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Abstract: In this work we consider the Sobolev spaces generated by the norm of the power weighted grand Lebesgue
spaces. It is considered m–th order elliptic equation with nonsmooth coefficients on bounded domain in Rn . This
space is nonseparable and by using shift operator we define the separable subspace of it, in which infinitely differentiable
functions are dense. The investigation needs to establish boundedness property of convolution regarding weighted grand
Lebesgue spaces. Then on scheme of nonweighted case we establish solvability (strong sense) in the small of m–th order
elliptic equations in power weighted grand Sobolev spaces. Note that in weighted spaces this question is considered for
the first time in connection with certain mathematical difficulties.
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1. Introduction
Elliptic equations play an essential and key role in the theory of partial differential equations and remarkable
monographs have been dedicated to the solvability problems of them (linear case) by various great mathe-
maticians as I.G. Petrovski [48], O.A. Ladyzhenskaya, N.N.Uraltseva [38], L.Bers, F.John, F.Schechter [4],
L.Hörmander [32], S.L.Sobolev [54], K.Moren [44], V.P.Mikhaylov [40], J.L.Lions, E.Magenes [39], K.Yosida
[57], S.Mizohata [43], C.Miranda [42] and others. It should be noted that all these monographs deal with
classical spaces such as continuous functions, Holder classes or Sobolev spaces. With appearance new spaces it
is arised the question of investigation solvability problems of differential equations regarding to these spaces.
Recently, interest has increasing in so-called nonstandart function spaces in the context of various problems of
pure mathematics, mechanics and mathematical physics. To the set of such spaces we can include the Lebesgue
spaces with variable summability index, Morrey spaces, grand Lebesgue spaces, Orlicz spaces, Lorentz spaces
and etc. One can get more information in monographs [1, 21, 25, 31, 36, 37, 51, 52] concerning these spaces. The
questions of mathematics were studied regarding these spaces in varying degrees. The problems of harmonic
analysis and approximation theory have been relatively well studied in Lebesgue spaces with variable summa-
bility index and Morrey spaces (see e.g., [1, 3, 5–11, 15, 16, 21, 22, 25, 26, 30, 31, 33, 36, 37, 49, 51–53, 58]). The
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same problems have begun to be studied in grand Lebesgue spaces and important results have been obtained
in this direction (see e.g., [21, 37, 58]). Along with this, it should be noted that the solvability problems of
differential equations and boundary value problems for analytic functions have also begun to be studied in
nonstandart spaces (see e.g., [12–14, 19, 20, 23, 28, 29, 37, 45–47, 51, 52, 55, 59]).

This article is devoted to this direction, namely here we consider the solvability questions in weighted
grand Sobolev spaces for elliptic equations. This space is nonseparable and therefore we can consider boundary
value problems for elliptic equations (including other partial differential equations) in two settings: 1) separable
case and 2) nonseparable case. In separable case the smooth functions are dense in considered space (or
subspace) and it allows us to use the classical scheme for the investigation. In nonseparable case of considered
space the classical scheme is not applicable for the validity of many classical facts concerning corresponding
Sobolev spaces and it required to find other methods of establishing. It should be noted that early this fact was
noticed in works [60, 61] by V.V.Zhikov. Also note that the works [12–14, 37, 59] belong to the case 1) and the
works [19, 20, 23, 28, 29, 45, 46, 51, 52, 55, 59] belong to the case 2).

In this work we consider the Sobolev spaces generated by the norm of the power weighted grand Lebesgue
spaces. It is considered m–th order elliptic equation with nonsmooth coefficients on bounded domain in Rn .
This space is nonseparable and by using shift operator we define the separable subspace of it, in which infinitely
differentiable functions are dense. The investigation needs to establish boundedness property of convolution
regarding weighted grand Lebesgue spaces. Then on scheme of nonweighted case we establish solvability (strong
sense) in the small of m–th order elliptic equations in power weighted grand Sobolev spaces.

It is well known that many of the classical facts with respect to the convolution operator in weighted
spaces are not true. This circumstance creates serious difficulties in the study of solvability questions in one
sense or another of differential equations in weighted Sobolev spaces. In this paper, in the case of a concrete
weight (i.e. a power weight ), we propose ways to overcome these difficulties in studying the solvability in the
small of elliptic equations in separable subspaces of weighted grand Lebesgue spaces.

It should be noted that similar questions regarding partial differential equations in weighted Lebesgue
and variable Lebesgue spaces were considered in works [17, 18, 27].

2. Auxiliary facts and notation

We need some necessary standard notations and facts from work [12].

