тӥвітак

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: 2121 - 2140
© TÜBİTAK
doi:10.55730/1300-0098.3258

On the geodesics of deformed Sasaki metric

Nour Elhouda DJAA* ${ }^{*}$ (Abderrahim ZAGANE ©

Department of Mathematics, Faculty of Science and Technology, Relizane University, Relizane, Algeria

Received: 04.12.2021 • Accepted/Published Online: 15.04.2022 \quad Final Version: 04.07 .2022

Abstract

We define in this note a natural metric over the tangent bundle $T M$ by using a vertical deformation of Sasaki metric. First we present the geometric result concerning the Levi-Civita connection and all forms of Riemannian curvature tensors of this metric. Secondly, we study the geodesics on the tangent bundle $T M$ and unit tangent bundle $T_{1} M$. Finally, we characterize the geodesic curvatures on $T_{1} M$.

Key words: Deformed Sasaki metric, geodesics, tangent bundle, unit tangent bundle

1. Introduction

In 1958 Sasaki has discovered a new canonical almost Hermitian metric on the tangent bundle $T M$, since then many authors have largely devoted their studies to this topic. Among them we can mention Dombrowski [6], Opriou [13], Yano and Ishihara [9, 20], etc.
The stiffness of the Sasaki metric has incited a number of authors to deform the Sasaki metric in order to achieve a kind of flexibility of its properties (see [5, 7, 11, 12, 14, 15] and others). In recent years Yampolsky [18, 19], A. Gezer and all [2, 3, 7], L.Bilen [4] (resp. M. Djaa and all [21, 22]) are introduced and studied a new deformation of the Sasaki metric over the tangent bundle $T M$, called Berger type deformed Sasaki metric (resp. Mus-Sasaki metric).

In this paper, we consider the tangent bundle $T M$ over a Riemannian manifold endowed with a deformed Sasaki metric $g_{D S}$ like a new distorted metric on $T M$. Firstly, we obtain the formulas describing the LeviCivita connection of this metric (Theorem 3.6), the curvature tensor (Theorem 4.3), the sectional curvature (Theorem 4.6, Proposition 4.8) and the scalar curvature (Theorem 4.9). Secondly, we study the geodesics on the tangent bundle $T M$ and on the unit tangent bundle $T_{1} M$ (Theorem 5.3, Theorem 5.4 and Theorem 5.16). Finally, we characterize the geodesic curvatures on the unit tangent bundle $T_{1} M$ (Theorem 5.19).

2. Lifts to tangent bundles

Let M be an m-dimensional Riemannian manifold with a Riemannian metric g and $T M$ be its tangent bundle denoted by $\pi: T M \rightarrow M$. A system of local coordinates $\left(U, x^{i}\right)$ in M induces on $T M$ a system of local coordinates $\left(\pi^{-1}(U), x^{i}, x^{\bar{i}}=w^{i}\right), \bar{i}=n+i=n+1, \ldots, 2 n$, where $\left(w^{i}\right)$ is the cartesian coordinates in
*Correspondence: djaanor@hotmail.fr
2010 AMS Mathematics Subject Classification: 53C07, 53C55, 53C22
each tangent space $T_{P} M$ at $P \in M$ with respect to the natural base $\left\{\left.\frac{\partial}{\partial x^{i}}\right|_{P}\right\}, P$ being an arbitrary point in U whose coordinates are $\left(x^{i}\right)$.

Given a vector field $X=X^{i} \frac{\partial}{\partial x^{i}}$ on M, the vertical lift X^{V} and the horizontal lift X^{H} of X are given, with respect to the induced coordinates, by

$$
\begin{gather*}
X^{V}=X^{i} \partial_{\bar{i}} \tag{2.1}\\
X^{H}=X^{i} \partial_{i}-w^{s} \Gamma_{s k}^{i} X^{k} \partial_{\bar{i}} \tag{2.2}
\end{gather*}
$$

where $\partial_{i}=\frac{\partial}{\partial x^{i}}, \partial_{\bar{i}}=\frac{\partial}{\partial w^{i}}$ and $\Gamma_{s k}^{i}$ are the coefficients of the Levi-Civita connection ∇ of g [20]
In particular, we have the vertical spray w^{V} and the horizontal spray w^{H} on $T M$ defined by

$$
w^{V}=w^{i}\left(\partial_{i}\right)^{V}=w^{i} \partial_{\bar{\imath}}, \quad w^{H}=w^{i}\left(\partial_{i}\right)^{H}=w^{i} \bar{\partial}_{i}
$$

${ }^{V} w$ is also called the canonical or Liouville vector field on $T M$.

Lemma 2.1 [1] Let (M, g) be a Riemannian manifold, then for all $x \in M$. If $w=w^{i} \frac{\partial}{\partial x^{i}} \in T_{x} M$, then we have the following

1. $X^{H}(g(w, w))_{(x, w)}=X^{H}(r)_{(x, w)}=0$
2. $X^{H}(g(Y, w))_{(x, w)}=g\left(\nabla_{X} Y, w\right)_{x}$
3. $X^{V}(g(w, w))_{(x, w)}=X^{V}(r)_{(x, w)}=2 g(X, w)_{x}$
4. $X^{V}(g(Y, w))_{(x, w)}=g(X, Y)_{x}$
5. $X^{H}(f(r))=0$
6. $X^{V}(f(r))=2 f^{\prime}(r) g(X, w)_{x}$,
where $r=g(w, w)=|w|^{2}$ and $\left.f: \mathbb{R} \rightarrow\right] 0,+\infty[$ is smooth positive function.

For all vectors fields $X, Y \in \Gamma(T M)$, we have the followings formulas [6, 20]:

$$
\begin{align*}
& {\left[X^{H}, Y^{H}\right]_{(x, w)}=[X, Y]_{(x, w)}^{H}-\left(R_{x}(X, Y) w\right)^{V}} \\
& {\left[X^{H}, Y^{V}\right]_{(x, w)}=\left(\nabla_{X} Y\right)_{(x, w)}^{V}} \tag{2.3}\\
& {\left[X^{V}, Y^{V}\right]_{(x, w)}=0}
\end{align*}
$$

where $(x, w) \in T M$ and R is the curvature tensor of g defined by

$$
R(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}
$$

3. Deformed Sasaki metric

Definition 3.1 Let $\alpha, \beta: \mathbb{R}^{+} \rightarrow \mathbb{R}$ be smooth functions. We define a deformed Sasaki metric $g_{D S}$ on the tangent bundle $T M$ of a Riemannian manifold (M, g) denoted by:

1. $g_{D S}\left(X^{H}, Y^{H}\right)_{p}=g_{x}(X, Y)$,
2. $g_{D S}\left(X^{H}, Y^{V}\right)_{p}=0$,
3. $g_{D S}\left(X^{V}, Y^{V}\right)_{p}=\alpha(r) g_{x}(X, Y)+\beta(r) g_{x}(X, w) g_{x}(Y, w)$,
where $X, Y \in \Gamma(T M), \quad p=(x, w) \in T M, \quad r=g(w, w), \quad \alpha>0$ and $\alpha+\beta r>0$.

Remark 3.2

1) If $\alpha=1$ and $\beta=0$, then $g_{D S}$ is the Sasaki metric [16],

2 If $\beta=0$, then $g_{D S}$ is one case of the Mus-Sasaki metric [22],
2) If $\alpha=\beta=\frac{1}{r+1}$, then $g_{D S}$ is the Cheeger-Gromoll metric [5, 8].

Using Definition 3.1 and Lemma 2.1, we get the following lemma,
Lemma 3.3 For all $X, Y, Z \in \Gamma(T M)$, we have:

$$
\begin{aligned}
\text { 1) } X^{H}\left(g_{D S}\left(Y^{V}, Z^{V}\right)\right)= & g_{D S}\left(\left(\nabla_{X} Y\right)^{V}, Z^{V}\right)+g_{D S}\left(Y^{V},\left(\nabla_{X} Z\right)^{V}\right), \\
\text { 2) } X^{V}\left(g_{D S}\left(Y^{V}, Z^{V}\right)\right)= & 2 \alpha^{\prime} g(X, w) g(Y, Z)+2 \beta^{\prime} g(X, w) g(Y, w) g(Z, w) \\
& +\beta[g(Z, w) g(X, Y)+g(Y, w) g(X, Z)] .
\end{aligned}
$$

Lemma 3.4

$$
g(Z, w)=\frac{1}{\alpha(r)+r \beta(r)} g_{D S}\left(Z^{V},(w)^{V}\right)
$$

where $Z \in \Gamma(T M)$ and $w \in T M$.

