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Abstract: The surfaces constructed from the holomorphic solutions of the supersymmetric (susy) CPN−1 sigma model
are studied. By obtaining compact general expansion formulae having neat forms due to the properties of the superspace
in which this model is described, the explicit expressions for the components of the radius vector as well as the elements
of the metric and the Gaussian curvature are given in a rather natural manner. Several examples of constant curvature
surfaces for the susy CP 2 sigma model are presented.
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1. Introduction
Sigma models may be considered as generalizations of the nonlinear Lagrangians providing a phenomenological
model of beta decay containing pions and a scalar meson which was then called sigma and hence the name
sigma models. This phenomenological model was first introduced by Gürsey [24] and subsequently by Gell-
Mann and Lévy [13]. They were further studied by introducing nonlinear terms in the pion field in [5, 6]. In
three dimensions these nonlinear sigma models have been used to test various properties of the four-dimensional
gauge theories which are centrally important in the description of elementary particles. An interesting class of
these models is the CPN−1 sigma model that was first discovered by Eichenherr [11]. The nonlinear constraint
defines CPN−1 as the target manifold and many of its interesting properties are due to its geometrical structure
[38]. For example it has an associated linear scattering problem, an infinite set of conservation laws and classical
solutions in the form of solitons and instantons, respectively, in (2+1)- and (1+1)-dimensions. Having such
important properties this model has found wide range of applications in physics, to such areas as quantum field
theory [1], fluid mechanics [4], two-dimensional gravity [16], statistical physics [35] and string theory [36].

Another important property of the CPN−1 sigma model (harmonic map in the mathematical literature)
was found when the connection between the CP 1 sigma model and the generalized Weierstrass representation
has been established in R3 [3]. The expression describing minimal surfaces immersed in three-dimensional
Euclidean space was first introduced by Enneper [12] and Weierstrass [39] and known as “Weierstrass repre-
sentation”. More than two decades ago this idea was used to generate surfaces in various multidimensional
spaces by Konopelchenko et al. [32, 33]. Further studies were performed to obtain several variants of this rep-
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resentation [23, 25, 26, 31, 34]. However, it was soon realized that generalizing this idea for obtaining surfaces
in higher-dimensional spaces was not an easy task and in order to systematically handle the problem the link
between harmonic maps has been used [17–20]. In that systematic approach the idea was to write the Euler–
Lagrange equations of the CPN−1 sigma model as a conservation law. This gave rise to a closed one-form and
integral of it was identified as a two-dimensional surface in a real (N2 − 1) -dimensional Euclidean space. From
the subsequent development of the subject it was observed that the projector formalism of this model played
an important role.

On the other hand in order to include the fermions in the theory these models were supersymmetrized
[27, 40] and relating bosonic and fermionic fields had many far reaching consequences. Indeed, only after the
generalization of this procedure to the supersymmetric case [27] the importance of the projector formalism in
the construction of surfaces was fully understood. In this regard the possibility of relating the coordinates of
the surface directly to the components of the projector was realized. Subsequently, by considering sums of the
projectors (i.e. projectors of the Grassmanian sigma models) the idea of using projectors for the construction
of surfaces was further developed in [7, 14, 15, 21, 22, 28, 37, 41]. In addition, constant curvature surfaces of
these models were investigated using the generalized Veronese curve [8, 9] and particular generalizations to susy
Grassmanian sigma models were recently investigated by the help of the gauge invariance of the theory [29, 30].

In this work we focus on the surfaces in RN2−1 constructed out of the holomorphic solutions of the susy
CPN−1 sigma model. We especially pay attention to the cases for which N < 3 . In this regard after very
briefly giving the basic notions of the classical CPN−1 sigma model and its generalization to the susy case
described on a two-dimensional superspace, we obtain compact general expansion formulae. The latter are used
for expressing the components of the radius vector explicitly. The nonvanishing elements of the metric and the
Gaussian curvature are also given by the help of these expansion formulae in a manifest manner.

The outline of the paper is given as follows. In the next section, a very brief notion of the classical CPN−1

sigma model is discussed and the procedure of obtaining the canonical expressions for the components of the
radius vector of the surface constructed out of the holomorphic solutions of this model is summarized. Then,
in Section 3 the susy CPN−1 sigma model constructed on a superspace is described. Section 4 is devoted to
the investigation of surfaces obtained from the holomorphic solutions of the two specific examples, namely, the
susy CP 1 and CP 2 models. Finally, some conclusions and future directions are discussed in the last section.