2.1. Standard notation

Z+ will be the set of nonnegative integers. Br (x0) = {x ∈ Rn : |x− x0| < r} will denote the open ball in
Rn centered at x0 , where |x| =

√
x21 + ...+ x2n, x = (x1, ..., xn) . Ωr (x0) = Ω

⋂
Br (x0) , Br = Br (0) ,

Ωr = Ωr (0) . |M | will stand for the Lebesgue measure of the set M ; ∂Ω will be the boundary of the domain
Ω ; Ω̄ = Ω

⋃
∂Ω ; M1∆M2 will denote the symmetric difference between the sets M1 and M2 ; diamΩ will

stand for the diameter of the set Ω ; ρ (x;M) will be the distance between x and the set M ; and ∥T∥X→Y

will denote the norm of the operator T , acting boundedly from X to Y . For ∀ε ∈ (0, q − 1) we will denote
qε = q − ε . q′ is conjugate to q number: 1

q + 1
q′ = 1 .
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2.2. Elliptic operator of m–th order

Let Ω ⊂ Rn be some bounded domain with the rectifiable boundary ∂Ω . We will use the notation of [4].
α = (α1, ..., αn) will be the multiindex with the coordinates αk ∈ Z+, ∀k = 1, n ; ∂i = ∂

xi
will denote the

differentiation operator, ∂α = ∂α1
1 ∂α2

2 ...∂αn
n . For every ξ = (ξ1, ..., ξn) we assume ξα = ξα1

1 ξα2
2 ...ξαn

n . Let L be
an elliptic differential operator of m -th order

L =
∑

|p|≤m

ap (x) ∂
p, (2.1)

where p = (p1, ..., pn) , pk ∈ Z+ , ∀k = 1, n , ap (·) ∈ L∞ (Ω) are real functions, i.e. the characteristic form

Q (x, ξ) =
∑

|p|=m

ap (x) ξ
p

is definite a.e. for x ∈ Ω . It is known that in this case m is even. Let m = 2m′ , and assume without loss of
generality that

(−1)
m′
Q (x, ξ) > 0, ∀ξ ̸= 0 , a.e. x ∈ Ω.

Consider the elliptic operator L0 :

L0 =
∑

|p|=m

a0p ∂
p, (2.2)

with the constant coefficients a0p .

In what follows, by solution of the equation Lu = f we mean a strong solution (see [4]). We will need
the following classical result of [4] .

Theorem 2.1 [4] For an arbitrary m-th order elliptic operator L0 of the form (2.2) with the constant
coefficients, the function J (x) can be constructed which has the following properties:

i) If n is odd or if n is even and n > m , then

J (x) =
ω (x)

|x|n−m ,

where ω (x) is a positive homogeneous function of degree zero (i.e. ω (tx) = ω (x) , ∀t > 0). If n is even and
n ≤ m , then

J (x) = q (x) log |x|+ ω (x)

|x|n−m ,

where q is a homogeneous polynomial of degree m− n .
ii) The function J (x) satisfies (in a generalized sense) the equation

L0J (x) = δ (x) ,

(δ is the Dirac function) so the following equality is true for every infinitely differentiable function φ (·) with
compact support

φ (x) =

∫
[L0φ (y)] J (x− y) dy = L0

∫
φ (y) J (x− y) dy.
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Let us consider the elliptic operator (2.1) and assign to it a “tangential operator”

Lx0 =
∑

|p|=m

ap (x0) ∂
p, (2.3)

at every point x0 ∈ Ω . Denote by Jx0
(·) the fundamental solution of the equation Lx0

φ = 0 in accordance
with Theorem 2.1. The function Jx0

(·) is called a parametrics for the equation Lφ = 0 with a singularity at
the point x0 . Let

Sx0
φ = ψ (x) =

∫
Jx0

(x− y) φ (y) dy,

and assume
Tx0

= Sx0
(Lx0

− L) . (2.4)

In establishing the existence of the solution to the equation Lu = f , the following plays a significant role.

Lemma 2.2 [4] If φ has compact support, then

φ = Tx0
φ+ Sx0

Lφ,

and if
φ = Tx0φ+ Sx0f,

then Lφ = f .

2.3. Weighted grand Sobolev spaces Wm
q),ρ (Ω) and sW

m
q),ρ (Ω)

Firstly, let us define the grand Lebesgue space Lq) (Ω) . Grand Lebesgue space Lq) (Ω) , 1 < q < +∞ , where
Ω ⊂ Rn – bounded domain, is a Banach space of (Lebesgue) measurable functions f on Ω with norm

∥f∥Lq)(Ω) = sup
0<ε<q−1

(
ε

∫
Ω

|f |q−ε
dx

) 1
q−ε

.

The following continuous embeddings hold

Lq (Ω) ⊂ Lq) (Ω) ⊂ Lq−ε0 (Ω) ,

where ε0 ∈ (0, q − 1) is an arbitrary number. Let ρ : Ω → [0, +∞] be a weight function, i.e. ρ – measurable
and

∣∣ρ−1 {0; +∞}
∣∣ = 0 . The weighted case of Lq) (Ω) we define by norm

∥f∥Lq),ρ(Ω) = sup
0<ε<q−1

(
ε

∫
Ω

|f |q−ε
ρdx

) 1
q−ε

,

and corresponding space is denoted by Lq),ρ (Ω) . Also the corresponding Sobolev space Wm
q),ρ (Ω) is defined by

norm
∥f∥Wm

q),ρ
(Ω) =

∑
|α|≤m

∥∂αf∥Lq),ρ(Ω) .

