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Abstract: The primary aim of this article is to discuss and prove fixed point results using the operator type condensing
map, and to obtain the existence of solution of Erdélyi–Kober bivariate fractional integral equation in a Banach space.
An instance is given to explain the results obtained, and we construct an iterative algorithm by sinc interpolation to find
an approximate solution of the problem with acceptable accuracy.
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1. Introduction
Fractional calculus is a mathematical analysis branch that explores the several different scenarios of taking the
differentiation operator D to real number powers or complex number powers. A fractional derivative in applied
mathematics and mathematical analysis is a derivative of any noninteger order, real or complex. The first
existence is in a letter written by G.W. Leibniz in 16 th century to Antoine de l’Hopital [24]. In one of N. H.
Abel’s early papers, [2], fractional calculus was adopted, where those elements can be considered: the definition
of integration and differentiation of fractional order, the strictly inverse connection among them, the perception
that differentiation and integration of fractional order can be perceived as being in the same generalized
operation, and indeed the coherent form for arbitrary real order differentiation and integration. Over the
19th and early 20th centuries, the theory and applications of fractional calculus developed greatly, and countless
contributors have provided interpretations for fractional derivatives and integrals. The applications of fractional
calculus can be found in almost all disciplines of modern engineering and science, e.g., rheology, viscoelasticity,
acoustics, optics, chemical and statistical physics, robotics, control theory, electrical and mechanical engineering,
bioengineering, etc. The major reason for the success of fractional calculus applications is that fractional-
order models are often more accurate than integer-order. The researchers are able to model the nonlocal and
distributed effects often encountered in natural and technical phenomena with the help of different types of
fractional operators. The Erdélyi–Kober fractional integral is used in many branches of mathematics such as
porous media, viscoelasticity and electrochemistry, etc. (see [14, 23]). Different types of fractional integral and
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fractional differential equations were solved by many researchers; see for instance [1, 5, 28, 32, 33] and references
therein.

Schauder and Darbo’s fixed point theorems play a key role in addressing functional integral equations.
A significant role is played by the notion of a measure of noncompactness (MNC), in the fixed point theory.
The essential paper of Kuratowski [25] pioneered this principle. By the mid-19th century, using the definition
of a noncompactness measure, Darbo [16] proved a theorem that guarantees the existence of fixed points using
condensing operators.

Fixed point theory and measure of noncompactness have many applications for solving different types of
integral equations; see for instance [4, 8, 12, 13, 20–22, 27, 29–31, 37, 38] and references therein.

Let (E , ∥ . ∥) be a real Banach space. Let B(θ, r) be a closed ball in E centered at θ and with radius
r. If O is a nonempty subset of E , then by Ō and ConvO we denote the closure and convex closure of O.

Moreover, let ME denote the family of all nonempty and bounded subsets of E and NE its subfamily consisting
of all relatively compact sets. We denote by R the set of real numbers and R+ = [0,∞) .

Definition 1.1 [11] A function ϑ : ME → R+ is called a MNC in E if it satisfies the following conditions:

(i) for all Y ∈ ME , we have ϑ(Y) = 0 implies that Y is precompact.

(ii) the family ker ϑ = {Y ∈ ME : ϑ (Y) = 0} is nonempty and ker ϑ ⊂ NE .

(iii) Y ⊆ Z =⇒ ϑ (Y) ≤ ϑ (Z) .

(iv) ϑ
(
Ȳ
)
= ϑ (Y) .

(v) ϑ (ConvY) = ϑ (Y) .

(vi) ϑ (λY+ (1− λ)Z) ≤ λϑ (Y) + (1− λ)ϑ (Z) for λ ∈ [0, 1] .

(vii) if Yn ∈ ME , Yn = Ȳn, Yn+1 ⊂ Yn for n = 1, 2, 3, ... and lim
n→∞

ϑ (Yn) = 0 then
∞⋂
n=1

Yn ̸= φ.

The family ker ϑ is said to be the kernel of measure ϑ. Observe that the intersection set Y∞ from (vii) is a
member of the family ker ϑ. In fact, since ϑ(Y∞) ≤ ϑ(Yn) for any n, we infer that ϑ(Y∞) = 0. This gives
Y∞ ∈ ker ϑ.

Definition 1.2 [11] Let O be a nonempty subset of a Banach space E and B : O → E be a continuous
operator transforming bounded subsets of O to bounded ones. We say that B satisfies the Darbo condition
with a constant k with respect to the measure ϑ provided ϑ(TY) ≤ kϑ(Y) for each Y ∈ ME such that Y ⊂ O.

We recall the Schauder and Darbo fixed point theorems:

Theorem 1.3 [3, Schauder] Let D be a nonempty, closed and convex subset of a Banach space E . Then every
compact, continuous map B : D → D has at least one fixed point.

Theorem 1.4 [16, Darbo] Let Z be a nonempty, bounded, closed and convex subset of a Banach space E . Let
S : Z → Z be a continuous mapping. Assume that there is a constant k ∈ [0, 1) such that

ϑ(SU) ≤ kϑ(U), U ⊆ Z.
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Then S has a fixed point.

In order to establish our fixed point theorem, we need some of the following related concepts.

