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Abstract: We define in this note a natural metric over the tangent bundle T'M by using a vertical deformation of
Sasaki metric. First we present the geometric result concerning the Levi-Civita connection and all forms of Riemannian
curvature tensors of this metric. Secondly, we study the geodesics on the tangent bundle T'M and unit tangent bundle

T1 M . Finally, we characterize the geodesic curvatures on 71 M .
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1. Introduction

In 1958 Sasaki has discovered a new canonical almost Hermitian metric on the tangent bundle 7'M , since then
many authors have largely devoted their studies to this topic. Among them we can mention Dombrowski [6],
Opriou [13], Yano and Ishihara [9, 20], etc.

The stiffness of the Sasaki metric has incited a number of authors to deform the Sasaki metric in order to
achieve a kind of flexibility of its properties (see [5, 7, 11, 12, 14, 15] and others). In recent years Yampolsky

[18, 19], A. Gezer and all [2, 3, 7], L.Bilen [4] (resp. M. Djaa and all [21, 22]) are introduced and studied a
new deformation of the Sasaki metric over the tangent bundle T'M |, called Berger type deformed Sasaki metric

(resp. Mus-Sasaki metric).

In this paper, we consider the tangent bundle T'M over a Riemannian manifold endowed with a deformed
Sasaki metric gpg like a new distorted metric on T'M . Firstly, we obtain the formulas describing the Levi-
Civita connection of this metric (Theorem 3.6), the curvature tensor (Theorem 4.3), the sectional curvature
(Theorem 4.6, Proposition 4.8) and the scalar curvature (Theorem 4.9). Secondly, we study the geodesics on
the tangent bundle TM and on the unit tangent bundle T4y M (Theorem 5.3, Theorem 5.4 and Theorem 5.16).

Finally, we characterize the geodesic curvatures on the unit tangent bundle Ty M (Theorem 5.19).

2. Lifts to tangent bundles

Let M be an m—dimensional Riemannian manifold with a Riemannian metric ¢ and TM be its tangent

bundle denoted by 7 : TM — M. A system of local coordinates (U,z') in M induces on TM a system of

local coordinates (7r’1 U), S w’) ,i=n+i=n+1,..2n, where (w') is the cartesian coordinates in
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each tangent space TpM at P € M with respect to the natural base {%

P }, P being an arbitrary point in

U whose coordinates are (z*).

Given a vector field X = X? 821- on M, the vertical lift X" and the horizontal lift X of X are given,

with respect to the induced coordinates, by

XV =X'o, (2.1)

X" = X'9; —wT, X*0,, (2.2)

K2

where 0; = %, 0= 331» and I'?, are the coefficients of the Levi-Civita connection V of g [20]

In particular, we have the vertical spray w" and the horizontal spray w on TM defined by

Vaw is also called the canonical or Liouville vector field on T'M .

Lemma 2.1 [1] Let (M,g) be a Riemannian manifold, then for all x € M. If w = w’ 821' € T,M, then we

have the following
1. XM (g(w, ) (@,w) = X (1) @,w) = 0
2. XM (g(Y,0)) () = 9(VxY,w)s
3. XV (g(w, w))(@,w) = XV (1) (2,0) = 29(X, W),
4o XV(9(Y,w)) @w) = 9(X,Y)a
5. XH(f(r)=0

6. XV(f(r)) =2f"(r)g(X,w)a,
where r = g(w,w) = |w|? and f:R —]0,+00[ is smooth positive function.

For all vectors fields X,Y € T'(T'M), we have the followings formulas [6, 20]:

[XH Y]y = Y] ) — (Re(X, Y )w)”
(X YY) o = (VXY) (o) (2.3)
(XY YV oy =0

where (z,w) € TM and R is the curvature tensor of g defined by
R(X,)Y)=VxVy - VyVx - Vixy]
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3. Deformed Sasaki metric

Definition 3.1  Let o, 8 : RT — R be smooth functions. We define a deformed Sasaki metric gps on the
tangent bundle TM of a Riemannian manifold (M, g) denoted by:

1. gps(XT, YT, = g,(X,Y),
2. gDS(XH,YV)p:O,
3. gps(XV.YV), = a(r)g.(X,Y) + B(r)g.(X, w)g. (Y, w),
where XY e (TM), p=(zx,w)eTM, r=glw,w), «a>0anda+pGr>0.