2. The classical CPN−1 sigma model and the projector formalism

In order to maintain the self-containedness of the paper we give a brief summary of the CPN−1 sigma model.
We basically follow [40].

Suppose that in Euclidean space we have an energy functional

S =
1

4

∫
Ω

(Dµz)
†(Dµz)dξdξ̄ ,

ξ = ξ1 + iξ2,
ξ̄ = ξ1 − iξ2,

z = (z0, z1, . . . , zN−1)
T , (2.1)

with an additional constraint z† · z = 1 , then the stationary points of this functional are defined to be the
CPN−1 sigma model equations. Here, we are interested in the maps C ∋ (ξ, ξ̄) → (z0, z1, . . . , zN−1)

T ∈ CN ,
and

Dµz = ∂µz − (z† · ∂µz)z, ∂µ = ∂ξµ µ = 1, 2, (2.2)
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are covariant derivatives. They act on z : Ω → CPN−1 by the understanding that Ω is an open, connected
subset of a complex plane C , ξ and ξ̄ are local coordinates in Ω and as usual the symbol † denotes Hermitian
conjugation.

Having the advantage of the homogeneous coordinates z = f(f† · f)−1/2 , f ∈ CN , we can introduce the
gauge invariant projector formalism for the CPN−1 sigma model. Again following [40] we define the rank 1
orthogonal projector

P =
f ⊗ f†

f† · f
, P † = P , P 2 = P . (2.3)

Of course, P = (Pij) ∈ CN×N with Pii ∈ R and P̄ij = Pji, i, j = 1, ..., N is a Hermitian matrix. Then, the
energy functional (2.1) can be expressed as

S =

∫
Ω

tr(∂P ∂̄P) dξdξ̄ , ∂ =
1

2

(
∂ξ1 − i∂ξ2

)
, ∂̄ =

1

2

(
∂ξ1 + i∂ξ2

)
, (2.4)

and the Euler–Lagrange equations become [∂∂̄P, P ] = 0 , which could also be written as a conservation law

∂[∂̄P, P ] + ∂̄[∂P, P ] = 0 . (2.5)

Among other things this formalism is important for the construction of surfaces in RN2−1 obtained from
the CPN−1 sigma model. Having expressed the Euler–Lagrange equations as a conservation law (2.5) we can
construct an exact matrix-valued 1 -form

dX = i(−[∂P, P ]dξ + [∂̄P, P ]dξ̄) , (2.6)

whose potential (i.e. the integral) determines a surface

X(ξ, ξ̄) = i

∫
γ

(−[∂P, P ]dξ + [∂̄P, P ]dξ̄) , (2.7)

immersed in a real (N2 − 1) -dimensional space. Due to the exactness of the 1 -form (which indeed comes from
(2.5)) the integral depends only on the end points of the curve γ and defines a mapping X : Ω ∋ (ξ, ξ̄) →

X(ξ, ξ̄) ∈ su(N) where we consider RN2−1 ∼= su(N) by using the Lie algebra isomorphism (i.e. the (N2 − 1)-
dimensional Euclidean space is identified with the su(N) algebra). This map X is called the generalized
Weierstrass formula for immersion and each element of the real-valued su(N) matrix function X is treated as

coordinates of a two-dimensional surface immersed in RN2−1 .
However, as already mentioned in [28], the construction of surfaces in RN2−1 based on the line integrals

(2.7) can be bypassed and one can directly relate the surfaces by the so called “fundamental projector” of the
holomorphic map through X = P . Due to the fact that in the generalization of this procedure to the susy case
there happens to appear some obstacles because of the constraints of the model, in this paper neither the mixed
solutions of the CPN−1 sigma model constructed out of holomorphic solutions, which are very well-known,
[10, 38] nor the more fruitful approach [28, 41] of taking the sums of the projectors constructed from these
mixed solutions are considered. Only the surfaces that are constructed out of the holomorphic solutions of the
model are investigated.
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Finally, let us finish this section by summarizing (following [28]) the procedure of obtaining the radius

vector X in RN2−1 . By considering the real and imaginary parts of the off-diagonal entries of P , such as