Let us recall the definition of regular Borel measure.
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Definition 2.3 Let (M ; τ) be a Hausdorff topological space, and let B be the σ -algebra of its Borel sets. A
measure µ : B → [0,∞] is called a regular Borel measure if it satisfies the following properties:

i) µ (K) <∞ for every compact set K ;
ii) If A ∈ B , then

µ (A) = inf {µ (C) : C is open and B ⊂ C} ;

iii) If C is an open subset of M , then

µ (C) = sup {µ (K) : K is compact and K ⊂ C} .

In the sequel we will use the following well known result (see e.g., [2, p. 262]).

Theorem 2.4 [2] Let µ be a regular Borel measure on a Hausdorf locally compact topological space M . Then
the collection of all continuous functions with compact support is norm dense in Lp (µ) for every 1 ≤ p < ∞ ,
where Lp (µ) is a Banach space of measurable functions on M with norm

∥f∥Lp(µ)
=

(∫
M

|f |p dµ
)1

p
.

Below in this section we will assume that every function defined on Ω is extended by zero to Rn\Ω . Let Tδ be
a shift operator, i.e. (Tδf) (x) = f (x+ δ) , ∀x ∈ Ω , where δ ∈ Rn is an arbitrary vector. Let

sLq),ρ (Ω) =
{
f ∈ Lq),ρ (Ω) : ∥Tδf − f∥Lq),ρ(Ω) → 0, δ → 0

}
.

With the norm ∥·∥q),ρ the space sLq),ρ (Ω) becomes a Banach space (i.e. the subspace of Lq),ρ (Ω)), and
moreover, the following continuous embeddings hold

Lq,ρ (Ω) ⊂s Lq),ρ (Ω) ⊂ Lq),ρ (Ω) ⊂ Lqε,ρ, qε = q − ε,

for ∀ε ∈ (0, q − 1) , if ρ ∈ L1 (Ω) .

For more information about this and other facts one can see, e.g., works [34, 50, 56]. Assume

Wq) (Ω) =
⋃

ε∈(0, q−1)

Lq′ε
(Ω) .

It is valid the following easy proved.

Lemma 2.5 Let ρ−1 ∈Wq) (Ω) . Then the following continuous embedding Lq),ρ (Ω) ⊂ L1 (Ω) is true.

Proof Let ε0 ∈ (0, q − 1) such that ρ ∈ Lq′ε0
(Ω) . Applying the Holder inequality we have

∫
Ω

|f | dx =

∫
Ω

|fρ| ρ−1dx ≤ ε
1
qε
0 ∥fρ∥Lqε0

(Ω) ε
− 1

qε0
0

∥∥ρ−1
∥∥
L

q
′
ε0

(Ω)
≤ cε0 ∥f∥Lq),ρ(Ω) .

Lemma is proved. 2

Completely analogously to the nonweighted case it is proved the following lemma on density of the
differentiable functions in sLq),ρ (Ω) .
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Lemma 2.6 Let ρ ∈ L1 (Ω) . Then C∞
0 (Ω) =s Lq),ρ (Ω) (the closure is taken regarding the norm ∥·∥q),ρ ).

Firstly, let us prove the Minkowski inequality for Lq),ρ (Ω) .

Proposition 2.7 (Minkowski inequality) Let (X;Xσ;µ) be a measurable space with a σ – additive measure
µ (·) on a σ – algebra Xσ of subsets X and let ρ (·) be a weight function on Ω , 1 < q < +∞ . Then∥∥∥∥∫

X

F (x; ·) dµ (x)
∥∥∥∥
Lq),ρ(Ω)

≤
∫
X

∥F (x; ·)∥Lq),ρ(Ω) dµ (x) . (2.5)

Proof Let ε ∈ (0, q − 1) be an arbitrary number. By using the Minkowski inequality for integrals in Lqε,ρ (Ω) ,

qε = q − ε, we have ∥∥∥∥∫
X

F (x; ·) dµ (x)
∥∥∥∥
Lqε,ρ(Ω)

≤
∫
X

∥F (x; ·)∥Lqε,ρ(Ω) dµ (x) .

Consequently

ε
1
qε

∥∥∥∥∫
X

F (x; ·) dµ (x)
∥∥∥∥
Lqε,ρ(Ω)

≤

≤
∫
X

sup
0<ε<q−1

ε
1
qε ∥F (x; ·)∥Lqε,ρ(Ω) dµ (x) =

∫
X

∥F (x; ·)∥Lq),ρ(Ω) dµ (x) .

It immediately follows from here the inequality (2.5).
Proposition is proved. 2

Using inequality (2.5) we can prove the Lemma 2.6.
Proof of Lemma 2.6 Let ωε (·) be an ε – cap

ωε (x) =

{
cε exp

(
− ε2

ε2−|x|2

)
, |x| < ε,

0 , |x| ≥ ε,

where cε is a constant s.t. ∫
Rn

ωε (x) dx = 1.

Let f ∈ sLq),ρ (Ω) . Consider the convolution

fε (x) = (f ∗ ωε) (x) =

∫
Rn

f (x− y)ωε (y) dy.

