
Turk J Math
(2022) 46: 2096 – 2108
© TÜBİTAK
doi:10.55730/1300-0098.3256

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Distortion bound and growth theorems for a subclass of analytic functions
defined by q -derivative

Osman ALTINTAŞ1, Nizami MUSTAFA2,∗
1Department of Mathematics Education, Faculty of Education, Başkent University, Ankara, Turkey

2Department of Mathematics, Faculty of Science and Letters, Kafkas University, Kars, Turkey

Received: 08.10.2021 • Accepted/Published Online: 15.04.2022 • Final Version: 04.07.2022

Abstract: In this study, we introduce and examine a subclasses of analytic and univalent functions defined by q -
derivative. Here, we give necessary conditions for the functions to belong to these subclasses, and distortion bound and
growth theorems for the functions belonging to these classes.
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1. Introduction and preliminaries

Let U = {z ∈ C : |z| < 1} denote the open unit disk in the complex plane and H (U) is the class of analytic
functions in U . By A , we denote the class of functions f ∈ H (U) given in the following form

f(z) = z + a2z
2 + a3z

3 + ...+ anz
n + ... = z +

∞∑
n=2

anz
n, an ∈ C. (1.1)

Also, let T be the subclass of A with nonpositive coefficients

f(z) = z − a2z
2 − a3z

3 − ...− anz
n − ... = z −

∞∑
n=2

anz
n, an ≥ 0. (1.2)

We denote by S the subclass of A consisting of the functions univalent in U . For α ∈ [0, 1) , one of the
important subclass of S is C(α) - convex function class of order α (see for details [8, 10] , also [20]).

We define this class as in the following way:

C (α) =

{
f ∈ S : Re

(
(zf ′(z))

′

f ′(z)

)
> α, z ∈ U

}
.

In special case, when α = 0 , C = C (0) is well known convex function class in U .
As it is known that a function f is subordine to the function g and written as f ≺ g if there exist a

(Schwartz) function ω with ω (0) = 0 and |ω (z)| < 1 such that f (z) = g (ω (z))(see [10]).
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For q ∈ (0, 1) , in the fundamental paper [12] by Jackson the q -derivative Dq of a function f ∈ H (U)

was introduced as follows:

Dqf(z) =

{
f(z)−f(qz)

(1−q)z , if z ̸= 0,

f
′
(0), if z = 0.

(1.3)

It follos from that lim
q→1−

Dqf(z) = f ′ (z) .

From (1.3), we can easily see that

Dqz
n = [n]q z

n−1, n ∈ N, (1.4)

where [n]q =
n∑

k=1

qk−1 is the q -analogue of the natural numbers n (which is called the basic number

n ). It can be easily shown that [n]q = 1−qn

1−q = 1 + q + q2 + ... + qn−1, [0]q = 0, [1]q = 1, lim
q→1−

[n]q = n,

Dq (zDqf(z)) = Dqf (z) + zD2
qf (z) . For more properties of Dq see [9, 11, 14].

Studies on the q -derivative were firstly conducted by Jackson [13], Carmichael [7], Mason [15], Adams
[1] and Trjizinsky [21]. But, this topic has been forgotten for a long time. Later, some properties related with
function theory involving q -theory were introduced by Ismail et al. in the paper [11]. The q -derivative has
wide applications in the geometric function theory. This subject still continues to be the subject of study of
many mathematicians today (see [2, 17, 18]). As the study [2] suggests, there are a lot that can be done for
this research topic. For example, q -analogy of starlikeness and convexity of analytic functions in the open unit
disk and in arbitrary simply connected domains would be interesting for researchers in this field.

In [3], by using applications of the q -derivative, it was shown that Szasz Mirakyan operators are convex
when convex functions are taken such that their result generalizes well known results for q = 1 . Also, in [3] the
authors showed that q -derivatives of these operators approach to q -derivatives of approximated functions.

Very recently, by Uçar et al. [23] and Uçar [22] some properties of q -close-to-convex functions were
studied. By Polatoğlu in [16], while q - starlike functions were investigated, growth and distortion theorems
for this class were given. Quasi starlike and quasi convex functions were studied by Altıntaş and Kılıc in [5].
Altıntaş and Mustafa studied quasi q -starlike and quasi q -convex functions (see [6]).