Xn := (Xij)+ = Pij + P̄ij , for n = 1, . . . ,
N2 −N

2
, i ̸= j,

Xn := (Xij)− = i(Pij − P̄ij), for n =
N2 −N

2
, . . . , N2 −N, i ̸= j, (2.8)

we can identify the N(N − 1) real components of X . They satisfy the following relation

N∑
i, j = 1
i < j

(
(Xij)

2
+ + (Xij)

2
−
)
= 4

N∑
i, j = 1
i < j

|Pij |2. (2.9)

Then, the linear combination of the diagonal entries of P can be associated with the remaining components of
X (notice that we are left with (N −1) components). Indeed this freedom in choosing the last components give
rise to different representations of the surface corresponding to the same solution of the CPN−1 sigma model.
However, a canonical choice can be made by taking XN2−N+1 = P11−PNN and any orthogonal transformation
made on the components of X obtained from the diagonal entries of P will leave it invariant. Such a surface
can be characterized by a quadratic equation on the components of the radius vector X as:

N2−1∑
i=1

X2
i =

2r

N
(N − r) , (2.10)

where r is the rank of the orthogonal projector P .
Of course, this equation for the surface should be understood together with the independent constraints.

For the surfaces obtained from the fundamental projector (e.g., rank 1 projectors) all the 2×2 minors of P are
vanishing and it is not difficult to see that among all the nonlinear constraints (due to the requirement P 2 = P

and P † = P )

N∑
j=1

|Pij |2 + Pii(Pii − 1) = 0 , j ̸= i , i = 1, . . . , N , (2.11)

Pij(Pii + Pjj − 1) +

N∑
m=1

PimPmj = 0 , i < j, i ̸= j ̸= m, i, j = 1, . . . , N, (2.12)

only the following ones are independent

|P1i|2 = P11Pii ,∣∣∣∣ P1i P1j

Pii Pij

∣∣∣∣ = 0 ,

i = 2, . . . , N,
j = 3, . . . , N,

i < j . (2.13)

Since we are embedding the surfaces obtained from solutions of the CPN−1 sigma model into the RN2−1 with
the above constraints (2.13) we are left with 2(N − 1) real quantities (since (N2 − 1)− [N − 1 + (N − 1)(N −
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2)] = 2(N − 1)). This result coincides with the fact that the target space for the CPN−1 sigma model is
SU(N)/

(
SU(N − 1)× U(1)

)
.

3. The susy CPN−1 sigma model and surfaces constructed from its holomorphic solutions
After presenting the procedure for obtaining the canonical expressions for the surfaces constructed from the
holomorphic solutions of the CPN−1 sigma model, it is natural to ask what would be the analogues of those
expressions for the supersymmetric case.

The CPN−1 sigma model has been supersymmetrized in [6]. Here, following [40] we first give a brief
description of this model on a two-dimensional superspace and then give some general expansion formulae which
have nice and simple expressions due to the properties of this superspace.

It is convenient to construct the susy CPN−1 sigma model on the two-dimensional superspace (ξ+, ξ−, θ+, θ−)

where the usual even coordinates ξ, ξ̄ given in (2.1) are, respectively, denoted by ξ+, ξ− for convenience and
θ± are the odd coordinates defined by

θ+ = θ1 + iθ2 , θ− = θ1 − iθ2 . (3.1)

Here, we take θ1 and θ2 as real since they denote two components of a Majorana spinor θ . Then, we consider
a bosonic superfield

Φ(ξ+, ξ−, θ+, θ−)=z(ξ+, ξ−)+iθ+χ+(ξ+, ξ−)+iθ−χ−(ξ+, ξ−)−
1

2
θ+θ−F (ξ+, ξ−), (3.2)

where z, F are N -component bosonic fields and χ± are N -component fermionic fields. Taking into account
that the odd fields χ+ and χ− anticommute with themselves as well as with the odd variables θ± , we write
the Hermitian conjugate of Φ as

Φ†(ξ+, ξ−, θ+, θ−)=z
†(ξ+, ξ−)+iθ−χ

†
+(ξ+, ξ−)+iθ+χ

†
−(ξ+, ξ−)−

1

2
θ+θ−F

†(ξ+, ξ−). (3.3)

The constraints on even and odd component fields, which indeed follow from Φ† · Φ = 1 , are given by

z† · z = 1 , χ†
∓ · z + z† · χ± = 0 ,

F † · z + z† · F = 2(χ†
−χ− − χ†

+χ+) . (3.4)