Definition 1.5 [7] Let F ([0,∞)) be class of all function f : [0,∞) → [0,∞) and let Θ be class of all operators

A(.; .) : F ([0,∞)) → F ([0,∞)), f → A(f ; .)

satisfying the following conditions:

(1) A(f ; t) > 0 for t > 0 and A(f ; 0) = 0,

(2) A(f ; t) ≤ A(f ; s) for t ≤ s,

(3) lim
n→∞

A(f ; tn) = A(f ; lim
n→∞

tn),

(4) A(f ;max {t, s}) = max {A(f ; t),A(f ; s)} for some f ∈ F ([0,∞)).

Example 1.6 If f : [0,∞) → [0,∞) is a Lebesgue integrable mapping on each compact subset of [0,∞),

nonnegative and such that for each t > 0,
∫ t
0
f(s)ds > 0, then the operator defined by

A(f ; t) =

∫ t

0

f(s)ds

satisfies the conditions of Definition 1.5.

Example 1.7 If f : [0,∞) → [0,∞) is a nondecreasing, continuous function such that f(0) = 0 and f(t) > 0

for t > 0, then the operator defined by

A(f ; t) =
f(t)

1 + f(t)

satisfies the conditions of Definition 1.5.

Example 1.8 If f : [0,∞) → [0,∞) is any function, then the operator defined by

A(f ; t) = t

satisfies the conditions of Definition 1.5.

Definition 1.9 [22] Let F be the class of all functions H : R+ ×R+ → R+ satisfying the following conditions:

(1) max {ι,ϖ} ≤ H(ι,ϖ) for ι,ϖ ≥ 0.

(2) H is continuous and nondecreasing.
For example, H(ι,ϖ) = ι+ϖ.

We denote by S the class of all functions γ : R+ → [0, 1) which satisfy the following condition: tn → 0

whenever γ(tn) → 1 (see [19]).
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2. A fixed point theorem involving condensing operators

In this section, we are introducing a new fixed point theorem using the operator type condensing map.

Theorem 2.1 Let D be a nonempty, bounded, closed, and convex subset of a Banach space E . Also, let
B : D → D be a continuous function and φ : R+ → R+ be a continuous function such that

H [A (f ;ϑ (B(O))) , φ (ϑ (B(O)))] ≤ γ (ϑ(O))H [A (f ;ϑ (O)) , φ (ϑ (O))] (2.1)

for all O ⊆ D, γ ∈ S, H ∈ F, A(., .) ∈ Θ, where ϑ is an arbitrary MNC. Then B has at least one fixed point
in D.

Proof Let us define a sequence (Dl) such that D0 = D and Dl+1 = Conv(BDl) for n ≥ 0. We observe
that BD0 = BD ⊆ D = D0, D1 = Conv(BD0) ⊆ D = D0. Therefore, by continuing this process, we have
D0 ⊇ D1 ⊇ D2 ⊇ . . . ⊇ Dl ⊇ Dl+1 ⊇ . . . .

If there exists a natural number m such that ϑ(Dm) = 0, then Dm is compact. By Schauder’s theorem, now
we know that B has a fixed point.
If ϑ(Dl) > 0 for some l ≥ 0, by (2.1), we have

H [A (f ;ϑ (Dl+1)) , φ (ϑ (Dl+1))]

= H [A (f ;ϑ (Conv (BDl))) , φ (ϑ (Conv (BDl)))]

= H [A (f ;ϑ (BDl)) , φ (ϑ (BDl))]

≤ γ(ϑ (Dl))H [A (f ;ϑ (Dl)) , φ (ϑ (Dl))]

< H [A (f ;ϑ (Dl)) , φ (ϑ (Dl))] .

As the sequence {H [A (f ;ϑ (Dl)) , φ (ϑ (Dl))]} is decreasing and nonnegative,

lim
l→∞

H [A (f ;ϑ (Dl)) , φ (ϑ (Dl))] = r.

If possible, assume r > 0. As l → ∞, we have

r ≤ r lim
l→∞

γ(ϑ (Dl))

which gives lim
l→∞

γ(ϑ (Dl)) ≥ 1 and it is a contradiction. Hence,

lim
l→∞

H [A (f ;ϑ (Dl)) , φ (ϑ (Dl))] = 0.

Since A (f ;ϑ (Dl)) , φ (ϑ (Dl)) ≥ 0,

0 ≤ max {A (f ;ϑ (Dl)) , φ (ϑ (Dl))} ≤ H [A (f ;ϑ (Dl)) , φ (ϑ (Dl))] .

As l → ∞

max

{
lim
l→∞

A (f ;ϑ (Dl)) , lim
l→∞

φ (ϑ (Dl))

}
= 0
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i.e. lim
l→∞

A (f ;ϑ (Dl)) = 0 implies lim
l→∞

ϑ (Dl) = 0.

Since Dl ⊇ Dl+1 by the hypothesis, we have conclusion that D∞ =
∞⋂
l=1

Dl is a nonempty, closed and convex

subset of D, and D∞ is invariant under B. Thus, Schauder’s theorem indicates that B has a fixed point in
D∞ ⊆ D. This completes the proof of the theorem. 2

Theorem 2.2 Let D be a nonempty, bounded, closed, and convex subset of a Banach space E . Also, let
B : D → D be a continuous function and φ : R+ → R+ be a continuous function such that

A (f ;ϑ (B(O))) + φ (ϑ (B(O))) ≤ γ (ϑ(O)) [A (f ;ϑ (O)) + φ (ϑ (O))] (2.2)

for all O ⊆ D, γ ∈ S, A(., .) ∈ Θ, where ϑ is an arbitrary MNC. Then B has at least one fixed point in D.