Remark 3.2
1) If a=1 and B =0, then gps is the Sasaki metric [16],
2 If B=0, then gps is one case of the Mus-Sasaki metric [22],

1
2)Ifa=p= p— then gps is the Cheeger-Gromoll metric [5, 8].
r
Using Definition 3.1 and Lemma 2.1, we get the following lemma,
Lemma 3.3 Forall XY, Z € T(TM), we have:

D) X% (gps(YV,2V)) = gps(VxY)V,Z2V) +gps(YV,(Vx2)"),
2) XVigps(YV,ZV)) = 2d/g(X,w)g(Y,Z) + 26 g(X,w)g(Y,w)g(Z,w)
+Bl9(Z, w)g(X,Y) + g(Y,w)g(X, Z)].
Lemma 3.4

9(Z,w) = ngS(Zva (w)v),

where Z € T(TM) and w e TM.

Proof

gps(Z2", (w)")

a(r)g(Z,w) + B(r)g(Z, w)g(w,w)
la(r) + 7 B(r)]g(Z, w)

O

Lemma 3.5 Let (TM,gps) be the tangent bundle of the Riemannian manifold (M,g), equipped with the
deformed sasaki metric gps. If V (resp. P9V ) denote the Levi-Civita connection of (M, g) (resp. (TM,gps)

), then we have:

1) gps(PVxuYH ZH) = gps(VxY)H,ZH),
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2) gps(PVxu Y, ZV) = —gps((R(X,Y)w)", ZV),
3) gps(PSVxa YV, ZH) = “Pgps((R(w,Y)X)H, 21),
4) gps(PSVxnYV,ZV) = gps((VxY)V,2ZY),

5) gps(PSVxvYH, 21y = 28 g ((R(w, X)Y)H, 21),
6) gps(PVxvYH ZV) = 0,

7) gDS(DSvXVYV7ZH) = 07

/

(87
8) gps(PIVxvYV,ZV) = gps(—[g(X,w)YV + g(Y,w)X"]

o
B —a aff —2a'B
P oy 2]

R g(X,w)g(Y, w)]W, ZV).

(X,Y)+

where X, Y, W e I'(TM), p= (z,w) € TM and W, = wi% eT,(TM).
Proof Using Lemma 2.1, Lemma 3.3 and Koszul formula, we obtain:

1) 29ps(PoV xuYH 720 =XHgpe(YH, ZH) + YHgpo(ZH, X)) — ZH gpg(XH, YH)
+gps(Z™ [XT Y] + gps (Y, (2, X)) — gps (X, (YT, Z1])
=Xg(Y,Z)+Yg(Z,X) - Zg(X,Y) +g(Z,[X,Y])
+9(Y,[Z,X]) — 9(X,[Y, Z])
=2¢(VxY.Z)

=2gps((VxY)", 27).

2) 29ps(PSVxuYH ZV) =XHgps(YH, ZV) + YHgps(ZV, XH) - ZV gps (X, YH)
+ gDS(ZVa [XHa YH]) + gDS(YH7 [ZV7XH]) - gDS(XH7 [YH7 ZV])
:gDS(ZVu [XHu YH])

= — gps(R(X, Y)w)", 2").
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3) 29ps(PSVxu YV, ZH) =X gps (Y'Y, 2%) + YV gps (2", XT) — ZH gps(X7, YY)
+9ps(Z™ (X YY) + gps(YY, (27, X)) — gps (X, YV, Z2M])
= — gps((R(Z, X)w)",Y")
=~ ag(R(Z, X)w,Y) = Bg(Y,w)g(R(Z, X yw, w)]
=ag(R(w,Y)X, Z)

=agps((R(w,Y)X)", ZH).