Next, we introduce the supercovariant derivatives, the analogues of (2.2)

Ď± = ∂̌± − (Φ† · ∂̌±Φ) , (3.5)

where ∂̌± are the generalizations of the usual derivatives ∂ and ∂̄ (i.e. those given in (2.4) and for convenience
will be denoted by ∂± for the rest of the article) to their super counterparts

∂̌± = −i∂θ± + θ±∂± . (3.6)

The supercovariant derivatives could either act on bosonic or fermionic superfields and in terms of them
the Lagrangian density and the equations of motion of the susy CPN−1 sigma model read, respectively,

L = 2(|Ď+Φ|2 − |Ď−Φ|2) ,

Ď+Ď−Φ+ |Ď−Φ|2 Φ = 0 . (3.7)
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Similarly to the case of the classical CPN−1 sigma model, we can give the gauge invariant projector
formalism by defining the projector

P̌ =
f̌ ⊗ f̌†

f̌† · f̌
, (3.8)

where we used Φ = f̌/(f̌† · f̌)−1/2 , the analogue of z = f(f† · f)−1/2 for the nonsusy case. Then, the equations
of motion could be written as a superconservation law

∂̌+[∂̌−P̌ , P̌ ] + ∂̌−[∂̌+P̌ , P̌ ] = 0 . (3.9)

Having written the projector formalism for the supersymmetric case, we could easily apply our procedure
for obtaining the canonical expressions for the supersurfaces constructed from the solutions of the susy CPN−1

sigma model. However, some obstacles start to appear when we try to generate nonholomorphic solutions from
the holomorphic ones through the use of the analogue of the operator P+ (see, e.g., [40]) due to the constraints
of the model. Thus, we restrict ourselves to the holomorphic solutions

f̌ = f̌(ξ+, θ+) . (3.10)

Before starting to give examples about generalization of our procedure to the supersymmetric case it
would be helpful to give some general power formulae for the superfields. For a general bosonic superfield

a = a0 + iθ+a1 + iθ−a2 − θ+θ−a3 , (3.11)

where a0, a3 are bosonic fields and a1, a2 are fermionic fields, the nth power can be expressed as

an =
1

2
an−2
0

(
n(n− 1)a2 − n(n− 2)2a0 a+ (n− 1)(n− 2)a20

)
, (3.12)

for n ≥ 0 and a0 ̸= 0 with a2 given as

a2 = 2a0a− a20 + 2θ+θ−a1a2 . (3.13)

For a0 = 0 we have

a2 = 2θ+θ−a1a2 , and an = 0 , n ≥ 3 . (3.14)

The negative powers of a can be expressed as

a−n =
n

2an+2
0

(
(n+ 1)a2 − (n+ 2)2a0a+

(
(n+ 3) +

2

n

)
a20

)
, a0 ̸= 0 , (3.15)

where a2 is given in (3.13). It is obvious that we cannot have an expression for a−n if a0 = 0 .

4. Specific examples: the susy CP 1 and CP 2 cases

In this section we apply our procedure to the two specific cases, namely the susy CP 1 and CP 2 models.
Although the susy CP 1 case was discussed in [27], we briefly summarize it here for completeness.
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4.1. The susy CP 1 case

Using (3.8) and remembering that the overall gauge freedom allows us to choose f̌ =

(
1
W

)
, where W is a

bosonic superfunction, we write the projector P̌ for this case as

P̌ =
1

1 + |W |2

(
1 W †

W |W |2
)

. (4.1)

Then, making the canonical choice (actually for this case there is not any other choice) X̌3 = P̌11 − P̌22 we find
the canonical expressions for the components of the radius vector

X̌1 =
W † +W

1 + |W |2
, X̌2 = i

W † −W

1 + |W |2
, X̌3 =

1− |W |2

1 + |W |2
. (4.2)

Since we are only interested in the holomorphic solutions

W = F + iθ+G , W † = F̄ + iθ−Ḡ , (4.3)

where F and G are, respectively, bosonic and fermionic functions of ξ+ , the explicit expressions for the
components of the radius vector become

X̌1 =
F̄ + F
1 + |F|2

+ iθ+
G(1− F̄2)

(1 + |F|2)2
+ iθ−

Ḡ(1−F2)

(1 + |F|2)2
+ θ+θ−

2|G|2(F̄ + F)

(1 + |F|2)3
,

X̌2 = i
F̄ − F
1 + |F|2

+ θ+
G(1 + F̄2)