Very recently, in [4] Altıntaş and Aydoğan studied quasi q -convex functions.
For q ∈ (0, 1) and α ∈ [0, 1) , we define by Cq (α) the subclass of A , which we will call q -convex function

class of order α, as follows:

Cq (α) =

{
f ∈ S : ReDq (zDqf (z))

Dqf (z)
> α, z ∈ U

}
.

Also, we will denote TCq (α) = T ∩ Cq (α) .
Let g ∈ T be given as the following series:

g(z) = z − b2z
2 − b3z

3 − ...− bnz
n − ... = z −

∞∑
n=2

bnz
n, bn ≥ 0. (1.5)
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Inspired by the studies mentioned above, we introduce the following subclasses of analytic functions.

Definition 1.1 For λ, µ ∈ [0, 1] , α, β ∈ [0, 1) , a function f ∈ T in the form (1.2) is said to be in the class quasi
close-to-q -convex functions with respect to parameters µ and λ of order α and is shown as QCCq (λ, µ, β, α)

if the following condition is satisfied

ℜ

(
zDqf(z) + λz2D2

qf(z)

µzDqg(z) + (1− µ) g (z)

)
> α, z ∈ U, (1.6)

where g ∈ Cq (β) .

Definition 1.2 For λ, µ ∈ [0, 1] , β ∈ [0, 1) , −1 ≤ B < A ≤ 1, a function f ∈ T in the form (1.2) is said to
be in the class quasi close-to-q -convex functions with respect to parameters µ and λ with subordination and is
shown as QCCqP (λ, µ, β,A,B) if the following condition is satisfied

zDqf(z) + λz2D2
qf(z)

µzDqg(z) + (1− µ) g (z)
≺ 1 +Az

1 +Bz
, z ∈ U, (1.7)

where g ∈ Cq (β) .

From Definitions 1.1 and 1.2, for the different values of parameters, we have the following subclasses of
analytic functions in the open unit disk U .

Remark 1.3 1.1. QCCq (λ, 0, β, α) is defined by

QCCq (λ, 0, β, α) =

{
f ∈ T : ℜ

(
zDqf(z) + λz2D2

qf(z)

g (z)

)
> α, z ∈ U

}
.

1.2. QCCq (λ, 1, β, α) is defined by

QCCq (λ, 1, β, α) =

{
f ∈ T : ℜ

(
Dqf(z) + λzD2

qf(z)

Dqg(z)

)
> α, z ∈ U

}
.

.

1.3. QCCq (0, 0, β, α) is defined by

QCCq (0, 0, β, α) =

{
f ∈ T : ℜ

(
zDqf(z)

g (z)

)
> α, z ∈ U

}
.

1.4. QCCq (0, 1, β, α) = CCq (β, α)-close-to-q -convex functions order α is defined by

CCq (β, α) =

{
f ∈ T : ℜ

(
Dqf(z)

Dqg(z)

)
> α, z ∈ U

}
.

1.5. QCCq (1, 0, β, α) is defined by
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QCCq (1, 0, β, α) =

{
f ∈ T : ℜ

(
zDqf(z) + z2D2

qf(z)

g(z)

)
> α, z ∈ U

}
.

1.6. QCCq (1, 1, β, α) is defined by

QCCq (1, 1, β, α) =

{
f ∈ T : ℜ

(
Dqf(z) + zD2

qf(z)

Dqg(z)

)
> α, z ∈ U

}
.

1.7. QCCqP (λ, 0, β, A,B) is defined by

QCCqP (λ, 0, β, A,B) =

{
f ∈ T :

zDqf(z) + λz2D2
qf(z)

g(z)
≺ 1 +Az

1 +Bz
, z ∈ U

}
.

1.8. QCCqP (λ, 1, β, A,B) is defined by

QCCqP (λ, 1, β, A,B) =

{
f ∈ T :

Dqf(z) + λzD2
qf(z)

Dqg(z)
≺ 1 +Az

1 +Bz
, z ∈ U

}
.

1.9. QCCqP (0, 0, β, A,B) is defined by

QCCqP (0, 0, β, A,B) =

{
f ∈ T :

zDqf(z)

g (z)
≺ 1 +Az

1 +Bz
, z ∈ U

}
.