4) 2gps(PSV xu YV, ZV) =XH gps(YV, ZV) + YV gps(ZV , XH) — ZV gpg(XH, YY)
+9ps(ZV, [ XHYV]) + gps(YV,[Z2Y, X)) — gps(XH, YV, ZV))
=X"gps(YV,ZY) + gps(ZV, [ X", YV]) + gps(YV,[ZV, X))
=gps((VxY)V,ZV) + gps(Y",(Vx2)")
+9ps(Z7,(VxY)") —gps(YV,(Vx2)")
=29ps((VxY)V,ZV).

By a similar calculation we obtain the other formulas.

O
Let us introduce the notations:
_ o - B-d ~- af —2dP
p— = — p— = - .1
Amatfr w=T, Bl d= 0t (3.1)
and
1 _
0= 1o +a(f— o)+ (af —28a")r] = [a+ B +357] (32)

From Lemma 3.5, we obtain the following theorem

Theorem 3.6 If V (resp. PV ) is the Levi-Civita connection of (M, g) (resp. (TM,gps)) and R denote

the curvature tensor of (M, g), then we have:

(1) (P5Vxn¥ ™), = (V) = (R, V),

@) (P5VxnYV)y = (VaY)) + S (Ra(w,Y)X)",

3) (V¥ ™), = G(Re(w, XV,

@) (P5Vxv YY), = @ga(X,0)Y,) + go(Vow) X, ] + [Bgo(X,Y) + 092 (X, w0)gs (Y, 0)| Wy,

where X, Y € T(TM), p = (z,w) € TM, W is the canonical vertical vector at p defined by
W, = w52 € T,(TM).
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4. Curvatures of the deformed Sasaki metric on tangent bundle

Definition 4.1 Let K : TM — TM be an endomorphism of TM . The horizontal and vertical vector fields
HK and VK are given by

HK:TM — TTM
(z,w) = (Kw)",
VK:TM — TTM
(z,w) = (K(w)".
If K = Id is the identity endomorphism, then we set W =V K =VId.

Locally we have

0 ; 0

_ i1 — ot 1%
VE = kg =i (K(5) (4.1)
;i 0 - ; 0] ; 0
_ 2 7 SN SN J 7o'k ot — ot H
HK = u'K; 57 "WV K F]kaws w (K(Ba:i)> (4.2)
— 4 i 14
w w (8331) (4.3)

From Definition 4.1 and Theorem 3.6 we have:

Proposition 4.2 Let (TM,gps) be the tangent bundle of a Riemannian manifold (My,,g), endowed with the
deformed Sasaki metric gps and K be an (1,1)-tensor field on M , then we have

(1) SV HEK), = (VxK)@)" — J(Re(Xe, Kolw))w)
@) (PSVxnVE), = ((VxEK)w)" + 5 (Ra(w, Ko(w))X,)",
(8) (PSVxvHK), = (KQXO) + 5 (Ra(w, Xo)Ka(w)",

(4) (P VE), = (KX)) +a [g(X w)(K (W)Y +g(K(w), w)X"]

+B g(X, K(w))W,, + 8 g(X, w)g(K (w), w) Wy,
(5)  (PIVxaW),
6)  (PVxe W),

0,

[L+ar] XY +ng(X,w)W,,

where p = (z,w) € TM, X e (TM), r=w|?, W,=uw'32: € T,(TM).
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Using Theorem 3.6, Proposition 4.2 and Koszul’s formula, we obtain the following theorem.

Theorem 4.3

have

From the Theorem 4.3, we get the following propostion.