(1 + |F|2)2
− θ−

Ḡ(1 + F2)

(1 + |F|2)2
+ iθ+θ−

2|G|2(F̄ − F)

(1 + |F|2)3
,

X̌3 =
1− |F|2

1 + |F|2
− iθ+

2GF̄
(1 + |F|2)2

− iθ−
2ḠF

(1 + |F|2)2
+ θ+θ−

2|G|2(1− |F|2)
(1 + |F|2)3

, (4.4)

where |G|2 denotes ḠG . In order to get these explicit expressions we used (3.15) with n = 1 and a = 1+ |W |2 .
It is important to note that although the components of the radius vector are superfields, they satisfy the
canonical expression for the surface

X̌2
1 + X̌2

2 + X̌2
3 = 1 , (4.5)

which is the analogue of the surface obtained from the solutions of the nonsusy CP 1 model. The only nonzero
element of the metric is ǧ+− and could easily be calculated from the projector

ǧ+− =
1

2
tr(∂+P̌ ∂−P̌ ) =

∂+W∂−W
†

2(1 + |W |2)2
, (4.6)

whose explicit form can immediately be written by using (3.15)

ǧ+− =
1

2

{
∂+F∂−F̄
(1 + |F|2)2

+ iθ+∂+

(
G∂−F̄

(1 + |F|2)2

)
+ iθ−∂−

(
Ḡ∂+F

(1 + |F|2)2

)

−θ+θ−∂+∂−

(
|G|2

(1 + |F|2)2

)}
. (4.7)
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Since the other elements of the metric are equal to the zero (i.e. ǧ±± = 0), the Gaussian curvature is
computed from the formula [2, 20]

K = − 1

ǧ+−
∂+∂− ln ǧ+− , (4.8)

and is found to be 4 . Hence, we conclude that although the components of the metric and the radius vector
are superfields, neither the surface nor its Gaussian curvature are changed due to those fermionic corrections.

4.2. The susy CP 2 case

For this case using the overall gauge freedom we express the superfield as

f̌ =

 1
W1

W2

 , (4.9)

where Wi (i = 1, 2) are bosonic superfunctions and thus write the projector as

P̌ =
1

1 + |W1|2 + |W2|2

 1 W †
1 W †

2

W1 W1W
†
1 W1W

†
2

W2 W2W
†
1 W2W

†
2

 . (4.10)

Then using our procedure and making the canonical choice for those components of the radius vector which
are obtained from the diagonal entries of P̌ (i.e. X̌7 = P̌11 − P̌33 ), we immediately get the components of the
radius vector

X̌1 =
W †

1 +W1

1 + |W1|2 + |W2|2
, X̌2 = i

W †
1 −W1

1 + |W1|2 + |W2|2
,

X̌3 =
W †

2 +W2

1 + |W1|2 + |W2|2
, X̌4 = i

W †
2 −W2

1 + |W1|2 + |W2|2
,

X̌5 =
W1W

†
2 +W2W

†
1

1 + |W1|2 + |W2|2
, X̌6 = i

W1W
†
2 −W2W

†
1

1 + |W1|2 + |W2|2
,

X̌7 =
1− |W2|2

1 + |W1|2 + |W2|2
, X̌8 =

2|W1|2 − |W2|2 − 1√
3(1 + |W1|2 + |W2|2)

. (4.11)

These components of the radius vector correspond exactly to the ones, found earlier for the nonsusy case.

Remark: It is worth mentioning that for the susy CP 2 case the general expressions for those components of
the radius vector which are obtained from the diagonal entries of the projector P̌ as given in [27]

X̌7 = ±2
√
3 d P̌11 ∓ 2

√
3 b P̌22 ± 2

√
3
b− d

3
,

X̌8 = ∓2
√
3 c P̌11 ± 2

√
3 a P̌22 ± 2

√
3
c− a

3
, (4.12)
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where

a =
1√
3
cosα , b =

1√
3
sinα ,

c = ∓1

2
sinα− 1

2
√
3
cosα , d = − 1

2
√
3
sinα± 1

2
cosα , (4.13)

can be transformed to the canonical form by the following transformation matrix

S =

(
±
√
3 d ∓

√
3 c

∓(2b+ d) ±(2a+ c)

)
. (4.14)