Proof The result follows by taking A(ι,ϖ) = ι+ϖ, in Theorem 2.1. 2

Theorem 2.3 Let D be a nonempty, bounded, closed, and convex subset of a Banach space E . Also, let
B : D → D be a continuous function such that

ϑ (B(O)) ≤ γ (ϑ(O))ϑ (O) (2.3)

for all O ⊆ D, γ ∈ S, where ϑ is an arbitrary MNC. Then B has at least one fixed point in D.

Proof The result follows by taking A(f ; t) = t and φ ≡ 0, in Theorem 2.2. 2

Theorem 2.4 Let D be a nonempty, bounded, closed, and convex subset of a Banach space E . Also, let
B : D → D be a continuous function such that

ϑ (B(O)) ≤ kϑ (O) , k ∈ [0, 1) (2.4)

for all O ⊆ D, where ϑ is an arbitrary MNC. Then B has at least one fixed point in D.

Proof The result follows by taking γ(t) = k for all t ≥ 0, k ∈ [0, 1), in Theorem 2.3. 2

Definition 2.5 [15] An element (p, q) ∈ O × O is called a coupled fixed point of a mapping B : O × O → O

if B(p, q) = p and B(q, p) = q.

Theorem 2.6 [11] Suppose ϑ1, ϑ2, . . . , ϑn are MNC in E1,E2, . . . ,En, respectively. Furthermore, let O :

Rn+ → R+ be convex and F (p1, p2, . . . , pn) = 0 if and only if pl = 0 for l = 1, 2, . . . , n. Then ϑ(O) =

F (ϑ1(O1), ϑ2(O2), . . . , ϑn(On)) define a MNC in E1 × E2 × . . .× En, where Ol denotes the natural projection of
O into El for l = 1, 2, . . . , n.

Example 2.7 [11] Let ϑ be a MNC on E . Define F(p, q) = p + q, p, q ∈ R+. Then F has all the properties
mentioned in Theorem 2.6. Hence, ϑcf (O) = ϑ(O1) + ϑ(O2) is a MNC in the space E × E , where Ol, l = 1, 2

denote the natural projections of O.

2517



DAS et al./Turk J Math

Theorem 2.8 Let D be a nonempty, bounded, closed, and convex subset of a Banach space E . Also, let
B : D×D → D be a continuous function and φ : R+ → R+ be a nondecreasing continuous function satisfying
φ(p+ q) ≤ φ(p) + φ(q), p, q ≥ 0 such that

H [A (f ;ϑ (B(O1 × O2))) , φ (ϑ (B(O1 × O2)))]

≤ 1

2
γ (ϑ(O1) + ϑ(O2))H [A (f ;ϑ (O1) + ϑ (O2)) , φ (ϑ (O1) + ϑ (O2))]

for all O1,O2 ⊆ D, γ ∈ S, H ∈ F, A(., .) ∈ Θ, where ϑ is an arbitrary MNC. Also, A(f ; p + q) ≤
A(f ; p) + A(f ; q), p, q ≥ 0. Then B has at least one coupled fixed point in D.

Proof We observe that ϑcf (O) = ϑ(O1) + ϑ(O2) is a MNC on E × E for any bounded subset O ⊆ E × E ,

where O1,O2 denote the natural projection of O.

Consider a mapping Bcf : D×D → D×D by Bcf (p, q) = (B(p, q),B(q, p)) .

It is trivial that Bcf is continuous. Let O ⊆ D×D, then

H
[
A
(
f ;ϑcf

(
Bcf (O)

))
, φ

(
ϑcf

(
Bcf (O)

))]
≤ H

[
A
(
f ;ϑcf (B (O1 × O2)× B (O2 × O1))

)
, φ

(
ϑcf (B (O1 × O2)× B (O2 × O1))

)]
= H [A (f ;ϑ (B (O1 × O2)) + ϑ (B (O2 × O1))) , φ (ϑ (B (O1 × O2)) + ϑ (B (O2 × O1)))]

≤ H [A (f ;ϑ (B (O1 × O2))) + A (f ;ϑ (B (O2 × O1))) , φ (ϑ (B (O1 × O2))) + φ (ϑ (B (O2 × O1)))]

≤ H [A (f ;ϑ (B (O1 × O2))) , φ (ϑ (B (O1 × O2)))] + H [A (f ;ϑ (B (O2 × O1))) , φ (ϑ (B (O2 × O1)))]

≤ 1

2
γ (ϑ(O1) + ϑ(O2))H [A (f ;ϑ (O1) + ϑ (O2)) , φ (ϑ (O1) + ϑ (O2))]

+
1

2
γ (ϑ(O2) + ϑ(O1))H [A (f ;ϑ (O2) + ϑ (O1)) , φ (ϑ (O2) + ϑ (O1))]

= γ (ϑ(O1) + ϑ(O2))H [A (f ;ϑ (O1) + ϑ (O2)) , φ (ϑ (O1) + ϑ (O2))]

= γ
(
ϑcf (O)

)
H
[
A
(
f ;ϑcf (O)

)
, φ

(
ϑcf (O)

)]
.