It is evident that fε ∈ C∞ (
Ω
)
. We have

∥fε − f∥Lq),ρ(Ω) =

∥∥∥∥∫
Rn

ωε (y) (f (· − y)− f (·)) dy
∥∥∥∥
Lq),ρ(Ω)

≤

≤
∫
Rn

ωε (y) ∥f (· − y)− f (·)∥Lq),ρ(Ω) dy ≤ sup
|y|<ε

∥f (· − y)− f (·)∥Lq),ρ(Ω) → 0, ε→ 0.
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On the other hand, since fε ∈ Lq,ρ (Ω) , it is evident that, if C∞
0 (Ω) is dense in Lq,ρ (Ω) , then ∃ {gn} ⊂ C∞

0 (Ω) :

∥fε − gn∥Lq),ρ(Ω) → 0, n→ ∞.

Consequently
∥f − gn∥Lq),ρ(Ω) ≤ ∥fε − gn∥Lq),ρ(Ω) + ∥fε − f∥Lq),ρ(Ω) .

Since ∃c > 0 :
∥φ∥Lq),ρ(Ω) ≤ c ∥φ∥Lq),ρ(Ω) , ∀φ ∈ Lq),ρ (Ω) ,

We have
∥fε − gn∥Lq),ρ(Ω) ≤ c ∥fε − gn∥Lq),ρ(Ω) → 0, n→ ∞.

It is not hard to see that the measure µ (E) =
∫
E
ρdx on Ω under the condition ρ ∈ L1 (Ω) is regular

Borel measure. Then it follows from Theorem 2.4 that C∞
0 is dense in Lq,ρ (Ω) . As a result it follows the

density of C∞
0 (Ω) in sLq),ρ (Ω) .

Lemma is proved.
The following separable weighted Sobolev space is also defined

sW
m
q) (Ω) =

{
f ∈Wm

q) (Ω) : ∥Tδf − f∥Wm
q)

(Ω) → 0, δ → 0
}
.

In obtaining main results we need the Makenhoupt class of weights Aq (Ω) . We will say that ρ ∈ Aq (Ω)

if the weight ρ satisfies the following condition

sup
0<ε<q−1

1

|E|

∥∥∥ρ 1
q χE

∥∥∥
Lq(Ω)

∥∥∥ρ− 1
q χE

∥∥∥
Lq′ (Ω)

< +∞.

Consider the following singular kernel

k (x) =
ω (x)

|x|n
,

where ω (x) is a positive homogeneous function of degree zero, which is infinitely differentiable and satisfies∫
|x|=1

ω (x) dσ = 0,

dσ being a surface element on the unit sphere. Denote by K the corresponding singular integral

(Kf) (x) = k ∗ f (x) =
∫
Ω

f (y) k (x− y) dy.

The following theorem is proved in [37].

Theorem 2.8 [37] The singular operator K ∈
[
Lq),ρ (Ω)

]
⇔ ρ ∈ Aq (Ω) .

Let us prove the following.
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Theorem 2.9 Let ρ ∈ Aq (Ω) , 1 < q < +∞ . Then K ∈
[
sLq),ρ (Ω)

]
.

Proof Let ρ ∈ Aq (Ω) ⇒ K ∈
[
Lq),ρ (Ω)

]
. It suffices to show that

∥TδKf −Kf∥Lq),ρ(Ω) → 0, δ → 0, ∀f ∈ sLq),ρ (Ω) . (2.6)

Taking into account f (x) = 0, ∀x ∈ Rn\Ω , we have

(TδKf) (x) = (Kf) (x+ δ) =

∫
Rn

k (x+ δ − y) f (y) dy =

=

∫
Rn

k (x− y) f (y + δ) dy = (KTδf) (x) .

Then it follows from (2.6) that

∥TδKf −Kf∥Lq),ρ(Ω) = ∥K (Tδf − f)∥Lq),ρ(Ω) ≤ ∥K∥[Lq),ρ(Ω)] ∥Tδf − f∥Lq),ρ(Ω) → 0, δ → 0.

Theorem is proved. 2

In the following we need some facts about boundedness of convolution in weighted Lebesgue spaces. Let

∥f∥Lp,ρ(Ω) =

(∫
Ω

|f (x)p| ρ (x) dx
) 1

p

, 1 ≤ p <∞.

Corresponding weighted Lebesgue space is denoted by Lp,ρ (Ω) . The case Ω = Rn is denoted as Lp,ρ and
accept notation L (p;α) for ρ (x) = |x|αp . Let us consider the convolution of two functions on Rn :

(f ∗ g) (x) =
∫
Rn

f (x− y) g (y) dy, x ∈ Rn.

Consistent use will be made of expressions of the form X ∗ Y ⊂ Z involving function spaces X,Y and
Z . These indicate that whenever f ∈ X, g ∈ Y , then f ∗ g ∈ Z with

∥f ∗ g∥Z ≤ K ∥f∥X ∥g∥Y ,

the positive constant K is independent of f and g . It is valid the following theorem, proved in [35].