Proof

$$
\begin{aligned}
g_{D S}\left(Z^{V},(w)^{V}\right) & =\alpha(r) g(Z, w)+\beta(r) g(Z, w) g(w, w) \\
& =[\alpha(r)+r \beta(r)] g(Z, w)
\end{aligned}
$$

Lemma 3.5 Let $\left(T M, g_{D S}\right)$ be the tangent bundle of the Riemannian manifold (M, g), equipped with the deformed sasaki metric $g_{D S}$. If ∇ (resp. $\left.{ }^{D S} \nabla\right)$ denote the Levi-Civita connection of (M, g) (resp. (TM, $\left.g_{D S}\right)$), then we have:

$$
\text { 1) } g_{D S}\left({ }^{D S} \nabla_{X^{H}} Y^{H}, Z^{H}\right)=g_{D S}\left(\left(\nabla_{X} Y\right)^{H}, Z^{H}\right)
$$

2) $g_{D S}\left({ }^{D S} \nabla_{X^{H}} Y^{H}, Z^{V}\right)=-\frac{1}{2} g_{D S}\left((R(X, Y) w)^{V}, Z^{V}\right)$,
3) $g_{D S}\left({ }^{D S} \nabla_{X^{H}} Y^{V}, Z^{H}\right)=\frac{\alpha(r)}{2} g_{D S}\left((R(w, Y) X)^{H}, Z^{H}\right)$,
4) $g_{D S}\left({ }^{D S} \nabla_{X^{H}} Y^{V}, Z^{V}\right)=g_{D S}\left(\left(\nabla_{X} Y\right)^{V}, Z^{V}\right)$,
5) $g_{D S}\left({ }^{D S} \nabla_{X^{V}} Y^{H}, Z^{H}\right)=\frac{\alpha(r)}{2} g_{D S}\left((R(w, X) Y)^{H}, Z^{H}\right)$,
6) $g_{D S}\left({ }^{D S} \nabla_{X^{V}} Y^{H}, Z^{V}\right)=0$,
7) $g_{D S}\left({ }^{D S} \nabla_{X^{V}} Y^{V}, Z^{H}\right)=0$,
8) $g_{D S}\left({ }^{D S} \nabla_{X^{V}} Y^{V}, Z^{V}\right)=g_{D S}\left(\frac{\alpha^{\prime}}{\alpha}\left[g(X, w) Y^{V}+g(Y, w) X^{V}\right]\right.$

$$
\left.+\left[\frac{\beta-\alpha^{\prime}}{\alpha+r \beta} g(X, Y)+\frac{\alpha \beta^{\prime}-2 \alpha^{\prime} \beta}{\alpha(\alpha+r \beta)} g(X, w) g(Y, w)\right] W, Z^{V}\right) .
$$

where $X, Y, W \in \Gamma(T M), p=(x, w) \in T M$ and $W_{p}=w^{i} \frac{\partial}{\partial w^{i}} \in T_{p}(T M)$.
Proof Using Lemma 2.1, Lemma 3.3 and Koszul formula, we obtain:

1) $2 g_{D S}\left({ }^{D S} \nabla_{X^{H}} Y^{H}, Z^{H}\right)=X^{H} g_{D S}\left(Y^{H}, Z^{H}\right)+Y^{H} g_{D S}\left(Z^{H}, X^{H}\right)-Z^{H} g_{D S}\left(X^{H}, Y^{H}\right)$

$$
\begin{aligned}
& +g_{D S}\left(Z^{H},\left[X^{H}, Y^{H}\right]\right)+g_{D S}\left(Y^{H},\left[Z^{H}, X^{H}\right]\right)-g_{D S}\left(X^{H},\left[Y^{H}, Z^{H}\right]\right) \\
= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y)+g(Z,[X, Y]) \\
& +g(Y,[Z, X])-g(X,[Y, Z]) \\
= & 2 g\left(\nabla_{X} Y . Z\right) \\
= & 2 g_{D S}\left(\left(\nabla_{X} Y\right)^{H}, Z^{H}\right) .
\end{aligned}
$$

2) $2 g_{D S}\left({ }^{D S} \nabla_{X^{H}} Y^{H}, Z^{V}\right)=X^{H} g_{D S}\left(Y^{H}, Z^{V}\right)+Y^{H} g_{D S}\left(Z^{V}, X^{H}\right)-Z^{V} g_{D S}\left(X^{H}, Y^{H}\right)$

$$
\begin{aligned}
& +g_{D S}\left(Z^{V},\left[X^{H}, Y^{H}\right]\right)+g_{D S}\left(Y^{H},\left[Z^{V}, X^{H}\right]\right)-g_{D S}\left(X^{H},\left[Y^{H}, Z^{V}\right]\right) \\
= & g_{D S}\left(Z^{V},\left[X^{H}, Y^{H}\right]\right) \\
= & -g_{D S}\left((R(X, Y) w)^{V}, Z^{V}\right) .
\end{aligned}
$$

3) $2 g_{D S}\left({ }^{D S} \nabla_{X^{H}} Y^{V}, Z^{H}\right)=X^{H} g_{D S}\left(Y^{V}, Z^{H}\right)+Y^{V} g_{D S}\left(Z^{H}, X^{H}\right)-Z^{H} g_{D S}\left(X^{H}, Y^{V}\right)$

$$
\begin{aligned}
& +g_{D S}\left(Z^{H},\left[X^{H}, Y^{V}\right]\right)+g_{D S}\left(Y^{V},\left[Z^{H}, X^{H}\right]\right)-g_{D S}\left(X^{H},\left[Y^{V}, Z^{H}\right]\right) \\
= & -g_{D S}\left((R(Z, X) w)^{V}, Y^{V}\right) \\
= & -\alpha g(R(Z, X) w, Y)-\beta g(Y, w) g(R(Z, X) w, w)] \\
= & \alpha g(R(w, Y) X, Z) \\
= & \alpha g_{D S}\left((R(w, Y) X)^{H}, Z^{H}\right) .
\end{aligned}
$$

4) $2 g_{D S}\left({ }^{D S} \nabla_{X^{H}} Y^{V}, Z^{V}\right)=X^{H} g_{D S}\left(Y^{V}, Z^{V}\right)+Y^{V} g_{D S}\left(Z^{V}, X^{H}\right)-Z^{V} g_{D S}\left(X^{H}, Y^{V}\right)$

$$
\begin{aligned}
& +g_{D S}\left(Z^{V},\left[X^{H}, Y^{V}\right]\right)+g_{D S}\left(Y^{V},\left[Z^{V}, X^{H}\right]\right)-g_{D S}\left(X^{H},\left[Y^{V}, Z^{V}\right]\right) \\
= & X^{H} g_{D S}\left(Y^{V}, Z^{V}\right)+g_{D S}\left(Z^{V},\left[X^{H}, Y^{V}\right]\right)+g_{D S}\left(Y^{V},\left[Z^{V}, X^{H}\right]\right) \\
= & g_{D S}\left(\left(\nabla_{X} Y\right)^{V}, Z^{V}\right)+g_{D S}\left(Y^{V},\left(\nabla_{X} Z\right)^{V}\right) \\
& +g_{D S}\left(Z^{V},\left(\nabla_{X} Y\right)^{V}\right)-g_{D S}\left(Y^{V},\left(\nabla_{X} Z\right)^{V}\right) \\
= & 2 g_{D S}\left(\left(\nabla_{X} Y\right)^{V}, Z^{V}\right) .
\end{aligned}
$$

By a similar calculation we obtain the other formulas.
Let us introduce the notations:

$$
\begin{equation*}
\lambda=\alpha+\beta r, \quad \bar{\alpha}=\frac{\alpha^{\prime}}{\alpha}, \quad \bar{\beta}=\frac{\beta-\alpha^{\prime}}{\alpha+r \beta}, \quad \bar{\delta}=\frac{\alpha \beta^{\prime}-2 \alpha^{\prime} \beta}{\alpha(\alpha+r \beta)}, \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta=\frac{1}{\lambda \alpha}\left[\lambda \alpha^{\prime}+\alpha\left(\beta-\alpha^{\prime}\right)+\left(\alpha \beta^{\prime}-2 \beta \alpha^{\prime}\right) r\right]=[\bar{\alpha}+\bar{\beta}+\bar{\delta} r] . \tag{3.2}
\end{equation*}
$$