By Theorem 2.1, we conclude that Bcf has at least one fixed point in D × D, i.e. B has minimum of one
coupled fixed point. 2

Corollary 2.9 Let D be a nonempty, bounded, closed, and convex subset of a Banach space E . Also, let
B : D×D → D be a continuous function and φ : R+ → R+ be a nondecreasing continuous function satisfying
φ(p+ q) ≤ φ(p) + φ(q), p, q ≥ 0 such that

H [ϑ (B(O1 × O2)) , φ (ϑ (B(O1 × O2)))]

≤ k

2
H [ϑ (O1) + ϑ (O2) , φ (ϑ (O1) + ϑ (O2))]

for all k ∈ [0, 1), O1,O2 ⊆ D, H ∈ F, where ϑ is an arbitrary MNC. Then B has at least one coupled fixed
point in D.

Proof The result can be obtained by taking A(f ; t) = t and γ(t) = k, k ∈ [0, 1), in Theorem 2.8. 2
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Corollary 2.10 Let D be a nonempty, bounded, closed, and convex subset of a Banach space E . Also, let
B : D×D → D be a continuous function and φ : R+ → R+ be a nondecreasing continuous function satisfying
φ(p+ q) ≤ φ(p) + φ(q), p, q ≥ 0 such that

ϑ (B(O1 × O2)) + φ (ϑ (B(O1 × O2)))

≤ k

2
[ϑ (O1) + ϑ (O2) + φ (ϑ (O1) + ϑ (O2))]

for all k ∈ [0, 1), O1,O2 ⊆ D, where ϑ is an arbitrary MNC. Then B has at least one coupled fixed point in
D.

Proof The result can be obtained by taking H(ι,ϖ) = ι+ϖ in Corollary 2.9. 2

3. Application to Erdélyi–Kober bivariate fractional integral equations

Alamo and Rodríguez [6] defined the Erdélyi–Kober fractional integral of a continuous function f as

Iγβf(t) =
β

Γ(γ)

∫ t

0

sβ−1f(s)

(tβ − sβ)
1−γ ds, β > 0, 0 < γ < 1.

Using the Erdélyi–Kober fractional integral, Darwish and Sadarangani [17, 18] solved functional integral equa-
tions.
Analogous to the above definition, for a continuous function g on R × R, we define the Erdélyi–Kober type
bivariate fractional integral as follows:

Iγ1,γ2β g(x, y) =
β2

Γ(γ1)Γ(γ2)

∫ x

0

∫ y

0

sβ−1tβ−1g(t, s)

(yβ − tβ)
1−γ2 (xβ − sβ)

1−γ1 dtds,

where β > 0, 0 < γ1, γ2 < 1, Γ(z) =
∫∞
0
tz−1e−tdt, z > 0.

In this article, we work in the space E = C(I × I) which consists of real-valued continuous functions on I × I,

where I = [0, 1]. The norm of the space E is given by

∥ x ∥= sup {|x(t, s)| : t, s ∈ I} , x ∈ E .

The space E has the Banach algebra structure.
Let O be a fixed nonempty and bounded subset of the space E = C(I × I) and for x ∈ E and ϵ > 0, denote
by ω(x, ϵ) the modulus of continuity

ω(x, ϵ) = sup {|x(t, s)− x(u, v)| : t, s, u, v ∈ I, |t− u| ≤ ϵ, |s− v| ≤ ϵ} .

Further, we define
ω(O, ϵ) = sup {ω(x, ϵ) : x ∈ O} .

ω0(O) = lim
ϵ→0

ω(O, ϵ).

It can be shown that the function ω0 is a measure of noncompactness in the space E (see [13]).
Now we discuss the existence of the solution of the following bivariate fractional integral equation

z(x, y) = g(x, y) +
β2z(x, y)

Γ(γ1)Γ(γ2)

∫ x

0

∫ y

0

sβ−1tβ−1u(x, y, t, s, z(t, s))

(yβ − tβ)
1−γ2 (xβ − sβ)

1−γ1 dtds, (3.1)
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where β > 0, 0 < γ1, γ2 < 1, x, y ∈ I.

We consider the following assumptions:

(1) g ∈ E ;

(2) u : I× I× I× I×R → R is a continuous function and there exists a nondecreasing function ψ : R+ → R+

such |u(x, y, t, s, z)| ≤ ψ (|z|) , x, y, t, s ∈ I, z ∈ R;

(3) There exists d0 > 0 such that ∥ g ∥ + ψ(d0)d0
Γ(γ1+1)Γ(γ2+1) < d0 and ψ (d0) < Γ(γ1 + 1)Γ(γ2 + 1).

Let Bd0 = {z ∈ E :∥ z ∥≤ d0} be the closed ball with center 0 and radius d0.

Lemma 3.1 [17] If W : R+ → R+ is the function defined by W(p) = pβ , then:

(1) If β ≥ 1 and p1, p2 ∈ I with p1 < p2, then pβ2 − pβ1 ≤ β (p2 − p1) .

(2) If 0 < β < 1 and p1, p2 ∈ I with p1 < p2, then pβ2 − pβ1 ≤ (p2 − p1)
β
.

We use Lemma 3.1 to prove the following theorem.