Theorem 2.10 [35]
L (p1;α) ∗ L (p2;β) ⊂ L (p3;−γ) ,

provided:

i) 1
p3

= 1
p1

+ 1
p2

+ α+β+γ
n − 1; 1 < p1, p2, p3 <∞; 1

p3
≤ 1

p1
+ 1

p2
;

ii) α < n
(
1− 1

p1

)
; β < n

(
1− 1

p2

)
; γ < n

p3
;

iii) α+ β, β + γ, γ + α ≥ 0 .
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Let r > 0 be some positive fixed number and let us consider the following integral

I (x) =

∫
|y|<r

|x− y|m−n−|p| |ψ (y)| dy,

where p : |p| < m is some multiindex. Let us try to apply the Theorem 2.10 to these integral. We will use the
following well known formula for α0 < n :∫

|x−y|<r

dy

|x− y|α0
=

|B1|
n− α0

rn−α0 , ∀x ∈ Rn,

where |B1| is a volume of a unit ball B1 in Rn (see, e.g., [41, p. 19]). Let us define

f (x) =

{
|x|m−n−|p|

, |x| < r,
0 , |x| ≥ r,

g (x) =

{
ψ (x) , |x| < r,
0 , |x| ≥ r.

It is evident that supp (f ∗ g) ⊂ B2r and I (x) = (f ∗ g) (x) , ∀x ∈ Br . Let q = 1+ δ , where δ > 0 is sufficiently
small number and assume α1 = n−m+ |p| . It is evident that n−m ≤ α1 ≤ n− 1 . Consider

∥f∥p2

L(p2;β)
=

∫
Rn

|f |p2 |x|p2β dx =

∫
|x|<r

dx

|x|(α1−β)p2
= Cβ;p2r

n−(α1−β)p2 ,

where Cβ;p2
= |B1|

n−(α1−β)p2
. Applying Theorem 2.10 to the integral I (·) we have

∥I (·)∥L(p3;−γ) ≤ C ∥g∥L(p1;α)
∥f∥L(p2;β)

. (2.7)

Let us choose parameters pk;α;β; γ, k = 1, 3 ; according to the conditions i) – iii) of Theorem 2.10.
Let α = −γ; p3 = q; p1 = q − ε0 , where ε0 ∈ (0, q − 1) and let q > 1 be some number. It is evident that
1
q ≤ 1

q−ε0
+ 1

p2
. Let β = n

(
1− 1

p2

)
− δ0, δ0 > 0 is sufficiently small number. Consequently

1

q
=

1

q − ε0
+

1

p2
+ 1− 1

p2
− δ0
n

− 1 =
1

q − ε0
− δ0
n
.

Therefore we choose ε0 according to these relations, i.e. ε0 = δ0q
2

n+δ0q
. It is not hard to check that for sufficiently

small δ0 > 0 it holds ε0 ∈ (0, q − 1) . For parameter α we obtain the following conditions

γ < n
q ⇒ α > −n

q ;

α < n
(
1− 1

p1

)
⇒ α < n

(
1− 1

q−ε0

)
;

α ≥ −β ⇒ α ≥ −n
(
1− 1

p2

)
+ δ0;

β + γ ≥ 0 ⇒ −α ≥ −β ⇒ α ≤ β ⇒ α ≤ n
(
1− 1

p2

)
− δ0 .

Let us take p2 = q − ε0 . Then as a result we obtain the following condition for α :

An;q < α ≤ n

(
1− 1

q − ε0

)
− δ0,
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where An;q = max
{
−n

q ;−n
(
1− 1

q−ε0

)
+ δ0

}
. Summing all this conditions we have

ε0 =
δ0q

2

n+ δ0q
; An;q < α ≤ n

(
1− 1

q − ε0

)
− δ0, (2.8)

where δ0 : 0 < δ0 << +∞ is some number. Consequently, it follows from relations (2.8) the validity of
conditions i) – iii) of Theorem 2.10 regarding to parameters α, β and γ . Consider

n− (α1 − β) p2 = n−
(
n−m+ |p| − n

(
1− 1

p2

)
+ δ0

)
p2 = (m− |p|+ δ0) p2.

It is evident that if |p| < m , then (m− |p|+ δ0) p2 > 0 for 0 < δ0 < 1 . Taking into account the inequality
(2.7) we have

∥I (·)∥L(q;α) ≤ c ∥f∥L(p2;β)
∥g∥L(q−ε0;α)

≤ crm−|p|+δ0 ∥g∥Lq),α(Br)
. (2.9)

It follows from condition (2.8) that ρ (x) = |x|αq ∈ L1 (Br) . Then from the following chain of continuous
embeddings

Lq,ρ (Ω) ⊂ Lq),ρ (Ω) ⊂ Lq−ε0,ρ (Ω) ,

for ∀ε0 ∈ (0, q − 1) , we get
∥I (·)∥Lq),ρ(r)

≤ Cr ∥I (·)∥Lq,ρ(r)
,

where the constant Cr depends only on r > 0 . If r ≤ r0 then we can take Cr independently of r . In fact

∥I (·)∥Lq),ρ(r)
= sup

0<ε<q−1

(
ε

∫
Br

|I (·)|q−ε
ρdx

) 1
q−ε

≤

≤
∣∣∣∣αε =

q

q − ε

∣∣∣∣ ≤ sup
0<ε<q−1

(
ε

∫
Br

|I (·)|q ρdx
)q (∫

Br

ρdx

) 1

α
′
ε(q−ε)

,

where
1

αε
+

1

α′
ε

= 1 ⇒ 1

α′
ε

=
ε

q
⇒ 1

α′
ε (q − ε)

=
ε

q (q − ε)
≤ q − 1

q2
.