From Lemma 3.5, we obtain the following theorem
Theorem 3.6 If $\nabla\left(\right.$ resp. $\left.{ }^{D S} \nabla\right)$ is the Levi-Civita connection of $(M, g)\left(r e s p .\left(T M, g_{D S}\right)\right)$ and R denote the curvature tensor of (M, g), then we have:
(1) $\left({ }^{D S} \nabla_{X^{H}} Y^{H}\right)_{p}=\left(\nabla_{X} Y\right)_{p}^{H}-\frac{1}{2}\left(R_{x}(X, Y) w\right)^{V}$,
(2) $\left({ }^{D S} \nabla_{X^{H}} Y^{V}\right)_{p}=\left(\nabla_{X} Y\right)_{p}^{V}+\frac{\alpha}{2}\left(R_{x}(w, Y) X\right)^{H}$,
(3) $\left({ }^{D S} \nabla_{X^{V}} Y^{H}\right)_{p}=\frac{\alpha}{2}\left(R_{x}(w, X) Y\right)^{H}$,
(4) $\left({ }^{D S} \nabla_{X^{V}} Y^{V}\right)_{p}=\bar{\alpha}\left[g_{x}(X, w) Y_{p}^{V}+g_{x}(Y, w) X_{p}^{V}\right]+\left[\bar{\beta} g_{x}(X, Y)+\bar{\delta} g_{x}(X, w) g_{x}(Y, w)\right] W_{p}$,
where $X, Y \in \Gamma(T M), p=(x, w) \in T M, W$ is the canonical vertical vector at p defined by $W_{p}=w^{i} \frac{\partial}{\partial w^{i}} \in T_{p}(T M)$.

4. Curvatures of the deformed Sasaki metric on tangent bundle

Definition 4.1 Let $K: T M \longrightarrow T M$ be an endomorphism of $T M$. The horizontal and vertical vector fields $H K$ and VK are given by

$$
\begin{aligned}
H K: T M & \rightarrow T T M \\
(x, w) & \mapsto(K(w))^{H} \\
V K: T M & \rightarrow T T M \\
(x, w) & \mapsto(K(w))^{V} .
\end{aligned}
$$

If $K=I d$ is the identity endomorphism, then we set $W=V K=V I d$.
Locally we have

$$
\begin{align*}
V K & =w^{i} K_{i}^{j} \frac{\partial}{\partial w^{j}}=w^{i}\left(K\left(\frac{\partial}{\partial x^{i}}\right)\right)^{V} \tag{4.1}\\
H K & =w^{i} K_{i}^{j} \frac{\partial}{\partial x^{j}}-w^{i} w^{k} K_{i}^{j} \Gamma_{j k}^{s} \frac{\partial}{\partial w^{s}}=w^{i}\left(K\left(\frac{\partial}{\partial x^{i}}\right)\right)^{H} \tag{4.2}\\
W & =w^{i}\left(\frac{\partial}{\partial x^{i}}\right)^{V} \tag{4.3}
\end{align*}
$$

From Definition 4.1 and Theorem 3.6 we have:

Proposition 4.2 Let $\left(T M, g_{D S}\right)$ be the tangent bundle of a Riemannian manifold $\left(M_{m}, g\right)$, endowed with the deformed Sasaki metric $g_{D S}$ and K be an (1,1)-tensor field on M, then we have
(1) $\left({ }^{D S} \nabla_{X^{H}} H K\right)_{p}=\left(\left(\nabla_{X} K\right)(w)\right)^{H}-\frac{1}{2}\left(R_{x}\left(X_{x}, K_{x}(w)\right) w\right)^{V}$,
(2) $\left.\left({ }^{D S} \nabla_{X^{H}} V K\right)_{p}=\left(\left(\nabla_{X} K\right)\right)(w)\right)^{V}+\frac{\alpha}{2}\left(R_{x}\left(w, K_{x}(w)\right) X_{x}\right)^{H}$,
(3) $\left({ }^{D S} \nabla_{X^{V}} H K\right)_{p}=(K(X))_{p}^{H}+\frac{\alpha}{2}\left(R_{x}\left(w, X_{x}\right) K_{x}(w)\right)^{H}$,
(4) $\left({ }^{D S} \nabla_{X^{V}} V K\right)_{p}=(K(X))_{p}^{V}+\bar{\alpha}\left[g(X, w)(K(w))^{V}+g(K(w), w) X^{V}\right]$ $+\bar{\beta} g(X, K(w)) W_{p}+\bar{\delta} g(X, w) g(K(w), w) W_{p}$,
(5) $\quad\left({ }^{D S} \nabla_{X^{H}} W\right)_{p}=0$,
(6) $\quad\left({ }^{D S} \nabla_{X^{V}} W\right)_{p}=[1+\bar{\alpha} r] X^{V}+\eta g(X, w) W_{p}$,
where $p=(x, w) \in T M, X \in \Gamma(T M), \quad r=|w|^{2}, \quad W_{p}=w^{i} \frac{\partial}{\partial w^{i}} \in T_{p}(T M)$.

Using Theorem 3.6, Proposition 4.2 and Koszul's formula, we obtain the following theorem.

Theorem 4.3 If \widetilde{R} denotes the Riemannian curvature tensor of the tangent bundle $\left(T M, g_{D S}\right)$, then we have
(1) $\widetilde{R}\left(X^{H}, Y^{H}\right) Z^{H}=\frac{\alpha}{4}[R(w, R(X, Z) w) Y-R(w, R(Y, Z) w) X+2 R(w, R(X, Y) w) Z]^{H}$ $+[R(X, Y) Z]^{H}+\frac{1}{2}\left[\left(\nabla_{Z} R\right)(X, Y) w\right]^{V}$,
(2) $\widetilde{R}\left(X^{H}, Y^{V}\right) Z^{V}=\frac{\alpha}{2}[R(Z, Y) X]^{H}-\frac{\alpha^{2}}{4}[R(w, Y) R(w, Z) X]^{H}$

$$
+\frac{\alpha^{\prime}}{2}[g(Z, w) R(w, Y) X-g(Y, w) R(w, Z) X]^{H}
$$

$$
\text { (3) } \begin{aligned}
\widetilde{R}\left(X^{V}, Y^{V}\right) Z^{V}= & 2 \bar{\alpha}^{\prime} g(Z, w)\left[g(X, w) Y^{V}-g(Y, w) X^{V}\right] \\
& +\bar{\alpha}\left[g(X, Z) Y^{V}-g(Y, Z) X^{V}\right] \\
& +\bar{\alpha}^{2} g(Z, w)\left[g(Y, w) X^{V}-g(X, w) Y^{V}\right] \\
& +[1+\bar{\alpha} r][\bar{\beta} g(Y, Z)+\bar{\delta} g(Y, w) g(Z, w)] X^{V} \\
& -[1+\bar{\alpha} r][\bar{\beta} g(X, Z)+\bar{\delta} g(X, w) g(Z, w)] Y^{V} \\
& +\bar{\delta}[g(X, Z) g(Y, w)-g(Y, Z) g(X, w)] W \\
& +2 \bar{\beta}^{\prime}[g(X, w) g(Y, Z)-g(Y, w) g(X, Z)] W \\
& +\bar{\alpha} \bar{\beta}[g(Y, w) g(X, Z)-g(X, w) g(Y, Z)] W \\
& +\eta \bar{\beta}[g(Y, Z) g(X, w)-g(X, Z) g(Y, w)] W
\end{aligned}
$$

$$
\begin{align*}
\widetilde{R}\left(X^{V}, Y^{V}\right) Y^{V}= & {\left[\left[2 \bar{\alpha}^{\prime}-\bar{\alpha}^{2}-\bar{\delta}(1+\bar{\alpha} r)\right] g(Y, w) g(X, w)\right.} \tag{4}\\
& +[\bar{\alpha}-\bar{\beta}(1+\bar{\alpha} r)] g(X, Y)] Y^{V} \\
& +\left[[\bar{\beta}(1+\bar{\alpha} r)-\bar{\alpha}]|Y|^{2}+\left[\bar{\delta}(1+\bar{\alpha} r)+\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right] g(Y, w)^{2}\right] X^{V} \\
& +\left[\left[\bar{\delta}-2 \bar{\beta}^{\prime}+\bar{\alpha} \bar{\beta}-\eta \bar{\beta}\right]\left[g(X, Y) g(Y, w)-|Y|^{2} g(X, w)\right]\right] W
\end{align*}
$$

where $p=(x, w) \in T M$ and $X, Y, Z \in \Gamma(T M)$.

From the Theorem 4.3, we get the following propostion.

