{*}$.
Next we show that $\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, s, r}\right)^{*} \subset \mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}$. For any $B \in \mathfrak{B}$, let

$$
S_{B}: L^{1}(B) \rightarrow P_{s}
$$

be the natural projection satisfying, for any $g \in L^{1}$ and $Q \in P_{s}$,

$$
\int_{B} S_{B}(g)(x) Q(x) d x=\int_{B} g(x) Q(x) d x
$$

By a similar proof of $[3,(8.9)]$, we obtain that, for any $B \in \mathfrak{B}$ and $g \in L^{1}(B)$,

$$
\sup _{x \in B}\left|S_{B}(g)(x)\right| \lesssim \frac{\int_{B}|g(z)| d z}{|B|}
$$

Define

$$
L_{0}^{q}(B):=\left\{g \in L^{q}(B): S_{B}(g)(x)=0 \text { and } g \text { is not zero almost everywhere }\right\}
$$

where $L^{q}(B):=\left\{f \in L^{q}: \operatorname{supp} f \subset B\right\}$ with $q \in(1, \infty]$ and $B \in \mathfrak{B}$,
For any $g \in L_{0}^{q}(B)$, set

$$
a(x):=\frac{|B|^{1 / q}}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}\|g\|_{L^{q}(B)}^{-1} g(x) \chi_{B}(x)
$$

Then a is a $(p(\cdot), q, s)$-atom. By this and Lemma 4.5, we obtain, for any $\mathcal{L} \in\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, r}\right)^{*}$ and $g \in L_{0}^{q}(B)$,

$$
\begin{equation*}
|\mathcal{L}(g)| \leq \frac{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}{|B|^{1 / q}}\|g\|_{L^{q}(B)}\|\mathcal{L}\|_{\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, r}\right)^{*}} \tag{4.3}
\end{equation*}
$$

Thus, by the Hahn-Banach theorem, it can be extended to a bounded linear functional on $L^{q}(B)$ with the same norm.

If $q \in(1, \infty]$, by the duality of $L^{q}(B)$ is $L^{q^{\prime}}(B)$, we see that there exists a $\Phi \in L^{q^{\prime}}(B)$ such that, for any $f \in L_{0}^{q}(B), \mathcal{L}(f)=\int_{B} f(x) \Phi(x) d x$. In what follows, for any $B \in \mathfrak{B}$, let $P_{s}(B)$ denote all the P_{s} elements vanishing outside B. Now we prove that, if there exists another function $\Phi^{\prime} \in L^{q^{\prime}}(B)$ such that, for any $f \in L_{0}^{q}(B)$ and $\mathcal{L}(f)=\int_{B} f(x) \Phi^{\prime}(x) d x$, then $\Phi^{\prime}-\Phi \in P_{s}(B)$. For this, we only need to show that, if $\Phi, \Phi^{\prime} \in L^{1}(B)$ such that, for any $f \in L_{0}^{\infty}(B), \int_{B} f(x) \Phi^{\prime}(x) d x=\int_{B} f(x) \Phi(x) d x$, then $\Phi-\Phi^{\prime} \in P_{s}(B)$. In fact, for any $f \in L_{0}^{\infty}(B)$, we have

$$
\begin{aligned}
0 & =\int_{B}\left[f(x)-S_{B}(f)(x)\right]\left[\Phi^{\prime}(x)-\Phi(x)\right] d x \\
& =\int_{B} f(x)\left[\Phi^{\prime}(x)-\Phi(x)\right] d x-\int_{B} f(x) S_{B}\left(\Phi^{\prime}(x)-\Phi(x)\right) d x \\
& =\int_{B} f(x)\left[\Phi^{\prime}(x)-\Phi(x)-S_{B}\left(\Phi^{\prime}-\Phi\right)(x)\right] d x
\end{aligned}
$$

Therefore, for a.e. $x \in B \in \mathfrak{B}$, we have

$$
\Phi^{\prime}(x)-\Phi(x)=S_{B}\left(\Phi^{\prime}-\Phi\right)(x)
$$

Hence $\Phi^{\prime}-\Phi \in P_{s}(B)$. From this, we see that, for any $q \in(1, \infty]$ and $f \in L_{0}^{q}(B)$, there exists a unique $\Phi \in L^{q^{\prime}}(B) / P_{s}(B)$ such that $\mathcal{L}(f)=\int_{B} f(x) \Phi(x) d x$.