As a result we obtain
∥I (·)∥Lq),ρ(r)

≤ Cr0 ∥I (·)∥Lq,ρ(r)
,

where Cr0 = (q − 1)
1
q

(∫
Br0

ρdx
) q−1

q2 .

Therefore it is valid the following.

Lemma 2.11 Let ρ (x) = |x|αq , An;q = max
{
−n

q ;−n
(
1− 1

q−ε0

)
+ δ0

}
, where ε0 = δ0q

2

n+δ0q
and δ > 0 be

sufficiently small number. If it holds

An;q < α ≤ n

(
1− 1

q − ε0

)
− δ0,

then for ∀r0 > 0, there exists Cr0 > 0 : ∀r ∈ (0, r0) , such that it is valid

∥I (·)∥Lq),ρ(r)
≤ Cr0r

m−|p|+δ0 ∥ψ∥Lq),ρ(r)
.
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The validity of lemma immediately follows from inequality (2.9) and expression for g (·) .

3. The space Nm
q),ρ (Ω) Main Lemma

In sW
m
q),ρ (Ω) along with norm ∥·∥Wm

q),ρ
(Ω) let us consider the following norm

∥f∥Nm
q),ρ

(Ω) =
∑

|p|≤m

d
|p|−n

q

Ω ∥∂pf∥Lq),ρ(Ω) ,

where dΩ = diam Ω and the corresponding space we will denote by Nm
q),ρ (Ω) . Accept N0

q),ρ (Ω) = Nq),ρ (Ω) .

It is not difficult to see that the norms ∥·∥Wm
q),ρ

(Ω) and ∥·∥Nm
q),ρ

(Ω) are equivalent, and therefore the collection

of functions of spaces Wm
q),ρ (Ω) and Nm

q),ρ (Ω) coincide. In addition, assume

sN
m
q),ρ (Ω) =

{
f ∈ Nm

q,ρ (Ω) : ∥Tδf − f∥Nm
q,ρ(Ω) → 0, δ → 0

}
.

Accept the following.

Definition 3.1 We will say that the operator L has the property Px0) if its coefficients satisfy the conditions:
i) ap ∈ L∞ (Br (x0)) , ∀ |p| ≤ m , for some r > 0 ; ii) ∃r > 0 : for |p| = m the coefficient ap (·) coincides a.e.
in Br (x0) with some function bounded and continuous at the point x0 ∈ Ω .

It is absolutely clear that if ap ∈ C (Ω) , ∀ |p| ≤ m , then L has the property Px0) for ∀x0 ∈ Ω .
Let us consider the m -th order elliptic operator L with the coefficients ap (x) defined by (2.1), and the

corresponding operator Tx0
defined by (2.4). Denote the operators Sx0

, Lx0
and Tx0

, corresponding to the
point x0 = 0 , by S0, L0 and T0 , respectively. Let us prove the following key lemma.

Main Lemma. Let m–th order elliptic operator L have the property Px0) at the point x0 ∈ Ω . Let
φ ∈ Nm

q) (Br (x0)) and φ vanish in a neighbourhood of |x− x0| = r . Let the weight ρ (x) = |x|αq satisfy all
conditions of Lemma 2.11. Then it is valid

∥Tx0
φ∥Nm

q),ρ
(Br(x0))

≤ σ (r) ∥φ∥Nm
q),ρ

(Br(x0))
,

where the function σ (r) → 0, r → 0 , depends only on the ellipticity constant Lx0
, on the coefficients of L .

Proof We will follow the scheme of the work [12]. By the value of the function ap (·) at the point x0 = 0 for
|p| = m we will mean the value of the corresponding function from the property Px0

) continuous at this point.
For simplicity, we assume that n ≥ 3 and is odd, with r < 1 . Following [4], we assume

ψ = (L0 − L)φ = ψ1 + ψ2,

ψ1 (x) =
∑

|p|=m

(ap (0)− ap (x)) ∂
pφ (x) =

∑
|p|=m

bp (x) ∂
pφ (x) ,

where bp (x) = ap (0)− ap (x) and ψ2 (x) = −
∑

|p|<m ap (x) ∂
pφ (x) . Obviously, bp (0) = 0 , and consequently,

supvrai
|x|<r

|bp (x)| = o (1) , r → 0 . It is obvious that

∥ψ1∥Lq),ρ(r)
≤ o (1)

∑
|p|=m

∥∂pφ∥Lq),ρ(r)
, ρ→ 0.
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Let χ = T0φ . Considering the expression for T0 , we obtain

χ = S0 (L0 − L)φ = S0ψ =

∫
Br

J0 (x− y)ψ (y) dy.