Proposition 4.4 The curvature tensor \widetilde{R} with respect to (TM, $g_{D S}$) verifies the following formulas
(1) $g_{D S}\left(\widetilde{R}\left(X^{H}, Y^{H}\right) Y^{H}, X^{H}\right)_{p}=g(R(X, Y) Y, X)_{x}-\frac{3 \alpha}{4}|R(X, Y) w|^{2}$,
(2) $g_{D S}\left(\widetilde{R}\left(X^{H}, Y^{V}\right) Y^{V}, X^{H}\right)_{p}=\frac{\alpha^{2}}{4}|R(w, Y) X|^{2}$,
(3) $g_{D S}\left(\widetilde{R}\left(X^{V}, Y^{V}\right) Y^{V}, X^{V}\right)_{p}=\left[\left[2 \bar{\alpha}^{\prime}-\bar{\alpha}^{2}-\bar{\delta}(1+\bar{\alpha} r)\right] g(Y, w) g(X, w)\right.$ $+[\bar{\alpha}-\bar{\beta}(1+\bar{\alpha} r)] g(X, Y)](\alpha g(X, Y)+\beta g(X, w) g(Y, w))$ $+\left[[\bar{\beta}(1+\bar{\alpha} r)-\bar{\alpha}]|Y|^{2}+\left[\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right] g(Y, w)^{2}\right.$ $+\bar{\delta}(1+\bar{\alpha} r)]\left(\alpha|X|^{2}+\beta g(X, w)^{2}\right)$ $+\lambda\left[\bar{\delta}-2 \bar{\beta}^{\prime}+\bar{\alpha} \bar{\beta}-\eta \bar{\beta}\right]$
$\left(g(X, Y) g(Y, w)-|Y|^{2} g(X, w)\right) g(X, w)$,
where $p=(x, w) \in T M$.

Now, we consider the sectional curvature \widetilde{K} on $\left(T M, g_{D S}\right)$ for P is given by

$$
\begin{equation*}
\widetilde{K}(\widetilde{X}, \widetilde{Y})=\frac{g_{D S}(\widetilde{R}(\widetilde{X}, \tilde{Y}) \widetilde{Y}, \tilde{Y})}{g_{D S}(\widetilde{X}, \widetilde{X}) g_{D S}(\widetilde{Y}, \widetilde{Y})-g_{D S}(\widetilde{X}, \widetilde{Y})^{2}} \tag{4.4}
\end{equation*}
$$

where $P=P(\widetilde{X}, \widetilde{Y})$ denotes the plane spanned by $\{\widetilde{X}, \widetilde{Y}\}$, for all linearly independent vector fields $\widetilde{X}, \widetilde{Y}$ on $T M$.

Lemma 4.5 If $X, Y \in \Gamma(T M)$ are orthonormal vector fields on $\left(M_{m}, g\right)$, then we have

$$
\begin{aligned}
g_{D S}\left(X^{H}, X^{H}\right) & =\left\|X^{H}\right\|^{2}=|X|^{2}=g(X, X) \\
g_{D S}\left(X^{H}, Y^{H}\right) & =g(X, Y)=0=g_{D S}\left(X^{H}, Y^{V}\right) \\
g_{D S}\left(X^{V}, Y^{V}\right)_{p} & =\beta g(X, u) g(Y, w) \\
g_{D S}\left(Y^{V}, Y^{V}\right)_{p} & =\alpha+\beta g(Y, w)^{2}
\end{aligned}
$$

where $p=(x, w) \in T M$.

Let $\widetilde{K}\left(X^{H}, Y^{H}\right), \widetilde{K}\left(X^{H}, Y^{V}\right)$ and $\widetilde{K}\left(X^{V}, Y^{V}\right)$ denote the sectional curvature of the plane spanned respectively by $\left\{X^{H}, Y^{H}\right\},\left\{X^{H}, Y^{V}\right\}$ and $\left\{X^{V}, Y^{V}\right\}$ on $\left(T M, g_{D S}\right)$, where X, Y are orthonormal vector fields on $\left(M_{m}, g\right)$. From Proposition 4.8 and Lemma 4.5, we obtain the following theorem.

Theorem 4.6 For the sectional curvature \widetilde{K} of $\left(T M, g_{D S}\right)$ we have the followings

$$
\text { (1) } \begin{aligned}
\widetilde{K}\left(X^{H}, Y^{H}\right)_{p}= & K(X, Y)_{x}-\frac{3 \alpha}{4}|R(X, Y) w|^{2}, \\
\text { (2) } \widetilde{K}\left(X^{H}, Y^{V}\right)_{p}= & \frac{\alpha^{2}}{4\left(\alpha+\beta g(Y, w)^{2}\right.}|R(w, Y) X|^{2}, \\
\text { (3) } \widetilde{K}\left(X^{V}, Y^{V}\right)_{p}= & \frac{1}{\alpha^{2}+\alpha \beta\left[g(X, w)^{2}+g(Y, w)^{2}\right]}\{ \\
& {\left[\left[2 \bar{\alpha}^{\prime}-\bar{\alpha}^{2}-\bar{\delta}(1+\bar{\alpha} r)\right] g(Y, w) g(X, w)\right.} \\
& +[\bar{\alpha}-\bar{\beta}(1+\bar{\alpha} r)] g(X, Y)](\alpha g(X, Y)+\beta g(X, w) g(Y, w)) \\
& +\left[[\bar{\beta}(1+\bar{\alpha} r)-\bar{\alpha}]|Y|^{2}+\left[\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right] g(Y, w)^{2}\right. \\
& +\bar{\delta}(1+\bar{\alpha} r)]\left(\alpha|X|^{2}+\beta g(X, w)^{2}\right) \\
& +\lambda\left[\bar{\delta}-2 \bar{\beta}^{\prime}+\bar{\alpha} \bar{\beta}-\eta \bar{\beta}\right] \\
& \left.\left(g(X, Y) g(Y, w)-|Y|^{2} g(X, w)\right) g(X, w)\right\},
\end{aligned}
$$

where $p=(x, w) \in T M$ and K is the sectional curvature of (M, g).

Remark 4.7 Let $p=(x, w) \in T M$ such as $w \in T_{x} M \backslash\{0\}$ and $\left\{E_{i}\right\}_{i=1, m}$ be an orthonormal frame of $T_{x} M$ such that $E_{1}=\frac{w}{|w|}$, then

$$
\begin{equation*}
\left\{\widetilde{E}_{i}=E_{i}^{H}, \widetilde{E}_{m+1}=\frac{1}{\sqrt{\lambda}} E_{1}^{V}, \widetilde{E}_{m+j}=\frac{1}{\sqrt{\alpha}} E_{j}^{V}\right\} \tag{4.5}
\end{equation*}
$$

are orthonormal basis of $T_{p} T M$.

Proposition 4.8 The sectional curvature \widetilde{K} of $\left(T M, g_{D S}\right)$ satisfies the following equations

$$
\begin{aligned}
\widetilde{K}\left(\widetilde{E}_{i}, \widetilde{E}_{j}\right) & =K\left(E_{i}, E_{j}\right)-\frac{3 \alpha}{4}\left|R\left(E_{i}, E_{j}\right) w\right|^{2} \\
\widetilde{K}\left(\widetilde{E}_{i}, \widetilde{E}_{m+1}\right) & =\frac{\alpha^{2}}{4 \lambda}\left|R\left(w, E_{1}\right) E_{i}\right|^{2} \\
& =0 \\
\widetilde{K}\left(\widetilde{E}_{i}, \widetilde{E}_{m+k}\right) & =\frac{\alpha}{4}\left|R\left(w, E_{k}\right) E_{i}\right|^{2} \\
\widetilde{K}\left(\widetilde{E}_{m+k}, \widetilde{E}_{m+1}\right) & =\frac{1}{\lambda}\left[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}+\left(\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right) r\right] \\
\widetilde{K}\left(\widetilde{E}_{m+k}, \widetilde{E}_{m+t}\right) & =\frac{1}{\alpha}[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}]
\end{aligned}
$$

for $i, j=1, m$ and $k, t=2, m$, where K is a sectional curvature of (M, g).

Theorem 4.9 The scalar curvature $\tilde{\sigma}$ with respect to $\left(T M, g_{D S}\right)$ is given by

$$
\begin{align*}
\tilde{\sigma}= & \sigma-\frac{\alpha}{4} \sum_{\substack{i, j=1 \\
i \neq j}}^{m}\left|R\left(E_{i}, E_{j}\right) w\right|^{2} \tag{4.6}\\
& +\frac{2(m-1)}{\lambda}\left[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}+\left(\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right) r\right] \\
& +\frac{(m-1)(m-2)}{\alpha}[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}]
\end{align*}
$$

where σ is a scalar curvature of (M, g).