(1)

2) R(XH" yV)zV =

3) R(XV,YV)z"

(4)

where p =

R(XH yhyzH =

4

+[R(X,Y)Z]

(6] H 2
§[R(Z7Y)X] -

%[ (Z,w)R(w,Y)X — g(Y,w)R(w, 2)X

+alg(X

2[R(w, R(X, Z)w)Y —

If R denotes the Riemannian curvature tensor of the tangent bundle (TM,gps),

R(w, R(Y, Z)w)X + 2R(w, R(X,Y)w)Z]"

o %[(VZR)(X, Y)uw]”

% [R(w,Y)R(w, 2)x]"

]H

= 2a'g(Z,w)[g(X,w)Y" = g(Y,w)X"]
Z2)YY —g(Y, 2)X V]

+ag(Z,w)[g(Y, w) X" — g(X,w)Y"]

+[1 +ar][Bg
g

—[1+ar]B
+6 [9(X,
+28" [g(X

Z)g

+n B [g(Y,

[[B(1+ar)—a]|Y|2 [0 (l+ar)+a*—2a']g (Y,w)Q}XV

XV yVyyv =
+[a
-
+[[3-28" +ap
(x,w) e TM and X,Y,Z €T'(TM).

w)g(Y, Z)
+a B [g(Y,w)g(X, Z)
Z)g(X,w)

Y, Z) + 69(Y,w)g(Z,w)] X"

(
(X, Z) +0g9(X,w)g(Z,w)]Y"
(Y,

w) —g(Y, Z)g(X, w)]W

= g(Y,w)g(X, Z)]W
— 9(X,w)g(Y, Z)]W
—9(X, Z)g(Y, w)]W,

28" =@ =31+ an)g(Y, w)g(X, w)

~ B +anr)g(X, Y)] a4

— 18] [ 9(X,Y)g(Y,w) = [Y[29(X, w)] | W,

then we

Proposition 4.4 The curvature tensor R with respect to (T'M,gpg) verifies the following formulas
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(1) gosRECTYIYHXH), = g(ROCYY, X, — SE|ROGY Jul?

2
~ (e
(2) gDS(R(XHvyv)vaxH)p = Z‘R(M,Y)XP’

(3) gos(BXV, Y)YV, X"), = [l2a’-a=3(1+an)]gt,w)g(x, )
@ = B+ an]g(X,Y)] (@ g(X,Y) + 8 g(X, w)g(Y,w))
+[[B(+an -ally)+[a - 25" oY, w)’
+3 (1 ar) | (a X1+ 8 (X, w)?)
+A[3 —28" +aB —nB]
(9(X, Y)g(Y,w) = [YPg(X,w))g(X, w),

where p = (x,w) € TM .

Now, we consider the sectional curvature K on (TM,gps) for P is given by

K(X,Y)= —= —— ==, (4.4)
9ps(X, X)gps(Y,Y) — gps(X,Y)?

where P = P()? , 37) denotes the plane spanned by {)? , }7}, for all linearly independent vector fields X , Y on
TM.

Lemma 4.5 If XY € I'(T'M) are orthonormal vector fields on (M, g), then we have

gps(XT, X)) = | XT|? = X = ¢(X, X),
gps(XT, YT = g(X,Y)=0=gps(X", V"),
gps(XV, YY), = Bg(X,u)g(Y,w)

gps(YV, YY), = a+Bg(Y,w)?

where p = (z,w) € TM .

Let K(X®,YH), K(X" YY) and K(XV,Y"V) denote the sectional curvature of the plane spanned
respectively by {XH,YH}, {XH,YV} and {XV,YV} on (TM,gps) , where X,Y are orthonormal vector

fields on (M, g). From Proposition 4.8 and Lemma 4.5, we obtain the following theorem.
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Theorem 4.6  For the sectional curvature K of (TM,gps) we have the followings

(1) Ry, = KXY). - YRV,
v H oV _ a’ w 2

1 {
o? +a B [g(X,w)? + g(Y,w)?]

() KxV.y"), =
26— 31 +an)g(Y w)g(X, w)
@ = B+ an]g(X,Y)] (@ (X, ¥) + 8 g(X, w)g(Y;w))
+[[B<1+ar>—a]|¥|2+[a2—2a’]g<xw>2
1+ar } ( X[2 + B g(X,w)?)