1.10. QCCqP (1, 0, β, A,B) is defined by

QCCqP (1, 0, β, A,B) =

{
f ∈ T :

zDqf(z) + z2D2
qf(z)

g(z)
≺ 1 +Az

1 +Bz
, z ∈ U

}
.

1.11. QCCqP (0, 1, β, A,B) = CCqP (β,A,B) is defined by

CCqP (β,A,B) =

{
f ∈ T :

Dqf(z)

Dqg (z)
≺ 1 +Az

1 +Bz
, z ∈ U

}
.

1.12. QCCqP (1, 1, β, A,B) is defined by

QCCqP (1, 1, β, A,B) =

{
f ∈ T :

Dqf(z) + zD2
qf(z)

Dqg(z)
≺ 1 +Az

1 +Bz
, z ∈ U

}
.

1.13. QCC (λ, µ, β, α) - the class quasi close-to-convex functions with respect to parameters µ and λ of
order α is defied by

QCC (λ, µ, β, α) =

{
f ∈ T : ℜ

(
zf ′(z) + λz2f ′′(z)

µzg′(z) + (1− µ) g (z)

)
> α, z ∈ U

}
.

1.14.QCC (0, 1, β, α) = CC (β, α) - close-to-convex functions of order α is defined by
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CC (β, α) =

{
f ∈ T : ℜ

(
f ′(z)

g′(z)

)
> α, z ∈ U

}
.

1.15. QCCP (0, 1, β, A,B) = CCP (β,A,B) is defined by

CCP (β,A,B) =

{
f ∈ T :

f ′(z)

g′(z)
≺ 1 +Az

1 +Bz
, z ∈ U

}
.

The results obtained in our study are valid for all the classes given in the above remarks in the special
values of the parameters. So this work covers the broad class of analytical functions.

In this study, we give necessary conditions for the functions to belong to classes QCCq (λ, µ, β, α) and
QCCqP (λ, µ, β,A,B) . Also, here distortion bound and growth theorems for the functions belonging to these
classes are given.

To prove our main results, we shall require the following lemma.

Lemma 1.4 ([6])If f ∈ T belongs to the class Cq (α) for q ∈ (0, 1) , α ∈ [0, 1) , then the following condition
is satisfied

∞∑
n=2

(
[n]q − α

)
[n]q an ≤ 1− α.

The result obtained here is sharp.

2. Main results
In this section, we give the following theorems, which states the necessary conditions for a function to belong
to these classes QCCq (λ, µ, β, α) and QCCqP (λ, µ, β,A,B) , respectively.

Theorem 2.1 If f ∈ QCCq (λ, µ, β, α) , then the following condition is satisfied

∞∑
n=2

(
1 + λ [n− 1]q

)
[n]q an ≤ 1− α+

α (1− β)
[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

. (2.1)

The result obtained here is sharp.

Proof Assume that f ∈ QCCq (λ, µ, β, α) for λ, µ ∈ [0, 1] , α, β ∈ [0, 1) . Then,

ℜ

(
zDqf(z) + λz2D2

qf(z)

µzDqg(z) + (1− µ) g (z)

)
> α, (2.2)

where the function g ∈ Cq (β) is defined by (1.5).
From the definition of q−derivative, by simple computation, we can write
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zDqf(z) + λz2D2
qf(z)

µzDqg(z) + (1− µ) g (z)
=

z −
∞∑

n=2

(
1 + λ [n− 1]q

)
[n]q anz

n

z −
∞∑

n=2

[
1 +

(
[n]q − 1

)
µ
]
bnzn

.

In that case, the inequality (2.2) is written as follows:

ℜ

z −
∞∑

n=2

(
1 + λ [n− 1]q

)
[n]q anz

n

z −
∞∑

n=2

[
1 +

(
[n]q − 1

)
µ
]
bnzn

 > α.

It is clear that the fraction in the parentheses in the last inequality is real if z is chosen real. Therefore,
letting z → 1− through real values, we have

1−
∞∑

n=2

(
1 + λ [n− 1]q

)
[n]q an

1−
∞∑

n=2

[
1 +

(
[n]q − 1

)
µ
]
bn

≥ α;

that is,

1−
∞∑

n=2

(
1 + λ [n− 1]q

)
[n]q an ≥ α

{
1−

∞∑
n=2

[
1 +

(
[n]q − 1

)
µ
]
bn

}
.