Writing the holomorphic bosonic superfunctions Wi as

Wi = Fi + iθ+Gi , W †
i = F̄i + iθ−Ḡi , i = 1, 2 , (4.15)

where Fi and Gi are, respectively, bosonic and ferminonic functions of ξ+ , and using (3.15) the explicit forms
for the components of the radius vector can be written as

X̌i =
ηi0
a0

+ iθ+

(
ηi1
a0

− ηi0a1
a20

)
+ iθ−

(
ηi2
a0

− ηi0a2
a20

)
−θ+θ−

(
ηi3
a0

− ηi0

(
a3
a20

+
2a1a2
a30

)
− ηi2a1

a20
+

ηi1a2
a20

)
, (4.16)

where

a0 = 1 + |F1|2 + |F2|2 , a1 = F̄1G1 + F̄2G2 , a2 = Ḡ1F1 + Ḡ2F2 ,

a3 = |G1|2 + |G2|2 , (4.17)

and

η10 = F̄1 + F1 , η11 = G1 , η12 = Ḡ1 , η13 = 0 ,

η20 = i(F̄1 −F1) , η21 = −iG1 , η22 = iḠ1 , η23 = 0 ,

η30 = F̄2 + F2 , η31 = G2 , η32 = Ḡ2 , η33 = 0 ,

η40 = i(F̄2 −F2) , η41 = −iG2 , η42 = iḠ2 , η43 = 0 ,

η50 = F̄1F2 + F̄2F1, η51 = F̄1G2 + F̄2G1, η52 = η̄51, η53 = Ḡ1G2 + Ḡ2G1,

η60 = i(F̄1F2 − F̄2F1), η61 = i(F̄1G2 − F̄2G1), η62 = η̄61, η63 = i(Ḡ1G2 − Ḡ2G1) ,

η70 = 1− |F2|2 , η71 = −F̄2G2 , η72 = −Ḡ2F2 , η73 = −|G2|2 ,

η80 =
2|F1|2 − |F2|2 − 1√

3
, η81 =

2F̄1G1 − F̄2G2√
3

, η82 =
2Ḡ1F1 − Ḡ2F2√

3
,

η83 =
2|G1|2 − |G2|2√

3
. (4.18)

Again the canonical expression for the surface

8∑
i=1

X̌2
i =

4

3
, (4.19)
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is recaptured for this case, albeit the components are now superfields. Of course, the equation for the surface
should be understood together with the independent constraints which could be computed from the susy
analogues of (2.13).

The components of the metric can be calculated from the projector (4.10) via the formulae

ǧ±± =
1

2
tr(∂±P̌ ∂±P̌ ) , ǧ+− =

1

2
tr(∂+P̌ ∂−P̌ ) , (4.20)

and it is easily seen that the only nonvanishing component is

ǧ+− =
|∂+W1|2 + |∂+W2|2 + |W2∂+W1 −W1∂+W2|2

2(1 + |W1|2 + |W2|2)2
. (4.21)

As already stated in [27] this would be the energy density of the associated model if the derivatives ∂±

are replaced by their super counterparts ∂̌± . Using (3.15) the explicit form of ǧ+− is given as

ǧ+− =
1

2

{
γ0
a20

+ iθ+

(
γ1
a20

− 2γ0a1
a30

)
+ iθ−

(
γ2
a20

− 2γ0a2
a30

)
−θ+θ−

(
γ3
a20

− 2γ0
a30

(
a3 +

3a1a2
a0

)
+

2a1γ2
a30

+
2γ1a2
a30

)}
, (4.22)

where ai (i = 0, . . . , 3) are given in (4.17) and γi (i = 0, . . . , 3) are given as