= /

+A[6 — aB —np|

(9(X,Y)g(¥,w) = [Y Pg(X, w))g(X, w) },
where p = (z,w) € TM and K is the sectional curvature of (M,g).

Remark 4.7 Let p = (z,w) € TM such as w € T,M\{0} and {E;}i=1,m be an orthonormal frame of T, M
such that F1 = ‘Z”}—l, then

1 ~
BV, Ensy = —~EY (4.5)

E,=EH B, =—
{ ) +1 \/X O[]

are orthonormal basis of T,TM .

Proposition 4.8 The sectional curvature K of (TM,gps) satisfies the following equations

R(ELE) = KB E) - > RE, P,

o 2

K(Ei; Emy1) = 4>\| (w, E1)E;[*

~ ~ ~ o 9

K(Ei, Em+x) = |R(w, Ep) B[,
. - 1. _
K(Epmyr,Emy1) = X[(ﬂ+5)(l+a7")—aJr(a?an’)T],
- - 1. _ _
K(Emyk, Emyt) = a[(ﬂ+5)(1+aT)_a]

for i,7=1,m and k,t =2,m, where K is a sectional curvature of (M,g).
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Theorem 4.9 The scalar curvature o with respect to (TM, gps) is given by

5 = o — T |RELE)u) (4.6)
+2(m)\_1)[(B+5)(1+ar)—a+(62—2a’)r}
+(m_llfm_2)[(B-ﬁ-g)(l—i—ozr)—a],

where o is a scalar curvature of (M,g).

Proof Respect to the definition of scalar curvature, we have

G = > K(E,Ej)+2Y K(EjEp1)+2 K(E;, Epik)
i,j=1 i=1 i=1,k=2
+2Y KBtk Emr1) + > KBk Emie):
k=2 k,t=2

Using Proposition 4.8, we have

m m

T U_%TQZ‘R(E“Ej)wP*%Ta S |R(w, Ey)E?
& i=1,k=2
—|—221[(B—i—g)(l—kar)—a_i_(az_25,)T]
E>2
—1—32[(3—%5)(1-&-@74)_5]
kk,t;é=t2

Let us take into account that R(w, E1)E; = R(w, 7=)E; =0 and

 Twl

m m
> IR(w,BE)E? = > |R(w,E)Ei|?
i=1,k=2 ij=1
= Y IR(E,Ejuwl
ij—=1
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(see [22]), then

5 = o7 > IR(E.Euf
+2(mf_1)[(3+3)(1+6r)—a+(62—2a’)r}
+—(m—lgm—2) [(B+d)1+ar)—a].

Corollary 4.10 Let (M,,,g) be a locally flat manifold and (T M, gps) be its tangent bundle equipped with the

deformed Sasaki metric. Then the scalar curvature ¢ with respect to gps is given by

Corollary 4.11 If (M,,,g) has a constant sectional curvature b, then scalar curvature o with respect to gps

is given by

c = mm-1)b— 5 (4.7)
+2(m)\_1)[(B+5)(1+ar)—a+(62 2a’ )r]
+(m—llfm_2)[(54-5)(14—&7‘)—5]

Result is obtained in [17] by another formula.
Proof Using the property of constant sectional curvature, for XY, Z € I'(T'M), we have
RX,Y)Z=b(9(Y,2)X - 9(X,2)Y)
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then
m
o = Z 9(R(E;, Ej)Ej, E;)
= 0> g(E), B;)g(Bi, E)
o = m(m—1)b,
DO IR(ELEjuwl* = 0 |g(Ejw)Ei — g(Ei, w) B
z’z;fjl 111;:‘7‘1
111]:].1
m
= 20° ) |g(Ej,w)?
> IR(EL Ejwl = 20*(m — 1w,

Substituting formulas (4.8) and (4.9) in (4.6), we obtain formula (4.7).