Theorem 3.2 Under the hypothesis (1)–(3), Equation (3.1) has at least one solution in E .

Proof Let the operator P be defined on E

(Pz)(x, y) = g(x, y) + z(x, y)(Vz)(x, y),

where

(Vz)(x, y) =
β2

Γ(γ1)Γ(γ2)

∫ x

0

∫ y

0

sβ−1tβ−1u(x, y, t, s, z(t, s))

(yβ − tβ)
1−γ2 (xβ − sβ)

1−γ1 dtds for t, s ∈ I.

To prove that P maps into E it must be established that if z ∈ E then (Vz)(x, y) ∈ E .

To prove this, fixed ϵ > 0. Also, let z ∈ E and x1, x2, y1, y2 ∈ I with |x2 − x1| ≤ ϵ, |y2 − y1| ≤ ϵ. Without loss
of generality, we can assume x1 ≤ x2, y1 ≤ y2. Also, let

ωu(ϵ) = sup

{
|u (x2, y2, t, s, l)− u (x1, y1, t, s, l)| : x1, x2, y1, y2, t, s ∈ I,

|x2 − x1| ≤ ϵ, |y2 − y1| ≤ ϵ, l ∈ [− ∥ z ∥, ∥ z ∥]

}
.
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Then, we get

|(Vz)(x2, y2)− (Vz)(x1, y1)|

=
β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣∣∣
∫ x2

0

∫ y2

0

sβ−1tβ−1u(x2, y2, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds−
∫ x1

0

∫ y1

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ1 − tβ

)1−γ2 (
xβ1 − sβ

)1−γ1 dtds

∣∣∣∣∣∣∣
≤ β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣∣∣
∫ x2

0

∫ y2

0

sβ−1tβ−1u(x2, y2, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds−
∫ x2

0

∫ y2

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds

∣∣∣∣∣∣∣
+

β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣∣∣
∫ x2

0

∫ y2

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds−
∫ x1

0

∫ y1

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds

∣∣∣∣∣∣∣
+

β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣∣∣
∫ x1

0

∫ y1

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds−
∫ x1

0

∫ y1

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ1 − tβ

)1−γ2 (
xβ1 − sβ

)1−γ1 dtds

∣∣∣∣∣∣∣
= I1 + I2 + I3,

where

I1 =
β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣∣∣
∫ x2

0

∫ y2

0

sβ−1tβ−1u(x2, y2, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds−
∫ x2

0

∫ y2

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds

∣∣∣∣∣∣∣
≤ β2

Γ(γ1)Γ(γ2)

∫ x2

0

∫ y2

0

sβ−1tβ−1 |u(x2, y2, t, s, z(t, s))− u(x1, y1, t, s, z(t, s))|(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds

≤ ωu(ϵ)

Γ(γ1)Γ(γ2)

∫ x2

0

βsβ−1ds(
xβ2 − sβ

)1−γ1

∫ y2

0

βtβ−1dt(
yβ2 − tβ

)1−γ1

=
ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
xβγ12 yβγ22

≤ ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
,
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I2 =
β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣∣∣
∫ x2

0

∫ y2

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds−
∫ x1

0

∫ y1

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds

∣∣∣∣∣∣∣
=

β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣∣∣
∫ x2

x1

∫ y1

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds+

∫ x2

0

∫ y2

y1

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds

∣∣∣∣∣∣∣
≤ β2ψ(∥ z ∥)

Γ(γ1)Γ(γ2)

∫ x2

x1

∫ y1

0

sβ−1tβ−1
(
yβ2 − tβ

)γ2−1 (
xβ2 − sβ

)γ1−1

dtds

+
β2ψ(∥ z ∥)
Γ(γ1)Γ(γ2)

∫ x2

0

∫ y2

y1

sβ−1tβ−1
(
yβ2 − tβ

)γ2−1 (
xβ2 − sβ

)γ1−1

dtds

≤ ψ(∥ z ∥)
Γ(γ1 + 1)Γ(γ2 + 1)

[(
xβ2 − xβ1

)γ1 {
yβγ22 −

(
yβ2 − yβ1

)γ2}
+ xβγ12

(
yβ2 − yβ1

)γ2]
≤ ψ(∥ z ∥)

Γ(γ1 + 1)Γ(γ2 + 1)

{(
xβ2 − xβ1

)γ1
yβγ22 + xβγ12

(
yβ2 − yβ1

)γ2}
,

and

I3 =
β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣∣∣
∫ x1

0

∫ y1

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ2 − tβ

)1−γ2 (
xβ2 − sβ

)1−γ1 dtds−
∫ x1

0

∫ y1

0

sβ−1tβ−1u(x1, y1, t, s, z(t, s))(
yβ1 − tβ

)1−γ2 (
xβ1 − sβ

)1−γ1 dtds

∣∣∣∣∣∣∣
≤ β2

Γ(γ1)Γ(γ2)
×

∫ x1

0

∫ y1

0

sβ−1tβ−1 |u(x1, y1, t, s, z(t, s))|
∣∣∣∣(yβ2 − tβ

)γ2−1 (
xβ2 − sβ

)γ1−1

−
(
yβ1 − tβ

)γ2−1 (
xβ1 − sβ

)γ1−1
∣∣∣∣ dtds

≤ β2ψ(∥ z ∥)
Γ(γ1)Γ(γ2)