γ0 = |F1|2|F ′
2 |2 + |F ′

1 |2|F2|2 + |F ′
1 |2 + |F ′

2 |2 −F1F̄1
′F̄2F ′

2 − F̄1F ′
1F2F̄2

′
,

γ1 = (|F ′
2 |2F̄1 − F̄2F ′

2 F̄1
′
)G1 + (|F2|2F̄1

′ − F̄1F2F̄2
′
+ F̄1

′
)G1

′

+(|F ′
1 |2F̄2 − F̄1F ′

1 F̄2
′
)G2 + (|F1|2F̄2

′ − F̄2F1F̄1
′
+ F̄2

′
)G2

′,

γ2 = γ̄1,

γ3 = |F1|2|G ′
2|2 + |F ′

1 |2|G2|2 + |F2|2|G ′
1|2 + |F ′

2 |2|G1|2 + |G ′
1|2 + |G ′

2|2

+F1F̄2
′Ḡ1G ′

2 + F̄1F ′
2 Ḡ2

′G1 + F2F̄1
′Ḡ2G ′

1 + F̄2F ′
1 Ḡ1

′G2 − F̄2F1Ḡ1
′G ′

2

−F̄2F ′
2 Ḡ1

′G1 −F1F̄1
′Ḡ2G ′

2 − F̄1
′F ′

2 Ḡ2G1 − F̄1F2Ḡ2
′G ′

1 − F̄1F ′
1 Ḡ2

′G2

−F2F̄2
′Ḡ1G ′

1 − F̄2
′F ′

1 Ḡ1G2. (4.23)

It is easily seen that the fermionic corrections to the metric cannot be written as total derivatives, hence,
they do not vanish after integration over ξ+ and ξ− . The Gaussian curvature is again calculated from (4.8),
however, the results of the computation are rather long to be presented here. In general it is not constant and
moreover, in contrast to the susy CP 1 case, the fermionic corrections to this curvature do not cancel. This
result is expected since the Gaussian curvature for the holomorphic solutions of the bosonic CP 2 model is also
not constant in general. However, for some specific examples we do have a constant Gaussian curvature. Let
us now investigate these situations.

In purely bosonic case it has been shown that the solutions of the CP 2 model obtained from the Veronese
sequence lead to a constant Gaussian curvature [2, 20, 41]. Thus, for the holomorphic solutions (4.15) we choose
the bosonic part from the Veronese sequence

F1 =
√
2 ξ+ , F2 = ξ 2

+ , (4.24)
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and leave the fermionic part as general as possible,

G1 = Λ1H1(ξ+) , G2 = Λ2H2(ξ+) , (4.25)

where Λ1 , Λ2 are arbitrary real Grassmann constants and H1 , H2 are arbitrary bosonic functions of ξ+ .
The analysis of requiring the vanishing of all the fermionic contributions in (4.8) gives that the two Grassmann
constants Λ1 , Λ2 should be proportional Λ2 =

√
2Λ1 and the two arbitrary bosonic functions should be related

as H2(ξ+) = ξ+H1(ξ+) . Hence, for the special holomorphic solutions of the form

W1 =
√
2 ξ+ + iθ+Λ1H1(ξ+) , W †

1 =
√
2 ξ− + iθ−Λ1H̄1(ξ−) ,

W2 = ξ 2
+ + iθ+

√
2Λ1ξ+H1(ξ+) , W †

2 = ξ 2
− + iθ−

√
2Λ1ξ−H̄1(ξ−), (4.26)

we have a constant Gaussian curvature

K = 2 . (4.27)

For the above solutions (4.26) the only nonvanishing component of the induced metric and the components
of the radius vector have the following explicit expressions

ǧ+−=
1

(1 + |ξ+|2)2
+ iθ+Λ1

(1 + |ξ+|2)H′
1 − 2ξ−H1√

2(1 + |ξ+|2)3

+ iθ−Λ1
(1 + |ξ+|2)H̄′

1 − 2ξ+H̄1√
2(1 + |ξ+|2)3

, (4.28)
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X̌1 =

√
2(ξ+ + ξ−)

(1 + |ξ+|2)2
− iθ+Λ1

(
ξ−(ξ+ + 2ξ−)− 1

)
H1

(1 + |ξ+|2)3

−iθ−Λ1

(
ξ+(ξ− + 2ξ+)− 1

)
H̄1

(1 + |ξ+|2)3
,

X̌2 = −i

√
2(ξ+ − ξ−)

(1 + |ξ+|2)2
− θ+Λ1

(
ξ−(ξ+ − 2ξ−)− 1

)
H1

(1 + |ξ+|2)3

+θ−Λ1

(
ξ+(ξ− − 2ξ+)− 1

)
H̄1

(1 + |ξ+|2)3
,

X̌3 =
ξ2+ + ξ2−

(1 + |ξ+|2)2
+ iθ+Λ1

√
2(ξ+ − ξ3−)H1

(1 + |ξ+|2)3
+ iθ−Λ1

√
2(ξ− − ξ3+)H̄1

(1 + |ξ+|2)3
,

X̌4 = −i
ξ2+ − ξ2−

(1 + |ξ+|2)2
+ θ+Λ1

√
2(ξ+ + ξ3−)H1

(1 + |ξ+|2)3
− θ−Λ1

√
2(ξ− + ξ3+)H̄1

(1 + |ξ+|2)3
,

X̌5 =

√
2|ξ+|2(ξ+ + ξ−)