Proof Respect to the definition of scalar curvature, we have

$$
\begin{aligned}
\widetilde{\sigma}= & \sum_{i, j=1}^{m} \widetilde{K}\left(\widetilde{E}_{i}, \widetilde{E}_{j}\right)+2 \sum_{i=1}^{m} \widetilde{K}\left(\widetilde{E}_{i}, \widetilde{E}_{m+1}\right)+2 \sum_{i=1, k=2}^{m} \widetilde{K}\left(\widetilde{E}_{i}, \widetilde{E}_{m+k}\right) \\
& +2 \sum_{k=2}^{m} \widetilde{K}\left(\widetilde{E}_{m+k}, \widetilde{E}_{m+1}\right)+\sum_{k, t=2}^{m} \widetilde{K}\left(\widetilde{E}_{m+k}, \widetilde{E}_{m+t}\right)
\end{aligned}
$$

Using Proposition 4.8, we have

$$
\begin{aligned}
\widetilde{\sigma}= & \sigma-\frac{3 \alpha}{4} \sum_{i, j}^{m}\left|R\left(E_{i}, E_{j}\right) w\right|^{2}+\frac{2 \alpha}{4} \sum_{i=1, k=2}^{m}\left|R\left(w, E_{k}\right) E_{i}\right|^{2} \\
& +2 \sum_{k \geq 2}^{m} \frac{1}{\lambda}\left[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}+\left(\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right) r\right] \\
& +\frac{1}{\alpha} \sum_{\substack{k, t=2 \\
k \neq t}}^{m}[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}] .
\end{aligned}
$$

Let us take into account that $R\left(w, E_{1}\right) E_{i}=R\left(w, \frac{w}{|w|}\right) E_{i}=0$ and

$$
\begin{aligned}
\sum_{i=1, k=2}^{m}\left|R\left(w, E_{k}\right) E_{i}\right|^{2} & =\sum_{i, j=1}^{m}\left|R\left(w, E_{j}\right) E_{i}\right|^{2} \\
& =\sum_{i, j=1}^{m}\left|R\left(E_{i}, E_{j}\right) w\right|^{2}
\end{aligned}
$$

(see [22]), then

$$
\begin{aligned}
\widetilde{\sigma}= & \sigma-\frac{\alpha}{4} \sum_{i, j}^{m}\left|R\left(E_{i}, E_{j}\right) w\right|^{2} \\
& +\frac{2(m-1)}{\lambda}\left[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}+\left(\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right) r\right] \\
& +\frac{(m-1)(m-2)}{\alpha}[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}]
\end{aligned}
$$

Corollary 4.10 Let $\left(M_{m}, g\right)$ be a locally flat manifold and $\left(T M, g_{D S}\right)$ be its tangent bundle equipped with the deformed Sasaki metric. Then the scalar curvature $\tilde{\sigma}$ with respect to $g_{D S}$ is given by

$$
\begin{aligned}
\tilde{\sigma}= & \frac{2(m-1)}{\lambda}\left[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}+\left(\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right) r\right] \\
& +\frac{(m-1)(m-2)}{\alpha}[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}]
\end{aligned}
$$

Corollary 4.11 If $\left(M_{m}, g\right)$ has a constant sectional curvature b, then scalar curvature $\widetilde{\sigma}$ with respect to $g_{D S}$ is given by

$$
\begin{align*}
\widetilde{\sigma}= & m(m-1) b-\frac{b^{2} \alpha(m-1) r}{2} \tag{4.7}\\
& +\frac{2(m-1)}{\lambda}\left[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}+\left(\bar{\alpha}^{2}-2 \bar{\alpha}^{\prime}\right) r\right] \\
& +\frac{(m-1)(m-2)}{\alpha}[(\bar{\beta}+\bar{\delta})(1+\bar{\alpha} r)-\bar{\alpha}]
\end{align*}
$$

Result is obtained in [17] by another formula.

Proof Using the property of constant sectional curvature, for $X, Y, Z \in \Gamma(T M)$, we have

$$
R(X, Y) Z=b(g(Y, Z) X-g(X, Z) Y)
$$

then

$$
\begin{align*}
& \sigma=\sum_{\substack{i, j=1 \\
i \neq j}}^{m} g\left(R\left(E_{i}, E_{j}\right) E_{j}, E_{i}\right) \\
& =b \sum_{\substack{i, j=1 \\
i \neq j}}^{m} g\left(E_{j}, E_{j}\right) g\left(E_{i}, E_{i}\right) \\
& \sigma=m(m-1) b, \tag{4.8}\\
& \sum_{\substack{i, j=1 \\
i \neq j}}^{m}\left|R\left(E_{i}, E_{j}\right) w\right|^{2}=b^{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{m}\left|g\left(E_{j}, w\right) E_{i}-g\left(E_{i}, w\right) E_{j}\right|^{2} \\
& =b^{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{m}\left(\left|g\left(E_{j}, w\right)\right|^{2}+\left.g\left(E_{i}, w\right)\right|^{2}\right) \\
& =2 b^{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{m}\left|g\left(E_{j}, w\right)\right|^{2} \\
& \sum_{\substack{i, j=1 \\
i \neq j}}^{m}\left|R\left(E_{i}, E_{j}\right) w\right|^{2}=2 b^{2}(m-1)|w|^{2} .
\end{align*}
$$

Substituting formulas (4.8) and (4.9) in (4.6), we obtain formula (4.7).

5. Geodesics of deformed Sasaki metric

Lemma 5.1 [10] Let M_{m} be a smooth manifold and X, Y be a vector fields on M. If $x \in M$ and $w \in T_{x} M$ such that $Y_{x}=w$, then we have:

$$
d_{x} Y\left(X_{x}\right)=X_{(x, w)}^{H}+\left(\nabla_{X} Y\right)_{(x, w)}^{V}
$$

Lemma 5.2 Let $x(t)$ be a smooth curve on Riemannian manifold (M, g). Then any curve in the shape of $C(t)=(x(t), z(t))$ on TM verifies the following formula

$$
\begin{equation*}
\dot{C}=\dot{x}^{H}+\left(\nabla_{\dot{x}} z\right)^{V} . \tag{5.1}
\end{equation*}
$$

Proof
Locally, for $Z \in \Gamma(T M)$ such that $Z(x(t))=z(t)$, then we have

$$
\dot{C}(t)=d C(t)=d Z(x(t))
$$

. Using Lemma 5.1 we obtain

$$
\dot{C}(t)=d Z(x(t))=\dot{x}^{H}+\left[\nabla_{\dot{x}} z\right]^{V}
$$

Theorem 5.3 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki metric. If $C(t)=(x(t), z(t))$ is a curve over TM such that $z(t)$ is a vector field along the curve $x(t)$, then:

$$
\begin{align*}
{ }^{D S} \nabla_{\dot{C}} \dot{C}= & \left(\nabla_{\dot{x}} \dot{x}\right)^{H}+\alpha\left(R\left(z, \nabla_{\dot{x}} z\right) \dot{x}\right)^{H}+\left(\nabla_{\dot{x}} \nabla_{\dot{x}} z\right)^{V}+\frac{2 \alpha^{\prime}}{\alpha} g\left(\nabla_{\dot{x}}^{z, z)\left(\nabla_{\dot{x}^{z}}\right)^{V}}\right. \\
& +\left[\frac{\beta-\alpha^{\prime}}{\alpha+r \beta} g\left(\nabla_{\dot{x}} z, \nabla_{\dot{x}} z\right)+\frac{\alpha \beta^{\prime}-2 \alpha^{\prime} \beta}{\alpha(\alpha+r \beta)} g\left(\nabla_{\dot{x}^{z}}, z\right)^{2}\right] z^{V} \tag{5.2}
\end{align*}
$$