∫ x1

0

∫ y1

0

sβ−1tβ−1

{(
yβ2 − tβ

)γ2−1 (
xβ1 − sβ

)γ1−1

−
(
yβ1 − tβ

)γ2−1 (
xβ2 − sβ

)γ1−1
}
dtds

=
ψ(∥ z ∥)

Γ(γ1 + 1)Γ(γ2 + 1)
×

{
xβγ12

(
yβ2 − yβ1

)γ2
+ yβγ22

(
xβ2 − xβ1

)γ1
−
(
xβ2 − xβ1

)γ1 (
yβ2 − yβ1

)γ2
+ xβγ11 yβγ21 − xβγ12 yβγ22

}
≤ ψ(∥ z ∥)

Γ(γ1 + 1)Γ(γ2 + 1)

{
xβγ12

(
yβ2 − yβ1

)γ2
+ yβγ22

(
xβ2 − xβ1

)γ1}
.

Therefore,
|(Vz)(x2, y2)− (Vz)(x1, y1)|

≤ ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
+

2ψ(∥ z ∥)
Γ(γ1 + 1)Γ(γ2 + 1)

{
xβγ12

(
yβ2 − yβ1

)γ2
+ yβγ22

(
xβ2 − xβ1

)γ1}
.

Case I: If β ≥ 1, then
|(Vz)(x2, y2)− (Vz)(x1, y1)|

≤ ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
+

2ψ(∥ z ∥)
Γ(γ1 + 1)Γ(γ2 + 1)

{βγ1ϵγ1 + βγ2ϵγ2} .
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Case II: If 0 < β < 1, then

|(Vz)(x2, y2)− (Vz)(x1, y1)|

≤ ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
+

2ψ(∥ z ∥)
Γ(γ1 + 1)Γ(γ2 + 1)

{
ϵβγ1 + ϵβγ2

}
.

Thus, we have

|(Vz)(x2, y2)− (Vz)(x1, y1)|

≤ ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
+

2ψ(∥ z ∥)
Γ(γ1 + 1)Γ(γ2 + 1)

max
{
βγ1ϵγ1 + βγ2ϵγ2 , ϵβγ1 + ϵβγ2

}
.

Since u is a continuous function on I × I × I × I × [− ∥ z ∥, ∥ z ∥], ωu(ϵ) → 0 as ϵ→ 0.

We have |(Vz)(x2, y2)− (Vz)(x1, y1)| → 0. Thus, Vz ∈ E .

Again for z ∈ E and x, y ∈ I, we have

|(Pz)(x, y)|

≤ |g(x, y)|+ β2 |z(x, y)|
Γ(γ1)Γ(γ2)

∫ x

0

∫ y

0

sβ−1tβ−1 |u(x, y, t, s, z(t, s))|
(yβ − tβ)

1−γ2 (xβ − sβ)
1−γ1 dtds

≤∥ g ∥ +
β2 ∥ z ∥ ψ(∥ z ∥)

Γ(γ1)Γ(γ2)

∫ x

0

∫ y

0

sβ−1tβ−1

(yβ − tβ)
1−γ2 (xβ − sβ)

1−γ1 dtds

=∥ g ∥ +
xβγ1yβγ2 ∥ z ∥ ψ(∥ z ∥)
Γ(γ1 + 1)Γ(γ2 + 1)

,

i.e.

∥ Pz ∥≤∥ g ∥ +
∥ z ∥ ψ(∥ z ∥)

Γ(γ1 + 1)Γ(γ2 + 1)
.

By assumption (3), we observe that P maps Bd0 into itself.
Let ϵ > 0 and z ∈ Bd0 be fixed. We consider z̄ ∈ Bd0 with ∥ z − z̄ ∥< ϵ. For any x, y ∈ I,

|(Vz)(x, y)− (Vz̄)(x, y)|

=
β2

Γ(γ1)Γ(γ2)

∣∣∣∣∣
∫ x

0

∫ y

0

sβ−1tβ−1u(x, y, t, s, z(t, s))

(yβ − tβ)
1−γ2 (xβ − sβ)

1−γ1 dtds−
∫ x

0

∫ y

0

sβ−1tβ−1u(x, y, t, s, z̄(t, s))

(yβ − tβ)
1−γ2 (xβ − sβ)

1−γ1 dtds

∣∣∣∣∣
≤ β2

Γ(γ1)Γ(γ2)

∫ x

0

∫ y

0

sβ−1tβ−1 |u(x, y, t, s, z(t, s))− u(x, y, t, s, z̄(t, s))|
(yβ − tβ)

1−γ2 (xβ − sβ)
1−γ1 dtds

≤ δu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
,

where

δu(ϵ) = sup

{
|u (x, y, t, s, l1)− u (x, y, t, s, l2)| : x, y, t, s ∈ I,

∥ l2 − l1 ∥≤ ϵ, l1, l2 ∈ [−d0, d0]

}
.