5. Geodesics of deformed Sasaki metric

(4.8)

Lemma 5.1 [10] Let M,, be a smooth manifold and X,Y be a vector fields on M. If x € M and w € T, M

such that Y, = w, then we have:
d.Y (X2) = X by + (VXY) (o

Lemma 5.2  Let z(t) be a smooth curve on Riemannian manifold (M,g). Then any curve in the shape of

C(t) = (x(t), 2(t)) on TM werifies the following formula
C =il + (sz)v

Proof
Locally, for Z € I'(T'M) such that Z(z(t)) = z(t), then we have

C(t) = dC(t) = dZ(z(t))

. Using Lemma 5.1 we obtain

C(t) = dZ(x(t)) = " + [V;2]"

2132
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Theorem 5.3 Let (TM,gps) be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki
metric. If C(t) = (x(t), 2(t)) is a curve over TM such that z(t) is a vector field along the curve x(t), then:

DSVCC’ = (Vi) +a(R(2,Vp2)i)T + (V3 V52)Y + %O/g(vu;cz, 2)(V;32)Y
— o afB = 2a/
+[£+ B 9(V;2,Vz) + W (Vi Z,Z)Q]ZV. (5.2)

Proof
Using Lemma 5.2 we obtain:

DSw .~ _ DS
Vel = TV L (v,

- DSviHj:H + DSViH(Viz)V + st(viz)va&ff + DSV(Viz)VWiz)V

)V][iH +(Vi2)Y]

= (Vi) - %(R(g’c,j:)z)v (VY32 + SR V)"

—I—%(R(z, Viz)j;)H + %/[g(viz, z)(Vg-Cz)V +9(V;2, z)(sz)V]

— o " 92q
[£+r5 (V32 Vi) + WQ(V;'UZ»Z)Q(V@ZJ)}ZV

then,
. 2 /
PSYAC = (Vi) +a(R(z,V2)i) T +(V;9;2) + %g(viz,z)(vfz)v

/8 / a/B/_2a/ﬂ

21,V
(o +15) 9(V; z;z)]z )

From the Theorem 5.3, we get the following theorem.

Theorem 5.4  Let (TM,gps) be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki
metric. If C(t) = (x(t), 2(t)) is a curve over TM such that z(t) is a vector field along the curve x(t). Then

C(t) is a geodesic curve if and only if

Vi = —aR(z,Vi2)i
20/
ViViz = —Fg(vxz,z)vmz (5.3)
e af —2d'p8
[ g(Viz, sz) + W (sz’ 2)2] Z.

The curve C(t) = (z(t),2(t)) on TM is called a horizontal lift of the curve z(t) if Vzz = 0. Thus, we

have the following corollary.
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Corollary 5.5 Let (TM,gps) be a tangent bundle of the manifold (M,g) endowed with the deformed Sasaki
metric and C(t) = (x(t),z(t)) is a horizontal lift of the curve x(t). Then C(t) is a geodesic on (TM,gps) if
and only if x(t) is a geodesic on (M, g).

A curve C(t) = (x(t),2(t)) over (T'M,gps) is said to be a natural lift of the curve z(t). From Corollary

5.5, we deduce the following corollary.

Corollary 5.6 Let (TM,gps) be a tangent bundle of the manifold (M,g) endowed with the deformed Sasaki
metric. If x(t) is a geodesic on (M,g) then the natural lift C(t) = (x(t),x(t)) is a geodesic on (TM,gps).

Remark 5.7  For an horizontal lift C(t) = (z(t), 2(t)) of the curve x(t), we have:

dzF dad
Viz=0 & Tk =
z=0 s + 1552 v 0

& 2(t) =exp( —/ A(t)dt). K

d
where K € R", A(t) = [ak;], ar; = ZFZ ;t

The Remark 5.7 allows us to build a several geodesics examples over (T M, gps).

Example 5.8 Let M =R equipped with the Riemannian metric g = e*dx?. The Christoffel symbols of
the Levi-Civita connection are given by:

1 11(3911 9911 3911) _ 1
2

rL, == _
=59 Ozt Ozt Ozt

. So the geodesics x(t) with respect to g, checking the equation
2"+ =(2)? =0. (5.4)

The solutions of differential equation (5.4) are given by

2b
bt+c’

z'(t) = x(t) =a+2In(bt + ¢), a,b,c € R.