For |p| < m we have

∂pχ (x) =

∫
Br

∂pxJ0 (x− y)ψ (y) dy.

In this case, the following estimate is valid for the derivatives ∂pJ0 :

|∂pJ0 (x)| ≤ c |x|m−n−|p|
.

Then for ∂pχ we obtain

|∂pχ (x)| ≤ c

∫
|y|<r

|x− y|m−n−|p| |ψ (y)| dy. (3.1)

In the sequel we will use the following well-known formula for α < n :

∫
|x−y|<r

dy

|x− y|α
=

|B1| rn−α

n− α
, ∀x ∈ Rn, (3.2)

where |B1| is a volume of a unit ball B1 in Rn (see, e.g., [41, p. 19]. Let ε ∈ (0, q − 1) be some number. Apply
Theorem 2.10 to the integral

I (x) =

∫
|y|<r

|x− y|m−n−|p| |ψ (y)| dy.

Taking into account the Lemma 2.11 for ∥∂pχ∥Lq),ρ(r)
we obtain the estimate

∥∂pχ∥Lq),ρ(r)
≤ cr0r

m−|p|+δ0 ∥ψ∥Lq),ρ(r)
,

∀r ∈ (0, r.0) , where δ0 > 0 – sufficiently small number and the constant cr0 is independent of r . It follows
directly from the above inequality that

r|p| ∥∂pχ∥Lq),ρ(r)
≤ Cr0r

m ∥ψ∥Lq),ρ(r)
, ∀p : |p| < m.

Taking into account the estimate for ∥ψ1∥Lq)(r)
, we obtain

r|p| ∥∂pχ∥Lq),ρ(r)
≤ crm

(
∥ψ1∥Lq),ρ(r)

+ ∥ψ2∥Lq),ρ(r)

)
≤

≤ crm

o (1) ∑
|p|=m

∥∂pφ∥Lq),ρ(r)
+

∑
|p|<m

∥∂pφ∥Lq),ρ(r)

 .

r|p|−
n
q ∥∂pχ∥Lq),ρ(r)

≤
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≤ c

o (1) ∑
|p|=m

rm−n
q ∥∂pφ∥Lq),ρ(r)

+ rm−1
∑

|p|<m

r|p|−
n
q ∥∂pφ∥Lq),ρ(r)

 =

= o (1) ∥φ∥Nq),ρ(r)
, r → 0.

Thus, the following relation is true

r|p|−
n
q ∥∂pχ∥Lq),ρ(r)

≤ o (1) ∥φ∥Nq),ρ(r)
, r → 0 , ∀ |p| < m. (3.3)

Let us estimate ∥∂pχ∥Lq),ρ(r)
for |p| = m . In this case we have

∂pχ (x) =

∫
Br

∂pJ0 (x− y)ψ (y) dy + cψ (x) , (3.4)

(see [4, p. 235]). Then ∂pJ0 (x) is a singular kernel. From conditions of Lemma 2.11 on parameter α it follows
that ρ ∈ Aq (r) , where ρ (x) = |x|α q . Concerning this fact one can see e.g., the work [24]. Then from Theorem
2.8 it follows that K ∈

[
Lq),ρ (r)

]
Applying Theorem 2.8 from (3.4) we obtain

∥∂pχ∥Lq),ρ(r)
≤ c ∥ψ∥Lq),ρ(r)

, |p| = m.

Consequently

rm−n
q ∥∂pχ∥Lq),ρ(r)

≤

≤ c

o (1) ∑
|p|=m

rm−n
q ∥∂pφ∥Lq),ρ(r)

+ r
∑

|p|<m

r|p|−
n
q ∥∂pφ∥Lq),ρ(r)

 =

= o (1) ∥φ∥Nq),ρ(r)
, r → 0 .

Then, taking into account (3.3), as a result we have

∥χ∥Nq),ρ(r)
= ∥T0φ∥Nq),ρ(r)

≤ o (1) ∥φ∥Nq),ρ(r)
, r → 0 .

The lemma is proved. 2

4. Local existence theorem
First let us prove that the elliptic operator L is bounded from Nm

q),ρ (Ω) to sLq),ρ (Ω) . Namely, it is valid the
following.

Lemma 4.1 Let the coefficients ap (·) of the elliptic operator L satisfy the condition ap (·) ∈ L∞ (Ω) , ∀p :

|p| ≤ m , and the weight ρ (x) = |x|αq satisfy all conditions of Lemma 2.11. Then L ∈
[
Nm

q),ρ (Ω) ; sNq),ρ (Ω)
]

.
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Proof This lemma is proved completely analogously to the Lemma 4.1 of the work [12]. For completeness
we will give full proof. It suffices to prove that f ∈ sNq),ρ (Ω) and φ ∈ L∞ (Ω) imply φf ∈ sNq),ρ (Ω) . It is
absolutely clear that φf ∈ Nq),ρ (Ω) . Therefore it suffices to prove the relation

∥Tδ (φf)− φf∥Nq),ρ(Ω) → 0 , δ → 0.