Considering uniform continuity of u on I × I × I × I × [−d0, d0], δu(ϵ) → 0 as ϵ → 0. Thus, V is continuous
on Bd0 , so P is continuous on Bd0 .
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Now, let O ⊆ Bd0 be a nonempty set and z ∈ O. For fixed ϵ > 0 and x1, x2, y1, y2 ∈ I such that
x1 ≤ x2, y1 ≤ y2, |x1 − x2| ≤ ϵ and |y1 − y2| ≤ ϵ, we have

|(Pz)(x2, y2)− (Pz)(x1, y1)|

≤ |g(x2, y2)− g(x1, y1)|+ |(Vz)(x2, y2)− (Vz)(x1, y1)| |z(x2, y2)|

+ |z(x2, y2)− z(x1, y1)| |(Vz)(x1, y1)|

≤ ω(g, ϵ) + d0

[
ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
+

2ψ(d0)

Γ(γ1 + 1)Γ(γ2 + 1)
max

{
βγ1ϵγ1 + βγ2ϵγ2 , ϵβγ1 + ϵβγ2

}]
+

ψ(d0)ω(z, ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
,

which gives

ω(Pz, ϵ)

≤ ω(g, ϵ) + d0

[
ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
+

2ψ(d0)

Γ(γ1 + 1)Γ(γ2 + 1)
max

{
βγ1ϵγ1 + βγ2ϵγ2 , ϵβγ1 + ϵβγ2

}]
+

ψ(d0)ω(z, ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
.

Therefore,

ω(PO, ϵ)

≤ ω(g, ϵ) + d0

[
ωu(ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
+

2ψ(d0)

Γ(γ1 + 1)Γ(γ2 + 1)
max

{
βγ1ϵγ1 + βγ2ϵγ2 , ϵβγ1 + ϵβγ2

}]
+

ψ(d0)ω(O, ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
.

Since g is continuous and u is uniformly continuous on I × I × I × I × [0, d0], as ϵ→ 0, we have

ω(PO, ϵ) ≤ ψ(d0)ω(O, ϵ)

Γ(γ1 + 1)Γ(γ2 + 1)
.

Thus, by assumption (3) and Theorem 2.4, we have that P has at least one fixed point in O ⊆ Bd0 . Hence,
Equation (3.1) has at least one solution in E . This completes the proof. 2

Example 3.3 Consider the following equation

z(x, y) =
x2y2

4
+

z(x, y)(
Γ
(
1
2

))2 ∫ x

0

∫ y

0

xyz(t, s)

2s
2
3 t

2
3

√(
y

1
3 − t

1
3

)(
x

1
3 − s

1
3

)dtds (3.2)

for x, y ∈ [0, 1] = I.

Here we have

g(x, y) =
x2y2

4
, ∥ g ∥= 1

4
, β =

1

3
, γ1 = γ2 =

1

2
, u(x, y, t, s, z) =

xyz

2
.
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The function u is continuous and |u(x, y, t, s, z)| = |xyz|
2 ≤ |z|

2 = ψ(|z|), where ψ : R+ → R+ such that
ψ(p)p2 , p ≥ 0 which is nondecreasing function.

Also, for d0 = 0.7, both 1
4 +

d20
2(Γ( 3

2 ))
2 ≤ d0 and d0 ≤

(
Γ( 32 )

)2 are satisfied.

For d0 = 0.7, we noticed that, the assumptions (1)− (3) of Theorem 3.2 are satisfied. Hence, by Theorem 3.2,
Equation (3.2) has at least one solution in E .

4. An iterative algorithm by two-dimensional sinc interpolation

Finding the exact solution of (3.2) is difficult, so numerical methods are effective to approximate the solution.
Some numerical techniques to solve integral equations are based on the collocation method can be seen in
[26, 34, 40, 41]. Numerical methods such as expansion and projection methods are used in [10] and Galerkin
multiwavelet bases to solve the integral equation with singular kernel have been used in [36]. Generally in
the above methods, the nonlinear problems are discretized to an algebraic system with unknown coefficients
which must be determined. Moreover the convergence rate of these methods are usually of polynomial order
with respect to N, where N represents the number of terms of the expansion or the number of points of the
quadrature formula.

But, we use two-dimensional sinc interpolation to make an iterative algorithm for finding an approxima-
tion of solution such that firstly, it does not need to convert the nonlinear problems to an algebraic system by
expanding u(t) in terms of Sinc functions with unknown coefficients. Secondly, this algorithm decrease compu-
tations and has exponential accuracy (in [39], it is shown that if we use the Sinc method, the convergence rate
is exp(−c

√
N) with some c > 0 , which convergence rate is much faster than that of polynomial order). Also to

give an error bound for the Sinc approximate solution, we consider Sinc function and some of its properties [39]

sinc(u) =
{

sin(πu)

πu
, u ̸= 0

1, u = 0.
(4.1)

For h > 0 and integer k, the shifted sinc function named k ’th sinc function with step size h is introduced as
follows:

S(k, h)(u) = sinc
(
u− kh

h

)
. (4.2)

We easily conclude that

S(k, h)(jh) = δkj =

{
1, k = j
0, k ̸= j.

(4.3)

Definition 4.1 Let d > 0, C be the complex plane and strip region Dd = {z ∈ C : |Im(z)| < d} . For every
positive α, define Lα(Dd) = {f : f is an analytic function in Dd} and for some c > 0, and for all z ∈ Dd

function f satisfies the following inequality

|f(z)| ≤ c |eαz|
(1 + |ez|)2α

. (4.4)

According to (4.4) a bounded error was introduced by Theorem 4.2 in [39].
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Theorem 4.2 Let f ∈ Lα(Dd) for α > 0 and h =
√

πd
αN , then

∥f(.+ iy)−
∞∑

k=−∞

u(kh)S(k, h)(.+ iy)∥∞ ≤ c1N
1
2 exp((−πα

d
)

1
2 (d− |y|)N 1

2 ).