The last inequality is equivalent to

∞∑
n=2

(
1 + λ [n− 1]q

)
[n]q an ≤ 1− α+ α

∞∑
n=2

(
1− µ+ µ [n]q

)
bn. (2.3)

According to Lemma 1.4, if g ∈ Cq (β) , q ∈ (0, 1) , β ∈ [0, 1) , then

∞∑
n=2

(
[n]q − β

)
[n]q bn ≤ 1− β. (2.4)

From the inequality (2.4), we obtain

∞∑
n=2

[n]q bn ≤ 1− β

[2]q − β
. (2.5)

Similarly
∞∑

n=2

bn ≤ 1− β(
[2]q − β

)
[2]q

. (2.6)

Using (2.5) and (2.6), we can write
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∞∑
n=2

(
1− µ+ µ [n]q

)
bn = (1− µ)

∞∑
n=2

bn + µ

∞∑
n=2

[n]q bn ≤

(1− µ) (1− β)(
[2]q − β

)
[2]q

+
µ (1− β)

[2]q − β
=

(1− β)
[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

.

Considering the last inequality in (2.3), we obtain the inequality (2.1).
To see that result obtained in the theorem is sharp, we note that equality is attained in the inequality

when f is chosen as follows:

f (z) = fn (z) = z −
(1− α)

(
[2]q − β

)
[2]q + α (1− β)

[
1 +

(
[2]q − 1

)
µ
]

(
1 + λ [n− 1]q

)(
[2]q − β

)
[2]q [n]q

zn

for each n = 2, 3, ... .
Thus, the proof of Theorem 2.1 is completed. 2

Since lim
q→1−

QCCq (λ, µ, β, α) = QCC (λ, µ, β, α) and lim
q→1−

[n]q = n , from Theorem 2.1, we obtain the

following result.

Theorem 2.2 If f ∈ QCC (λ, µ, β, α) , then we have

∞∑
n=2

n (1 + λ (n− 1)) an ≤ 1− α+
α (1− β (1 + µ))

2 (2− β)
.

Theorem 2.3 Let f ∈ QCCqP (λ, µ, β,A,B) . Then, the following inequality is satisfied

∞∑
n=2

(
1 + λ [n− 1]q

)
[n]q an ≤ A−B

1−B
+

(1−A) (1− β)
[
1 +

(
[2]q − 1

)
µ
]

(1−B)
(
[2]q − β

)
[2]q

. (2.7)

The result obtained here is sharp.

Proof Assume that f ∈ QCCqP (λ, µ,A,B) for λ, µ ∈ [0, 1] , β ∈ [0, 1) ,−1 ≤ B < A ≤ 1 . That is,

zDqf(z) + λz2D2
qf(z)

µzDqg(z) + (1− µ) g (z)
≺ 1 +Az

1 +Bz
, z ∈ U.

Then, using the inequality (2.6) from [6], we have

ℜ

(
zDqf(z) + λz2D2

qf(z)

µzDqg(z) + (1− µ) g (z)

)
> v,
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with 1−A
1−B = v ∈ [0, 1) (see, also [19]). This means that f ∈ QCCq (λ, µ, β, v) with ν = 1−A

1−B . In this
case, from Theorem 2.1, we have

∞∑
n=2

(
1 + λ [n− 1]q

)
[n]q an ≤ 1− v +

v (1− β)
[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

,

which is the same of the inequality (2.7).
Since equality is attained in the inequality when the function f is chosen as follows:

f (z) = fn (z) = z −
(A−B)

(
[2]q − β

)
[2]q + (1−A) (1− β)

[
1 +

(
[2]q − 1

)
µ
]

(1−B)
(
1 + λ [n− 1]q

)(
[2]q − β

)
[2]q [n]q

zn

for each n = 2, 3, ... , the result obtained in the theorem is sharp.
Thus, the proof of Theorem 2.3 is completed. 2

For different values of the parameters, from Theorems 2.1 and 2.3, numerous results can be obtained.
We give some of them below.