From the Remark 5.7, we deduce that C(t) = (a+2In(bt +c), K(bt+c)™') is a geodesic on TM .
Example 5.9 Let M = R? endowed with the metric h defined by:
hit =22, hos = y?, hag =2, hy; = 0,Vi # j
Then, the symbols of Christoffel with respect to the Levi-Civita connection are given by:

1 1 1 .
F%l = ; ’ F§2 = 5 ) ng’) = ; ) F']LC] =0 V(Za%k) € {15273}3 ~ {(17171)a (27272)a (35373)}
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Let n(t) = (x1(t),z2(t),z3(t)) be a curve on (M,g) and 6(t) = (21(t), 22(t), 23(t)) be a curve on TM
along n(t). If C(t) = (n(t),d(t)) is an horizontal lift of the curve n(t), then from the Remark 5.7, we obtain

zy(t)
0! /0 0
At =] o ?8 0o |,
(1)
0 0 z3(t)

and
ke ke ks
z1(t)" wa(t)” za(t

5(t) = exp(—/ A(t)dt)K = ( )) , k1,ko, k3 € R.

Moreover, n(t) = (x1(t),x2(t),x3(t)) is a geodesic if and only if the functions x1(t), z2(t), z5(t) are solutions

of the following equation

TR =0
. Then we get

() = (2(art +b1)?, 2(ast +b2) %, 2(ast + by)?)
o(t) = (kl(a1t+ bl)ié, k‘g(agt—FbQ)i%, ks(ast + b3)7%) , k1, ko, k3 € R.

Theorem 5.10 Let (TM,gps) be a tangent bundle of a flat manifold (M,g) endowed with the deformed
Sasaki metric. If x(t) is a geodesic on M , Then C(t) = (x(t), 2(t)) is a geodesic over (TM,gps) if and only if

2a/

V;Viz = —Fg(Viz,z)ngz (5.5)
B—do aB' —2d'B )
g9 (Vas Vaz) + o 0(Vas o)) =

Proof = While x(t) is a geodesic on M and R = 0 then we have Vi =0 and R(z,V;z)& = 0. From the

formula (5.3) we obtain the result. O

Corollary 5.11  Let (TM,gps) be a tangent bundle of a manifold (M, g) equipped with the deformed Sasaki
metric and C(t) = (z(t), 2(t)) be a geodesic on TM . If g(z,z) is a constant then:

Vi = —aR(z,V;2)i
5.6)
B8—a 2 (
V;Viz = _a-i-?"ﬁlv;bz‘ z.
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5.1. Geodesics of the deformed Sasaki metric on unit tangent bundle 77 M

Let T7 M be the unit tangent bundle of TM . Ty M is an hypersurface in TM defined by
M = {(z,w) € TM, g(w,w) = |w|* = 1}. (5.7)
The unit normal vector field to T3 M is given by
W:TMy=TM\M — T(TM)

(x,w) = W(:Ln,w) = (7)‘/ (58)

SE

where A = a+r 3. If we set

F:TM — R
(z,w) = g(w,w)

Then F is a submersion and Ty M = F~1({1}). From (5.8), we obtain
gDS(W7 W)(m,w) = |U)|2 =T
gps(W, X*) = 0=X"(F)=gps(X¥, grad,, F)

gDS(XV7grangSF) XV(F) = 29(X,w)

VA
\/Xg(X,w) = — gDS(XV7grangSF).

gDS(XV7W) 2

Therefore, W = @ gradg, . F' is a canonical vector field normal to 71 M .

Given a vector field X on M, the tangential lift X7 of X is given by

XT(z,w) = [XV — gps(XV, W)W] (=) (5.9)
If V is the induced connection on T M , then we have
V);f/ = DSV)}? — gps(DSVX*}N/,W)W (5.10)

for all X,Y e I(T(T1M)).

Subsequently, we denote =’ =&, 2" =V;z, 2 =Vizand 2'=V;V;z.