For any $j \in \mathbb{N}$ and $g \in L_{0}^{q}\left(B_{j}\right)$ with $q \in(1, \infty)$, let $f_{j} \in L^{q^{\prime}}\left(B_{j}\right) / P_{s}\left(B_{j}\right)$ be a unique function such that $\mathcal{L}(g)=\int_{B_{j}} f_{j}(x) g(x) d x$. Then, for any $i, j \in \mathbb{N}$ with $i<j,\left.f_{j}\right|_{B_{i}}=f_{i}$. From this and the fact that, for any $g \in\left(\mathcal{H}_{A}^{p(\cdot), q, s, r}\right)^{*}$, there exists a number $j_{0} \in \mathbb{N}$ such that $g \in L_{0}^{q}\left(B_{j_{0}}\right)$, we conclude that, for any
$g \in\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, r}\right)^{*}$, we have

$$
\begin{equation*}
\mathcal{L}(g)=\int_{B} \psi(x) g(x) d x \tag{4.4}
\end{equation*}
$$

where $\psi(x):=f_{j}(x)$ with $x \in B_{j}$.
Next we show that $\psi \in \mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}$. By [3, (8.12)], (4.3) and (4.4), we have that, for any $q \in(1, \infty)$, $B \in \mathfrak{B}$,

$$
\inf _{P \in P_{s}}\|\psi-P\|_{L^{q^{\prime}}(B)}=\|\psi\|_{\left(L_{0}^{q}(B)\right)^{*}} \leq \frac{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}{|B|^{1 / q}}\|\mathcal{L}\|_{\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot),)^{*}}\right.}
$$

Therefore, we have that, for any $q \in(1, \infty)$,

$$
\begin{aligned}
\|\psi\|_{\mathcal{B M O}_{A}^{p(\cdot), q^{\prime}, s}} & =\sup _{B \in \mathfrak{B}} \frac{|B|^{1 / q}}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}} \inf _{P \in P_{s}}\|\psi-P\|_{L^{q^{\prime}}(B)}=\sup _{B \in \mathfrak{B}} \frac{|B|^{1 / q}}{\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}\|\psi\|_{\left(L_{0}^{q}(B)\right)^{*}} \\
& \leq\|\mathcal{L}\|_{\left(\mathcal{H}_{A, \text { atom }}^{p(\cdot), q, r}\right)^{*}},
\end{aligned}
$$

which implies $\psi \in \mathcal{B M} \mathcal{O}_{A}^{p(\cdot), q^{\prime}, s}$. This finishes the proof of Theorem 4.6.
From Theorem 4.6, we easily obtain the following two conclusions. Moreover, the proof of Corollary 4.8 is similar to [28, Lemma 2.21], we omit the details.

Corollary 4.8 Let A be a given dilation, $p(\cdot) \in C^{\log }$ and $s \in\left[\left\lfloor\left(1 / p_{-}-1\right) \ln b / \ln \lambda_{-}\right\rfloor, \infty\right) \cap \mathbb{Z}_{+}$with p_{-}as in (2.4). Assume that $f \in \mathcal{B M O}_{A}^{p(\cdot), 1, s}$ and $p_{+} \in(0,1]$. Then there exist two positive constants c_{1} and c_{2}, such that, for any $B \in \mathfrak{B}$ and $\lambda \in(0, \infty)$,

$$
\left|x \in B:\left|f(x)-P_{B}^{s}(f)(x)\right|>\lambda\right| \leq c_{1} \exp \left\{\frac{c_{2} \lambda|B|}{\|f\|_{\mathcal{B M O}_{A}^{p(\cdot), 1, s}}\left\|\chi_{B}\right\|_{L^{p(\cdot)}}}\right\}
$$

Corollary 4.9 Let A be a given dilation, $p(\cdot) \in C^{\log }, p_{+} \in(0,1], q \in(1, \infty)$ and $s \in\left[L\left(1 / p_{-}-\right.\right.$ 1) $\left.\left.\ln b / \ln \lambda_{-}\right\rfloor, \infty\right) \cap \mathbb{Z}_{+}$with p_{+}, p_{-}as in (2.4). Then

$$
\mathcal{B M O}_{A}^{p(\cdot), 1, s}=\mathcal{B M O}_{A}^{p(\cdot), q, s}
$$

with equivalent quasi-norms.
Acknowledgements. The authors would like to express their deep thanks to the anonymous referees for their very careful reading and useful comments which do improve the presentation of this article.