(1 + |ξ+|2)2
+ iθ+Λ1

ξ−
(
ξ− − ξ+(ξ

2
− − 2)

)
H1

(1 + |ξ+|2)3

+iθ−Λ1

ξ+
(
ξ+ − ξ−(ξ

2
+ − 2)

)
H̄1

(1 + |ξ+|2)3
,

X̌6 = i

√
2|ξ+|2(ξ+ − ξ−)

(1 + |ξ+|2)2
− θ+Λ1

ξ−
(
ξ+(2 + ξ2−)− ξ−

)
H1

(1 + |ξ+|2)3

+θ−Λ1

ξ+
(
ξ−(2 + ξ2+)− ξ+

)
H̄1

(1 + |ξ+|2)3
,

X̌7 =
1− |ξ+|2

1 + |ξ+|2
− iθ+Λ1

√
2 ξ−H1

(1 + |ξ+|2)2
− iθ−Λ1

√
2 ξ+H̄1

(1 + |ξ+|2)2
,

X̌8 =
|ξ+|2(4− |ξ+|2)− 1√

3(1 + |ξ+|2)2
+ iθ+Λ1

√
6ξ−(1− |ξ+|2)H1

(1 + |ξ+|2)3

+iθ−Λ1

√
6ξ+(1− |ξ+|2)H̄1

(1 + |ξ+|2)3
. (4.29)

For another example of constant curvature surfaces let us consider the following class of the bosonic part
of the holomorphic solutions of the susy CP 2 model:

F1 = c1 ξ
m
+ , F2 = c2ξ

n
+ , (4.30)

where c1 and c2 are complex constants and m and n are real constants. In purely bosonic case it has been
shown that for following values of c1 , c2 , m and n

(i) c1 = 0 , c2 = 0 , m = 0 , n = 0 and m = n or a combination thereof,

(ii) n = 2m and |c1|2 = ±2|c2| simultaneously,

the Gaussian curvature K is constant [20]. Following this example we choose the special holomorphic solutions
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of the form

W1 = ξ+ + iθ+Λ1ξ+ , W †
1 = ξ− + iθ−Λ1ξ− ,

W2 =
1

2
ξ 2
+ + iθ+Λ1ξ

2
+ , W †

2 =
1

2
ξ 2
− + iθ−Λ1ξ

2
−, (4.31)

and obtain a constant Gaussian curvature K = 2 . The explicit expressions for the components of the induced
metric and the components of the radius vector can easily be obtained by the help of the general expansion
formulae.

5. Conclusion
In this paper the surfaces obtained from the holomorphic solutions of the susy CPN−1 sigma model are
investigated. For this purpose the relation between the fundamental projector of these susy harmonic maps
and the surfaces is used. This way of approaching the problem has the advantage of being more direct over the
construction of surfaces based on line integrals and further gives the possibility of obtaining canonical expressions
for the components of the radius vector. The crucial contribution of the paper is explicitly expressing these
components of the radius vector as well as the components of the metric and the Gaussian curvature in a natural
form by making use of the compact general expansion formulae having nice and simple expressions due to the
properties of the superspace on which the susy CPN−1 sigma model is described.

In the susy CP 1 case we conclude that although the components of the metric and the radius vector are
superfields, neither the surface nor its Gaussian curvature are altered due to the fermionic corrections and hence
the surface is again a two-sphere as expected. In contrast to this case, in the susy CP 2 case, the fermionic
corrections to the curvature do not vanish. This is also expected and welcome since the Gaussian curvature
for the holomorphic solutions of the nonsusy CP 2 model is not constant in general. However, for some specific
examples we do have a constant Gaussian curvature and for those we have provided the explicit expressions for
the components of the radius vector and the metric.

An interesting next step would be a search for more explicit examples of susy CPN−1 sigma model
by considering the sum of the projectors constructed from the mixed solutions (i.e., beyond the holomorphic
(nonholomorphic) solutions). In that way various other surfaces and their properties would be studied and
their geometrical properties could be explicitly given. We hope to report on the developments along these lines
elsewhere.
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