Lemma 5.12  Let (TM,gps) be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki
metric. and C(t) = (x(t), 2(t)) be a curve on Ty M such z(t) is a vector field along x(t). Then we have

|zl =1, and g(2',2)=0
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From Theorem 5.4, formula (5.10) and Lemma 5.12, we obtain the following lemma
Lemma 5.13  C(t) = (x(¢),2(t)) is a geodesic on TyM if and only if

(1) 2" =aR(z2),

(5.11)
(@) ' =bPz+pz = (p+ )z
where r =1, a = —a(l) = Const, b= % = Const  and p is some function.
Remark 5.14 :
(1) As|z|>=1 (iez€e€TiM), then g(2',z)=0,
(2) 0= Vag(s,2) = g(=",2) + |22, 50 g(,2) = —|2/[2.
Lemma 5.15 Let C(t) = (z(t),2(t)) be a geodesic on Ty M . If we put ¢ = |2'|, then we have
p=—(140b)? (5.12)
d=0. (5.13)
Proof
From formula (5.11) and Remark 5.14, we obtain
2 = (p+bc?)z
92 = pbd =P =2
therefore p = —(1 + b)c?. In the other hand, we have
1 2\/ "o
@) = g2
= (p+ ) P)g(z )
= 0.
O

Using Lemma 5.13 and Lemma 5.15, we obtain the following theorem.

Theorem 5.16 Let (T'M,gps) be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki
metric gps and C(t) = (z(t), z(t)) be a curve on TyM such z(t) € TyyM, . If we put ¢ = |2'[, then C(t) is
a geodesic on T1M if and only if
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c = const, p=—(1+b)c® = const, (5.14)
" = aR(z,2")a, (5.15)
S = 7622, (5.16)

where a = —a(1) = Const.

Theorem 5.17  Let (TM,gps) be a tangent bundle of a locally symmetric manifold (M,g) (VR = 0),
endowed with the deformed Sasaki metric, C(t) = (z(t),z(t)) be a geodesic on TyM and n = moC. Then
R(z,2') is parallel along 7.

Proof :
Using formula (5.16), we get
R(z,7) = ViR(z72)
= (ViR)(2,#) + R(, %) + R(2,2")
= R(z,2")

= R(z,—c%2)
= 0.

O

Theorem 5.18 Let (T'M,gps) be a tangent bundle of a locally symmetric manifold (M, g), endowed with the
deformed Sasaki metric, and C(t) = (x(t),2(t)) be a geodesic on TyM . Then we have

|zP)| = const ~ Vp>1. (5.17)

Proof
From Theorem 5.16 and Theorem 5.17, we have

2 = —OélR(Z, z’)x’, and R/(Z, Z/) = va(Z, Z,) = 0.
So
2Pt = g R(z,2)2®  p>1 (5.18)

and

d
£|x(p)|2 — 29(:3(17+1)7x(p)) =2ag(R(z, z’)x(p),x(p)) =0.

Then
|z®P)| = const ~ Vp>1.
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Theorem 5.19 Let (TM,gps) be a tangent bundle of a locally symmetric manifold (M, g), endowed with the

deformed Sasaki metric and C(t) = (z(t), 2(t)) be a geodesic on Ty M . Then all geodesic curvatures of n = x(t)
are constant.

Proof
If s is an arc length parameter on 7, then 4% = 4245 Gince C is a geodesic then IC| = [4C| =K =
const and
=||C|I* = | |2 a(D)IZ* +B(1)g(', 2)* = | |2 : (5.19)
Hence

d
‘CT: = \/m = T = const. (5~20)

where 72 = K2 + a¢? = const.

If vy, ... ,Von—1 denote the Frenet frame along n and by kq, ...., ko, —1 the geodesic curvatures of n. Then
from (5.20), we obtain

X = T
2 = 1%k
.’13(3) = Tsk‘l(—k1V1 + k‘gyg)
Using (5.17) we deduce k1 = const, ke = const, ...., kan_1 = const.
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