Corollary 2.4 ([4]) If f ∈ QCCqP (λ, 1, β, A,B) , then we have

∞∑
n=2

(
1 + λ [n− 1]q

)
[n]q an ≤ 1−

(1−A)
(
[2]q − 1

)
(1−B)

(
[2]q − β

)
The result is sharp.

Corollary 2.5 If f ∈ QCCq (λ, 1, β, α) , then we have

∞∑
n=2

(
1 + λ [n− 1]q

)
[n]q an ≤ 1−

(
[2]q − 1

)
α

[2]q − β
.

The result is sharp.

Corollary 2.6 If f ∈ CCq (β, α) , then we have

∞∑
n=2

[n]q an ≤ 1−

(
[2]q − 1

)
α

[2]q − β
.

The result is sharp.

Corollary 2.7 If f ∈ QCCq (1, 1, β, α) , then we have

∞∑
n=2

(
1 + [n− 1]q

)
[n]q an ≤ 1−

(
[2]q − 1

)
α

[2]q − β
.
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The result is sharp.

Corollary 2.8 If f ∈ QCCqP (λ, 1, β, A,B) , then we have

∞∑
n=2

(
1 + λ [n− 1]q

)
[n]q an ≤

(
[2]q − 1

)
(A−B) + (1− β) (1−B)

(1−B)
(
[2]q − β

) .

The result is sharp.

Corollary 2.9 If f ∈ CCqP (β,A,B) , then we have

∞∑
n=2

[n]q an ≤

(
[2]q − 1

)
(A−B) + (1− β) (1−B)

(1−B)
(
[2]q − β

) .

The result is sharp.

Corollary 2.10 If f ∈ QCCqP (1, 1, β, A,B) , then we have

∞∑
n=2

(
1 + [n− 1]q

)
[n]q an ≤

(
[2]q − 1

)
(A−B) + (1− β) (1−B)

(1−B)
(
[2]q − β

) .

The result is sharp.

Corollary 2.11 If f ∈ CC (β, α) , then we have

∞∑
n=2

nan ≤ 1− α

2− β
.

The result is sharp.

Corollary 2.12 If f ∈ CCP (β,A,B) , then we have

∞∑
n=2

nan ≤ (A−B) + (1− β) (1−B)

(1−B) (2− β)
.

The result is sharp.

Also, from Theorem 2.1, we obtain the following results on the coefficient bounds.

Theorem 2.13 Let f ∈ QCCq (λ, µ, β, α) . Then, the following inequalities are satisfied

∞∑
n=2

an ≤ 1

(1 + λ) [2]q

1− α+
α (1− β)

[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

 , (2.8)

∞∑
n=2

[n]q an ≤ 1

1 + λ

1− α+
α (1− β)

[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

 . (2.9)
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Proof Suppose that f ∈ QCCq (λ, µ, β, α) for λ, µ ∈ [0, 1] , α, β ∈ [0, 1) . In this case, from Theorem 2.1, we
have

∞∑
n=2

(
1 + λ [n− 1]q

)
[n]q an ≤ 1− α+

α (1− β)
[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

.

It follows from that

(1 + λ) [2]q

∞∑
n=2

an ≤ 1− α+
α (1− β)

[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

.

From this inequality, (2.8) is obtained immediately.
Similarly, from Theorem 2.1, we have

(1 + λ)

∞∑
n=2

[n]q an ≤ 1− α+
α (1− β)

[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

.

From this, the inequality (2.9) is obtained.
Thus, the proof of Theorem 2.13 is completed. 2

The following theorem is a direct result of Theorem 2.1.

Theorem 2.14 If f ∈ QCCq (λ, µ, β, α) , then the following inequality is satisfied

an ≤ 1

(1 + λ) [n]q

1− α+
α (1− β)

[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

 , n = 2, 3, ... .

Remark 2.15 Numerous consequences of the results obtained in Theorems 2.3 and 2.13 can be given for
different values of the parameters.

The following theorems can be proved similarly to the proof of Theorems 2.13 and 2.14.