Proof

Using Lemma 5.2 we obtain:

$$
\begin{aligned}
&{ }^{D S} \nabla_{\dot{C}} \dot{C}=\left.\left.{ }^{D S} \nabla_{\left[\dot{x}^{H}\right.}+\left(\nabla_{\dot{x}} z\right)^{V}\right] \dot{x}^{H}+\left(\nabla_{\dot{x}} z\right)^{V}\right] \\
&={ }^{D S} \nabla_{\dot{x}^{H}} \dot{x}^{H}+{ }^{D S} \nabla_{\dot{x}^{H}}\left(\nabla_{\dot{x}} z\right)^{V}+{ }^{D S} \nabla_{\left(\nabla_{\dot{x}} z\right)^{V} \dot{x}^{H}+{ }^{D S} \nabla_{\left(\nabla_{\dot{x}} z\right)^{V}\left(\nabla_{\dot{x}} z\right)^{V}}}^{=} \\
&\left(\nabla_{\dot{x}} \dot{x}\right)^{H}-\frac{1}{2}(R(\dot{x}, \dot{x}) z)^{V}+\left(\nabla_{\dot{x}} \nabla_{\dot{x}^{z}} z\right)^{V}+\frac{\alpha}{2}\left(R\left(z, \nabla_{\dot{x}} z\right) \dot{x}\right)^{H} \\
&+\frac{\alpha}{2}\left(R\left(z, \nabla_{\dot{x}} z\right) \dot{x}\right)^{H}+\frac{\alpha^{\prime}}{\alpha}\left[g\left(\nabla_{\dot{x}} z, z\right)\left(\nabla_{\dot{x}^{z}} z\right)^{V}+g\left(\nabla_{\dot{x}} z, z\right)\left(\nabla_{\dot{x}} z\right)^{V}\right] \\
& {\left[\frac{\beta-\alpha^{\prime}}{\alpha+r \beta} g\left(\nabla_{\dot{x}} z, \nabla_{\dot{x}^{z}} z\right)+\frac{\alpha \beta^{\prime}-2 \alpha^{\prime} \beta}{\alpha(\alpha+r \beta)} g\left(\nabla_{\dot{x}^{z}}, z\right) g\left(\nabla_{\dot{x}^{z}}, z\right)\right] z^{V} }
\end{aligned}
$$

then,

$$
\begin{aligned}
{ }^{D S} \nabla_{\dot{C}} \dot{C}= & \left(\nabla_{\dot{x}} \dot{x}\right)^{H}+\alpha\left(R\left(z, \nabla_{\dot{x}} z\right) \dot{x}\right)^{H}+\left(\nabla_{\dot{x}} \nabla_{\dot{x}} z\right)^{V}+\frac{2 \alpha^{\prime}}{\alpha} g\left(\nabla_{\dot{x}} z, z\right)\left(\nabla_{\dot{x}^{z}} z\right)^{V} \\
& +\left[\frac{\beta-\alpha^{\prime}}{\alpha+r \beta} g\left(\nabla_{\dot{x}} z, \nabla_{\dot{x}^{z}} z\right)+\frac{\alpha \beta^{\prime}-2 \alpha^{\prime} \beta}{\alpha(\alpha+r \beta)} g\left(\nabla_{\dot{x}^{z}}, z\right)^{2}\right] z^{V}
\end{aligned}
$$

From the Theorem 5.3, we get the following theorem.

Theorem 5.4 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki metric. If $C(t)=(x(t), z(t))$ is a curve over TM such that $z(t)$ is a vector field along the curve $x(t)$. Then $C(t)$ is a geodesic curve if and only if

$$
\left\{\begin{align*}
\nabla_{\dot{x}} \dot{x}= & -\alpha R\left(z, \nabla_{\dot{x}} z\right) \dot{x} \tag{5.3}\\
\nabla_{\dot{x}} \nabla_{\dot{x}}^{z=} & -\frac{2 \alpha^{\prime}}{\alpha} g\left(\nabla_{\dot{x}}^{z, z)} \nabla_{\dot{x}^{z}}\right. \\
& -\left[\frac { \beta - \alpha ^ { \prime } } { \alpha + r \beta } g \left(\nabla_{\dot{x}} z, \nabla_{\dot{x}}^{z)}+\frac{\alpha \beta^{\prime}-2 \alpha^{\prime} \beta}{\alpha(\alpha+r \beta)} g\left(\nabla_{\dot{x}}^{\left.z, z)^{2}\right] z}\right.\right.\right.
\end{align*}\right.
$$

The curve $C(t)=(x(t), z(t))$ on $T M$ is called a horizontal lift of the curve $x(t)$ if $\nabla_{\dot{x}} z=0$. Thus, we have the following corollary.

Corollary 5.5 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki metric and $C(t)=(x(t), z(t))$ is a horizontal lift of the curve $x(t)$. Then $C(t)$ is a geodesic on $\left(T M, g_{D S}\right)$ if and only if $x(t)$ is a geodesic on $\left(M_{m}, g\right)$.

A curve $C(t)=(x(t), \dot{x}(t))$ over $\left(T M, g_{D S}\right)$ is said to be a natural lift of the curve $x(t)$. From Corollary 5.5 , we deduce the following corollary.

Corollary 5.6 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki metric. If $x(t)$ is a geodesic on (M, g) then the natural lift $C(t)=(x(t), \dot{x}(t))$ is a geodesic on $\left(T M, g_{D S}\right)$.

Remark 5.7 For an horizontal lift $C(t)=(x(t), z(t))$ of the curve $x(t)$, we have:

$$
\begin{aligned}
\nabla_{\dot{x}} z=0 & \Leftrightarrow \frac{d z^{k}}{d t}+\Gamma_{i j}^{k} z^{i} \frac{d x^{j}}{d t}=0 \\
& \Leftrightarrow z(t)=\exp \left(-\int A(t) d t\right) \cdot K
\end{aligned}
$$

where $K \in \mathbb{R}^{n}, A(t)=\left[a_{k j}\right], a_{k j}=\sum_{i=1}^{n} \Gamma_{i j}^{k} \frac{d x^{j}}{d t}$.
The Remark 5.7 allows us to build a several geodesics examples over $\left(T M, g_{D S}\right)$.

Example 5.8 Let $M=\mathbb{R}$ equipped with the Riemannian metric $g=e^{x} d x^{2}$. The Christoffel symbols of the Levi-Civita connection are given by:

$$
\Gamma_{11}^{1}=\frac{1}{2} g^{11}\left(\frac{\partial g_{11}}{\partial x^{1}}+\frac{\partial g_{11}}{\partial x^{1}}-\frac{\partial g_{11}}{\partial x^{1}}\right)=\frac{1}{2}
$$

. So the geodesics $x(t)$ with respect to g, checking the equation

$$
\begin{equation*}
x^{\prime \prime}+\frac{1}{2}\left(x^{\prime}\right)^{2}=0 \tag{5.4}
\end{equation*}
$$

The solutions of differential equation (5.4) are given by

$$
x^{\prime}(t)=\frac{2 b}{b t+c}, \quad x(t)=a+2 \ln (b t+c), \quad a, b, c \in \mathbb{R}
$$

From the Remark 5.7, we deduce that $C(t)=\left(a+2 \ln (b t+c), K(b t+c)^{-1}\right)$ is a geodesic on $T M$.

Example 5.9 Let $M=\mathbb{R}_{*}^{3}$ endowed with the metric h defined by:

$$
h_{11}=x^{2}, h_{22}=y^{2}, h_{33}=z^{2}, h_{i j}=0, \forall i \neq j
$$

Then, the symbols of Christoffel with respect to the Levi-Civita connection are given by:

$$
\Gamma_{11}^{1}=\frac{1}{x}, \Gamma_{22}^{2}=\frac{1}{y}, \Gamma_{33}^{3}=\frac{1}{z}, \Gamma_{i j}^{k}=0 \forall(i, j, k) \in\{1,2,3\}^{3} \backslash\{(1,1,1),(2,2,2),(3,3,3)\}
$$

Let $\eta(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ be a curve on (M, g) and $\delta(t)=\left(z_{1}(t), z_{2}(t), z_{3}(t)\right)$ be a curve on $T M$ along $\eta(t)$. If $C(t)=(\eta(t), \delta(t))$ is an horizontal lift of the curve $\eta(t)$, then from the Remark 5.7, we obtain

$$
A(t)=\left(\begin{array}{ccc}
\frac{x_{1}^{\prime}(t)}{x_{1}(t)} & 0 & 0 \\
0 & \frac{x_{2}^{\prime}(t)}{x_{2}(t)} & 0 \\
0 & 0 & \frac{x_{3}^{\prime}(t)}{x_{3}(t)}
\end{array}\right)
$$

and

$$
\delta(t)=\exp \left(-\int A(t) d t\right) \cdot K=\left(\frac{k_{1}}{x_{1}(t)}, \frac{k_{2}}{x_{2}(t)}, \frac{k_{3}}{x_{3}(t)}\right), k_{1}, k_{2}, k_{3} \in \mathbb{R}
$$