References

[1] Abu-Shammala W, Torchinsky A. The Hardy-Lorentz spaces $H^{p, q}\left(\mathbb{R}^{n}\right)$. Studia Mathematica 2007; 182: 283-294.
[2] Acerbi E, Mingione G. Regularity results for stationary electro-rheological fluids. Archive for Rational Mechanics and Analysis 2002; 164: 213-259.
[3] Bownik M. Anisotropic Hardy spaces and wavelets. Memoirs of the American Mathematical Society 2003; 164: 1-122.
[4] Chen Y, Levine S, Rao M. Variable exponent, linear growth functionals in image restoration. SIAM Journal on Applied Mathematics 2006; 66: 1383-1406.
[5] Coifman RR, Weiss G. Extensions of Hardy spaces and their use in analysis. Bulletin of the American Mathematical Society 1977; 83: 569-645.
[6] Cruz-Uribe DV, Fiorenza A. Variable Lebesgue spaces, Foundations and harmonic analysis. Applied and Numerical Harmonic Analysis Birkhäuser/Springer Heidelberg 2013; 1-312.
[7] Cruz-Uribe DV, Wang D. Variable Hardy spaces. Indiana University Mathematics Journal 2014; 63: 447-493.
[8] Diening L, Harjulehto P, Hästö P, Ružička M. Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics 2011; 1-509.
[9] Fan X. Global $C^{1, \alpha}$ regularity for variable exponent elliptic equations in divergence form. Journal Differential Equations 2007; 235: 397-417.
[10] Fefferman C, Soria F. The space weak H^{1}. Studia Mathematica 1986; 85: 1-16.
[11] Fefferman C, Stein EM. H^{p} spaces of several variables. Acta Mathematica 1972; 129: 137-193.
[12] John F, Nirenberg L. On functions of bounded mean oscillation. Communications on Pure and Applied Mathematics 1961; 14: 415-426.
[13] Liu X. Real-variable characterizations of variable Hardy spaces on Lipschitz domains of \mathbb{R}^{n}. Bulletin of the Korean Mathematical Society 2021; 58: 745-765.
[14] Liu F, Xue Q. Weighted estimates for certain rough operators with applications to vector valued inequalities. Journal Korean Mathematical Society 2021; 58: 1035-1058.
[15] Liu J, Weisz F, Yang D, Yuan W, Littlewood-Paley and finite atomic characterizations of anisotropic variable Hardy-Lorentz spaces and their applications. Journal of Fourier Analysis and Applications 2019; 25: 874-922.
[16] Liu J, Yang D, Yuan W. Anisotropic Hardy-Lorentz spaces and their applications. Science China Mathematics 2016; 59: 1669-1720.
[17] Liu J, Yang D, Yuan W. Anisotropic variable Hardy-Lorentz spaces and their real interpolation. Journal of Mathematical Analysis and Applications 2017; 456: 356-393.
[18] Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. Journal of Functional Analysis 2012; 262: 3665-3748.
[19] Sawano Y. Atomic decompositions of Hardy space with variable exponent and its application to bounded linear operators. Integral Equations Operator Theory 2013; 77: 123-148.
[20] Stein EM. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Univ Press Princeton N J 1993.
[21] Stein EM, Weiss G. On the theory of harmonic functions of several variables. The theory of H^{p}-spaces. Acta Mathematica 1960; 103: 25-62.
[22] Strömberg JO, Torchinsky A. Weighted Hardy spaces. Lecture Notes in Mathematics Springer-Verlag Berlin 1989.
[23] Taibleson MH, Weiss G, The molecular characterization of certain Hardy spaces, Representation theorems for Hardy spaces, AstšŠrisque, Society Mathematical France, Paris, 1980; 77: 67-149.
[24] Tan J. Atomic decompositions of localized Hardy spaces with variable exponents and applications. Journal of Geometric Analysis 2019; 29: 799-827.
[25] Tang L. $L^{p(\cdot), \lambda(\cdot)}$ regularity for fully nonlinear elliptic equations. Nonlinear Analysis 2017; 149: 117-129.
[26] Wang W. Dualities of variable anisotropic Hardy spaces and boundedness of singular integral operators. Bulletin of the Korean Mathematical Society 2021; 58: 365-384.
[27] Wang H, Liu Z. The Herz-type Hardy spaces with variable exponent and their applications. Taiwanese Journal of Mathematics 2012; 16: 1363-1389.
[28] Zhuo C, Yang D, Liang Y. Intrinsic square function characterization of Hardy spaces with variable exponents. Bulletin of the Malaysian Mathematical Sciences Society 2016; 39: 1541-1577.

[^0]: *Correspondence: atwangmath@163.com
 This work is partially supported by the projects of university level planning in Qinghai Minzu University (Grant No. 2022GH25). 2010 AMS Mathematics Subject Classification: Primary 42B20; Secondary 42B30, 46E30.