Theorem 2.16 If f ∈ QCCqP (λ, µ, β,A,B) , then the following inequalities are satisfied

∞∑
n=2

an ≤ 1

(1 + λ) [2]q

A−B

1−B
+

(1−A) (1− β)
[
1 +

(
[2]q − 1

)
µ
]

(1−B)
(
[2]q − β

)
[2]q

 , (2.10)

∞∑
n=2

[n]q an ≤ 1

1 + λ

A−B

1−B
+

(1−A) (1− β)
[
1 +

(
[2]q − 1

)
µ
]

(1−B)
(
[2]q − β

)
[2]q

 . (2.11)

Theorem 2.17 If f ∈ QCCqP (λ, µ, β,A,B) , then we have

an ≤ 1

(1 + λ) [n]q

A−B

1−B
+

(1−A) (1− β)
[
1 +

(
[2]q − 1

)
µ
]

(1−B)
(
[2]q − β

)
[2]q

 , n = 2, 3, ... .
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Remark 2.18 From the above Theorems 2.16 and 2.17, numerous consequences for different values of the
parameters can be given.

3. Distortion bound and growth theorems
In this section, we give distortion bound and growth theorems for the functions belonging to the classes
QCCq (λ, µ, β, α) and QCCqP (λ, µ, β,A,B) .

Theorem 3.1 Let f ∈ QCCq (λ, µ, β, α) . Then, we have

r − r2θ (λ, µ, β, α, q) ≤ |f (z)| ≤ r + r2θ (λ, µ, β, α, q) , |z| = r ≤ 1,

where

θ (λ, µ, β, α, q) =
1

(1 + λ) [2]q

1− α+
α (1− β)

[
1 +

(
[2]q − 1

)
µ
]

(
[2]q − β

)
[2]q

 . (3.1)

Proof Assume that f ∈ QCCq (λ, µ, β, α) for λ, µ ∈ [0, 1] , α, β ∈ [0, 1) . Then, using the first inequality of
Theorem 2.13, we can easily show that

|f (z)| ≤ |z|+
∞∑

n=2

an |zn| ≤ r + r2
∞∑

n=2

an

≤ r +
r2

(1 + λ) [2]q

1− α+
α (1− β)(

[2]q − β
)
[2]q

[
1 +

(
[2]q − 1

)
µ
]

and

|f (z)| ≥ |z| −
∞∑

n=2

an |zn| ≥ r − r2
∞∑

n=2

an

≥ r − r2

(1 + λ) [2]q

1− α+
α (1− β)(

[2]q − β
)
[2]q

[
1 +

(
[2]q − 1

)
µ
] .

Combination of these inequalities gives us the results of the theorem.
Thus, the proof of Theorem 3.1 is competed. 2

Theorem 3.2 If f ∈ QCCqP (λ, µ, β,A,B) , then we have

r − r2φ (λ, µ, β,A,B, q) ≤ |f (z)| ≤ r + r2φ (λ, µ, β,A,B, q) , |z| = r ≤ 1,

where

φ (λ, µ, β,A,B, q) =
1

(1 + λ) [2]q

A−B

1−B
+

(1−A) (1− β)
[
1 +

(
[2]q − 1

)
µ
]

(1−B)
(
[2]q − β

)
[2]q

 . (3.2)
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Proof The proof of Theorem 3.2 can be proved similarly to the proof of Theorem 3.1. For this reason, we do
not give the proof of Theorem 3.2 in detail in order not to increase the volume of the study. 2

The following theorems can be proved similarly to the proof of Theorem 3.1.

Theorem 3.3 If f ∈ QCCq (λ, µ, β, α) , then the following inequality is satisfied

1− [2]q rθ (λ, µ, β, α, q) ≤ |Dqf (z)| ≤ 1 + [2]q rθ (λ, µ, β, α, q) , |z| = r ≤ 1,

where the function θ (λ, µ, β, α, q) is defined by (3.1).

Theorem 3.4 If f∈ QCCqP (λ, µ, β,A,B) , then we have

1− [2]q rφ (λ, µ, β,A,B, q) ≤ |Dqf (z)| ≤ 1 + [2]q rφ (λ, µ, β,A,B, q) , |z| = r ≤ 1,

where the function φ (λ, µ, β, α, q) is defined by (3.2).

Remark 3.5 Numerous consequences of the results obtained in Theorems 3.1–3.4 can be given for the subclasses
defined in Remark 1.3.
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