Moreover, $\eta(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t)\right)$ is a geodesic if and only if the functions $x_{1}(t), x_{2}(t), x_{3}(t)$ are solutions of the following equation

$$
f^{\prime \prime}+f^{-1}\left(f^{\prime}\right)^{2}=0
$$

. Then we get

$$
\begin{gathered}
\eta(t)=\left(2\left(a_{1} t+b_{1}\right)^{\frac{1}{2}}, 2\left(a_{2} t+b_{2}\right)^{\frac{1}{2}}, 2\left(a_{3} t+b_{3}\right)^{\frac{1}{2}}\right) \\
\delta(t)=\left(k_{1}\left(a_{1} t+b_{1}\right)^{-\frac{1}{2}}, k_{2}\left(a_{2} t+b_{2}\right)^{-\frac{1}{2}}, k_{3}\left(a_{3} t+b_{3}\right)^{-\frac{1}{2}}\right), k_{1}, k_{2}, k_{3} \in \mathbb{R}
\end{gathered}
$$

Theorem 5.10 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of a flat manifold (M, g) endowed with the deformed Sasaki metric. If $x(t)$ is a geodesic on M, Then $C(t)=(x(t), z(t))$ is a geodesic over $\left(T M, g_{D S}\right)$ if and only if

$$
\begin{align*}
\nabla_{\dot{x}} \nabla_{\dot{x}} z= & -\frac{2 \alpha^{\prime}}{\alpha} g\left(\nabla_{\dot{x}} z, z\right) \nabla_{\dot{x}} z \tag{5.5}\\
& -\left[\frac{\beta-\alpha^{\prime}}{\alpha+r \beta} g\left(\nabla_{\dot{x}^{z}} z, \nabla_{\dot{x}^{z}}\right)+\frac{\alpha \beta^{\prime}-2 \alpha^{\prime} \beta}{\alpha(\alpha+r \beta)} g\left(\nabla_{\dot{x}^{z}}, z\right)^{2}\right] z
\end{align*}
$$

Proof While $x(t)$ is a geodesic on M and $R=0$ then we have $\nabla_{\dot{x}} \dot{x}=0$ and $R\left(z, \nabla_{\dot{x}}^{z}\right) \dot{x}=0$. From the formula (5.3) we obtain the result.

Corollary 5.11 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of a manifold (M, g) equipped with the deformed Sasaki metric and $C(t)=(x(t), z(t))$ be a geodesic on TM. If $g(z, z)$ is a constant then:

$$
\begin{cases}\nabla_{\dot{x}}^{\dot{x}} & =-\alpha R\left(z, \nabla_{\dot{x}} z\right) \dot{x} \tag{5.6}\\ \nabla_{\dot{x}} \nabla_{\dot{x}} z & =-\frac{\beta-\alpha^{\prime}}{\alpha+r \beta}\left|\nabla_{\dot{x}} z\right|^{2} z\end{cases}
$$

5.1. Geodesics of the deformed Sasaki metric on unit tangent bundle $T_{1} M$

Let $T_{1} M$ be the unit tangent bundle of $T M . T_{1} M$ is an hypersurface in $T M$ defined by

$$
\begin{equation*}
T_{1} M=\left\{(x, w) \in T M, g(w, w)=|w|^{2}=1\right\} \tag{5.7}
\end{equation*}
$$

The unit normal vector field to $T_{1} M$ is given by

$$
\begin{align*}
\mathcal{W}: T M_{0}=T M \backslash M & \rightarrow T(T M) \\
(x, w) & \mapsto \tag{5.8}
\end{align*} \mathcal{W}_{(x, w)}=\left(\frac{w}{\sqrt{\lambda}}\right)^{V}
$$

where $\lambda=\alpha+r \beta$. If we set

$$
\begin{aligned}
F: T M & \rightarrow \mathbb{R} \\
(x, w) & \mapsto g(w, w)
\end{aligned}
$$

Then F is a submersion and $T_{1} M=F^{-1}(\{1\})$. From (5.8), we obtain

$$
\begin{aligned}
g_{D S}(\mathcal{W}, \mathcal{W})_{(x, w)} & =|w|^{2}=r \\
g_{D S}\left(\mathcal{W}, X^{H}\right) & =0=X^{H}(F)=g_{D S}\left(X^{H}, \operatorname{grad}_{g_{D S}} F\right) \\
g_{D S}\left(X^{V}, \operatorname{grad}_{g_{D S}} F\right) & =X^{V}(F)=2 g(X, w) \\
g_{D S}\left(X^{V}, \mathcal{W}\right) & =\sqrt{\lambda} g(X, w)=\frac{\sqrt{\lambda}}{2} g_{D S}\left(X^{V}, \operatorname{grad}_{g_{D S}} F\right)
\end{aligned}
$$

Therefore, $\mathcal{W}=\frac{\sqrt{\lambda}}{2} \operatorname{grad}_{g_{D S}} F$ is a canonical vector field normal to $T_{1} M$.
Given a vector field X on M, the tangential lift X^{T} of X is given by

$$
\begin{equation*}
X^{T}(x, w)=\left[X^{V}-g_{D S}\left(X^{V}, \mathcal{W}\right) \mathcal{W}\right]_{(x, w)} \tag{5.9}
\end{equation*}
$$

If $\bar{\nabla}$ is the induced connection on $T_{1} M$, then we have

$$
\begin{equation*}
\bar{\nabla}_{\widetilde{X}} \tilde{Y}={ }^{D S} \nabla_{\widetilde{X}} \tilde{Y}-g_{D S}\left({ }^{D S} \nabla_{\widetilde{X}} \tilde{Y}, \mathcal{W}\right) \mathcal{W} \tag{5.10}
\end{equation*}
$$

for all $\tilde{X}, \tilde{Y} \in \Gamma\left(T\left(T_{1} M\right)\right)$.
Subsequently, we denote $x^{\prime}=\dot{x}, \quad x^{\prime \prime}=\nabla_{\dot{x}} \dot{x}, \quad z^{\prime}=\nabla_{\dot{x}} z$ and $\quad z^{\prime \prime}=\nabla_{\dot{x}} \nabla_{\dot{x}} z$.

Lemma 5.12 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki metric. and $C(t)=(x(t), z(t))$ be a curve on $T_{1} M$ such $z(t)$ is a vector field along $x(t)$. Then we have

$$
|z|=1, \quad \text { and } \quad g\left(z^{\prime}, z\right)=0
$$

From Theorem 5.4, formula (5.10) and Lemma 5.12, we obtain the following lemma
Lemma $5.13 \quad C(t)=(x(t), z(t))$ is a geodesic on $T_{1} M$ if and only if

$$
\left\{\begin{array}{l}
(1) \quad x^{\prime \prime}=a R\left(z, z^{\prime}\right) x^{\prime} \tag{5.11}\\
(2) \quad z^{\prime \prime}=b\left|z^{\prime}\right|^{2} z+\rho z=\left(\rho+b\left|z^{\prime}\right|^{2}\right) z
\end{array}\right.
$$

where $r=1, a=-\alpha(1)=$ Const,$b=\frac{\alpha^{\prime}(1)-\beta(1)}{\alpha(1)+\beta(1)}=$ Const \quad and ρ is some function.

Remark 5.14 :

(1) $A s|z|^{2}=1 \quad$ (i.e $z \in T_{1} M$), then $g\left(z^{\prime}, z\right)=0$,
(2) $0=\nabla_{\dot{x}} g\left(z^{\prime}, z\right)=g\left(z^{\prime \prime}, z\right)+\left|z^{\prime}\right|^{2}$, so $g\left(z^{\prime \prime}, z\right)=-\left|z^{\prime}\right|^{2}$.

Lemma 5.15 Let $C(t)=(x(t), z(t))$ be a geodesic on $T_{1} M$. If we put $c=\left|z^{\prime}\right|$, then we have

$$
\begin{gather*}
\rho=-(1+b) c^{2} \tag{5.12}\\
c^{\prime}=0 \tag{5.13}
\end{gather*}
$$

Proof

From formula (5.11) and Remark 5.14, we obtain

$$
\begin{aligned}
z^{\prime \prime} & =\left(\rho+b c^{2}\right) z \\
g\left(z^{\prime \prime}, z\right) & =\rho+b c^{2}=-\left|z^{\prime}\right|^{2}=-c^{2}
\end{aligned}
$$

therefore $\rho=-(1+b) c^{2}$. In the other hand, we have

$$
\begin{aligned}
\frac{1}{2}\left(c^{2}\right)^{\prime} & =g\left(z^{\prime \prime}, z^{\prime}\right) \\
& \left.=(\rho+b)\left|z^{\prime}\right|^{2}\right) g\left(z, z^{\prime}\right) \\
& =0
\end{aligned}
$$

Using Lemma 5.13 and Lemma 5.15, we obtain the following theorem.