We have
∥φ (·+ δ) f (·+ δ)− φ (·) f (·)∥Nq),ρ(Ω) ≤ ∥φ (·+ δ) (f (·+ δ)− f (·))∥Nq),ρ(Ω) +

+ ∥(φ (·+ δ)− φ (·)) f (·)∥Nq),ρ(Ω) = ∆
(1)
δ +∆

(2)
δ ,

where ∆
(1)
δ and ∆

(2)
δ are the corresponding terms on the right-hand side of this inequality. For ∆

(1)
δ we have

∆
(1)
δ ≤ ∥φ∥∞ ∥f (·+ δ)− f (·)∥Nq),ρ(Ω) → 0 , δ → 0.

Further, let ε > 0 be an arbitrary number. As C∞
0 (Ω) = sNq),ρ (Ω) (the closure in Nq),ρ (Ω)), it is clear

that ∃g ∈ C∞
0 (Ω) :

∥f − g∥Nq),ρ(Ω) < ε.

Consequently, for ∆
(2)
δ we have

∆
(2)
δ = ∥(φ (·+ δ)− φ (·)) (f (·)− g (·) + g (·))∥Nq),ρ(Ω) ≤ 2 ∥φ∥∞ ε+∆

(3)
δ ,

where
∆

(3)
δ = ∥(φ (·+ δ)− φ (·)) g (·)∥Nq),ρ(Ω) .

To complete the proof, it remains to show that ∆
(3)
δ → 0 , δ → 0 . It is absolutely clear that φ ∈ Nq),ρ (Ω) .

Then from the continuous embedding Lq (Ω) ⊂ Lq),ρ (Ω) we have

∆
(3)
δ ≤ ∥g∥∞ ∥φ (·+ δ)− φ (·)∥Nq),ρ(Ω) ≤ c ∥g∥∞ ∥φ (·+ δ)− φ (·)∥Nq),ρ(Ω) → 0 , δ → 0,

where c > 0 is a constant independent of δ . The lemma is proved. 2

Previous obtained results allow us analogously to the work [12] to prove the following existence theorem
on solvability in the small.

Theorem 4.2 Let L be a m–th order elliptic operator which has the property Px0
) at some point x0 ∈ Ω and

weight ρ (x) = |x|αq , 1 < q < +∞ , satisfy all conditions of Lemma 2.11. For ∀f ∈ sNq),ρ (Ω) for sufficiently
small r > 0 , there exists a solution of the equation Lu = f belonging to the class Nq),ρ (Br (x0)) .

Proof Again this theorem is proved analogously to the Theorem 4.2 of work [12]. For the convenience of the
reader we give full proof. Without loss of generality, we will assume that x0 = 0 (and so 0 ∈ Ω). Let us show
that L0S0φ = φ , ∀φ ∈ sNq),ρ (r) . In fact, let φ ∈ sNq),ρ (r) be an arbitrary function. By Lemma 2.2, we have

∃ {φk} ⊂ C∞
0 (r) : ∥φk − φ∥Nq),ρ(r)

→ 0, k → ∞.
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By Theorem 2.1, L0S0φk = φk , ∀k ∈ N . Therefore it suffices to prove that L0S0 acts boundedly in sNq),ρ (r) .
We have

L0S0φk = L0

∫
Br

J0 (x− y)φk (y) dy.

Taking into account that L0 is a homogeneous differential operator of m -th order, by differentiation formula
(3.4), for |p| = m we have

(L0S0φk) (x) =

∫
Br

L0J0 (x− y)φk (y) dy + const φk (x) .

As L0J0 (x) is a singular kernel, from Theorem 2.9 it follows that L0S0 is bounded for the functions from
C∞

0 (r) to sNq),ρ (r) , and C∞
0 (r) = sNq),ρ (r) implies its boundedness in sNq),ρ (r) . Thus, L0S0 = I

sNq),ρ(r)

in sNq),ρ (r) , where I
sNq),ρ(r) is a unit operator in sNq),ρ (r) . We have

L0T0 = L0S0 (L0 − L) = I
sNq),ρ(r) (L0 − L) = L0 − L.

Using this expression, the equation Lu = f can be rewritten as follows:

L0u− L0T0u = f ⇒ L0

(
INq),ρ

− T0
)
u = f,

where INq),ρ
is a unit operator in Nq),ρ (r) . Hence we obtain

(
INq),ρ

− T0
)
u = S0f.

By Main Lemma, we have ∥T0∥Nq),ρ→Nq),ρ
= o (1) , r → 0 . Therefore, for sufficiently small r we have

∥T0∥Nq),ρ→Nq),ρ
< 1 . Then, the operator

(
INq),ρ

− T0
)

is boundedly invertible in Nq),ρ (r) and, by Lemma

2.2, the function

u =
(
INq),ρ

− T0
)−1

S0f

is a solution of the equation Lu = f .
The theorem is proved. 2
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