In this article we discuss in real line therefore, we have

∥f(.)−
∞∑

k=−∞

u(kh)S(k, h)(.)∥∞ ≤ c1N
1
2 exp(−c2N

1
2 ). (4.5)

In the case of two dimensional the error bound is similar to (4.5) and we ignore it.

Definition 4.3 Let u be a function defined on real line; then for h > 0 the series,

C(u, h)(u) =

∞∑
k=−∞

u(kh)S(k, h)(u) (4.6)

is called the Whittaker cardinal expansion of u, wherever this series converges (see [39]). Obviously, by (4.3)–
(4.6) the cardinal function interpolates u at the points {kh}∞k=−∞ .

The intervals of integrating in (3.2) are [0, x] and [0, y], where x, y ∈ [0, 1] , so we introduce a conformal map
as follows:

φ : [0, 1] −→ (−∞,∞) (4.7)

t −→ ln( t
1−t ).

Clearly, lim
t→0

φ(t) = −∞ and lim
t→1

φ(t) = ∞. By (4.2) and (4.7) combination of S(k, h) and φ functions in

the case of two dimensional is S(k, h).φ(t)S(k′
, h).φ(s) function with [0, 1]× [0, 1] domain, thus the integrand

function of (3.2) can be approximated by S(k, h).φ(t)S(k′
, h).φ(s) interpolation. Let z be an integrand function,

then by cardinal function (4.6), we have

zn(t, s) =

N∑
k=−N

N∑
k′=−N

z(kh, k
′
h)S(k, h).φ(t)S(k

′
, h).φ(s). (4.8)

Considering (4.8) and (4.3), if φ(t) = kh and φ(s) = k
′
h for k, k′

= −N, . . . , N , then zn(kh, k
′
h) = z(kh, k

′
h).

In other word, (4.8) is an interpolation of z such that the interpolating points can be given by
tk = φ−1(kh) =

ekh

1 + ekh
, k = −N + 1, . . . , N, t−N = 0

sk′ = φ−1(k
′
h) =

ek
′
h

1 + ek
′h
, k

′
= −N + 1, . . . , N, s−N = 0.

(4.9)

Using (4.6)–(4.9) and similar to [39], we compute the integral on [0, x]× [0, y] for x, y ∈ [0, 1] as follows:

∫ x
0

∫ y
0
z(t, s)dtds ≈ h2

N∑
k=−N

N∑
k′=−N

z(tk, sk′ )

φ′(tk)φ
′(sk′ )

, where, φ′
(ςk) =

1

ςk(1− ςk)
, ς = t, s,
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(4.10) is an extend results of [9, 35] to two-dimensions.
Now, with the help of (4.8)–(4.10), we can give an iterative algorithm to solve Eq. (3.2).
Algorithm



z0(x, y) = 0,

zn+1(x, y) =
x2y2

4
+
xyzn(x, y)

2Γ( 12 )
2
h2

N∑
k=−N

N∑
k′=−N

zn(tk, sk′ )t
1
3

k s
1
3

k′
(1− tk)(1− sk′ )√(

y
1
3 − t

1
3

k

)(
x

1
3 − s

1
3

k′

) ,

n = 1, 2, 3, . . . ,

(4.10)

where collocation points tk and s
′

k for k, k′
= −N, . . . , N are given by (4.9).

For N = 5, 10 and h = π√
2N
, we obtain approximate solutions zi(x, y) for i = 0, 1, 2 by algorithm (4.10).

Then, substituting z2(x, y) for N = 5, 10 in (3.2) and comparing both sides, the absolute errors are shown in
Tables 1 and 2.

Table 1. Absolute errors of z2(x, y) for N = 5 .

(t, s) 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 0 0 0 0 0
0.2 0 4.4×10−7 4.5×10−6 1.6×10−5 4.8×10−5 1.2×10−4

0.4 0 4.5×10−6 4.9×10−5 1.8×10−4 5.3×10−4 1.2×10−3

0.6 0 1.6×10−5 1.8×10−4 7.0×10−4 1.9×10−3 3.7×10−3

0.8 0 4.8×10−5 5.3×10−4 1.9×10−3 4.9×10−3 7.1×10−3

1.0 0 1.2×10−4 1.2×10−3 3.7×10−3 7.1×10−3 1.6×10−2

Table 2. Absolute errors of z2(x, y) for N = 10 .

(t, s) 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0 0 0 0 0 0
0.2 0 4.2×10−7 4.3×10−6 1.8×10−5 1.0×10−4 1.2×10−4

0.4 0 4.3×10−6 4.4×10−5 1.9×10−4 1.1×10−3 1.2×10−3

0.6 0 1.8×10−5 1.9×10−4 8.7×10−4 5.09×10−3 4.7×10−3

0.8 0 1.0×10−4 1.1×10−3 5.0×10−3 2.8×10−3 2.8×10−2

1.0 0 1.2×10−4 1.2×10−3 4.7×10−3 2.8×10−2 1.3×10−2
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