Theorem 5.16 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of the manifold (M, g) endowed with the deformed Sasaki metric $g_{D S}$ and $C(t)=(x(t), z(t))$ be a curve on $T_{1} M$ such $z(t) \in T_{x(t)} M$. If we put $c=\left|z^{\prime}\right|$, then $C(t)$ is a geodesic on $T_{1} M$ if and only if

$$
\begin{align*}
c & =\text { const }, \quad \rho=-(1+b) c^{2}=\text { const } \tag{5.14}\\
x^{\prime \prime} & =a R\left(z, z^{\prime}\right) x^{\prime} \tag{5.15}\\
z^{\prime \prime} & =-c^{2} z \tag{5.16}
\end{align*}
$$

where $a=-\alpha(1)=$ Const.

Theorem 5.17 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of a locally symmetric manifold $(M, g)(\nabla R=0)$, endowed with the deformed Sasaki metric, $C(t)=(x(t), z(t))$ be a geodesic on $T_{1} M$ and $\eta=\pi \circ C$. Then $R\left(z, z^{\prime}\right)$ is parallel along η.

Proof :
Using formula (5.16), we get

$$
\begin{aligned}
R^{\prime}\left(z, z^{\prime}\right) & =\nabla_{\dot{x}} R\left(z, z^{\prime}\right) \\
& =\left(\nabla_{\dot{x}} R\right)\left(z, z^{\prime}\right)+R\left(z^{\prime}, z^{\prime}\right)+R\left(z, z^{\prime \prime}\right) \\
& =R\left(z, z^{\prime \prime}\right) \\
& =R\left(z,-c^{2} z\right) \\
& =0
\end{aligned}
$$

Theorem 5.18 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of a locally symmetric manifold (M, g), endowed with the deformed Sasaki metric, and $C(t)=(x(t), z(t))$ be a geodesic on $T_{1} M$. Then we have

$$
\begin{equation*}
\left|x^{(p)}\right|=\text { const } \quad \forall p \geq 1 \tag{5.17}
\end{equation*}
$$

Proof
From Theorem 5.16 and Theorem 5.17, we have

$$
x^{\prime \prime}=-\alpha_{1} R\left(z, z^{\prime}\right) x^{\prime}, \quad \text { and } \quad R^{\prime}\left(z, z^{\prime}\right)=\nabla_{\dot{x}} R\left(z, z^{\prime}\right)=0
$$

So

$$
\begin{equation*}
x^{(p+1)}=a R\left(z, z^{\prime}\right) x^{(p)} \quad p \geq 1 \tag{5.18}
\end{equation*}
$$

and

$$
\frac{d}{d t}\left|x^{(p)}\right|^{2}=2 g\left(x^{(p+1)}, x^{(p)}\right)=2 a g\left(R\left(z, z^{\prime}\right) x^{(p)}, x^{(p)}\right)=0
$$

Then

$$
\left|x^{(p)}\right|=\text { const } \quad \forall p \geq 1
$$

Theorem 5.19 Let $\left(T M, g_{D S}\right)$ be a tangent bundle of a locally symmetric manifold (M, g), endowed with the deformed Sasaki metric and $C(t)=(x(t), z(t))$ be a geodesic on $T_{1} M$. Then all geodesic curvatures of $\eta=x(t)$ are constant.

Proof

If s is an arc length parameter on η, then $\frac{d x}{d t}=\frac{d x}{d s} \frac{d s}{d t}$. Since C is a geodesic then $\|\dot{C}\|=\left\|\frac{d}{d t} C\right\|=K=$ const and

$$
\begin{equation*}
K^{2}=\|\dot{C}\|^{2}=\left|\frac{d s}{d t}\right|^{2}+\alpha(1)\left|z^{\prime}\right|^{2}+\beta(1) g\left(z^{\prime}, z\right)^{2}=\left|\frac{d s}{d t}\right|^{2}-a c^{2} \tag{5.19}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\left|\frac{d s}{d t}\right|=\sqrt{K^{2}+a c^{2}}=\tau=\text { const } . \tag{5.20}
\end{equation*}
$$

where $\tau^{2}=K^{2}+a c^{2}=$ const.
If $\nu_{1}, \ldots ., \nu_{2 n-1}$ denote the Frenet frame along η and by $k_{1}, \ldots, k_{2 n-1}$ the geodesic curvatures of η. Then from (5.20), we obtain

$$
\begin{aligned}
x^{\prime} & =\tau \nu_{1} \\
x^{\prime \prime} & =\tau^{2} k_{1} \nu_{2} \\
x^{(3)} & =\tau^{3} k_{1}\left(-k_{1} \nu_{1}+k_{2} \nu_{3}\right) \\
& \vdots
\end{aligned}
$$

Using (5.17) we deduce $k_{1}=$ const, $k_{2}=$ const $, \ldots, k_{2 n-1}=$ const.

Acknowledgments

Both authors kindly thank the anonymous referee for giving valuable suggestions.
This work is supported by L.G.A.C.A. Laboratory of Saida university and Algerian agency P.R.F.U project. The authors would like to thank and express their special gratitude to Prof. Mustafa Djaa for his suggestion of this work as well as for helping him with some accounts for his helpful suggestions and valuable comments which helped to improve the paper.

References

[1] Abbassi MTK, Sarih M. On Riemannian g-natural metrics of the form ags+bgh+cgv on the tangent bundle of a Riemannian manifold (M, g). Mediterranean Journal of Mathematics 2005; 2: 19-43.
[2] Altunbas M, Simsek R, Gezer A. Some harmonic problems on the tangent bundle with a Berger-type deformed Sasaki metric. Scientific Bulletin-University Politehnica of Bucharest Series A 2020; 82 (2): 37-42.
[3] Altunbas M, Simsek R, Gezer A. A study concerning Berger type deformed Sasaki metric on the tangent bundle. Journal of Mathematical Physics, Analysis, Geometry 2019; 15 (4): 435-447.
[4] Bilen L. Metric connection on tangent bundle with Berger-type deformed Sasaki metric. Turkish Journal of Mathematics 2022; 46 (3): 1036-1047.
[5] Cheeger J, Gromoll D. On the structure of complete manifolds of nonnegative curvature. Annals of Mathematics 1972; 96: 413-443.
[6] Dombrowski P. On the geometry of the tangent bundle. Journal Für die Reine und Angewandte Mathematik 1962; 210: 73-88.
[7] Gezer A. On the tangent bundle with deformed Sasaki metric. International Electronic Journal of Geometry 2013; 6 (2): 19-31.
[8] Gudmunsson S, Kappos E. On the geometry of tangent bundles. Tokyo Journal of Mathematics 2002; 25 (1): 75-83.
[9] Ishihara T. Harmonic sections of tangent bundles. Journal of Mathematics, Tokushima University 1979; 13: 23-27.
[10] Konderak JJ. On harmonic vector fields. Publications Mathématiques 1992; 36: 217-288.
[11] Munteanu M. Cheeger-Gromoll type metrics on the tangent bundle. ArXiv:math.DG/0610028 (30 Sept. 2006).
[12] Musso E, Tricerri F. Riemannian metrics on tangent bundles. Annali di Matematica Pura ed Applicata 1988; 150 (4): 1-19.
[13] Opriou V. Harmonic maps between tangent bundles. Rendiconti del Seminario Matematico Universitá e Politecnico di Torino 1989; 47 (1): 47-55.
[14] Salimov AA, Kazimova S. Geodesics of the Cheeger-Gromoll metric. Turkish Journal of Mathematics 2009; 33: 99-105.
[15] Salimov AA, Gezer A, Akbulut K. Geodesics of Sasakian metrics on tensor bundles. Mediterranean Journal of Mathematics 2009; 6 (2): 135-147.
[16] Sasaki S. On the differential geometry of tangent bundles of Riemannian manifolds. Tohoku Mathematical Journal 1958; 10: 338-354.
[17] Sukhova OV. Curvatures of the tangent bundle with a special almost product metric. Mathematical Notes 2011; 89 (4): 568-571.
[18] Yampolsky A. On geodesics of tangent bundle with fiberwise deformed Sasaki metric over Kählerian manifold. Journal of Mathematical Physics, Analysis, Geometry 2012; 8 (2): 177-189.
[19] Yampolsky A. On characterisation of projections of geodesics of Sasaki metric TCPn and T1CPn. Ukrainskij Geometricheskij Sbornik 1991; 34: 121-126.
[20] Yano K, Ishihara S. Tangent and cotangent bundles, Marcel Dekker.INC. New York 1973.
[21] Zagane A, Djaa M. On geodesics of warped Sasaki metric. Mathematical Sciences and Applications E-Notes 2017; 1: 85-92.
[22] Zagane A, Djaa M. Geometry of Mus-Sasaki metric. Communication in Mathematics 2018; 26: 113-126.

