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Abstract: Let K be a finite field and X be a complete simplicial toric variety over K with split torus TX
∼= (K∗)n .

We give an algorithm relying on elimination theory for finding generators of the vanishing ideal of a subgroup YQ

parameterized by a matrix Q which can be used to study algebraic geometric codes arising from YQ . We give a method
to compute the lattice L whose ideal IL is exactly I(YQ) under a mild condition. As applications, we give precise
descriptions for the lattices corresponding to some special subgroups. We also prove a Nullstellensatz type theorem valid
over finite fields, and share Macaulay2∗ codes for our algorithms.

Key words: Evaluation code, toric variety, multigraded Hilbert function, vanishing ideal, parameterized code, lattice
ideal

1. Introduction
Let X be a split complete simplicial toric variety determined by the fan Σ in Rn over a finite field K = Fq

whose class group Cl(X) is torsion-free. Let v1, . . . ,vr ∈ Zn denote the primitive generators of the one
dimensional cones ρ1, . . . , ρr in Σ , respectively. Each ρi gives TX -invariant prime divisor Dρi

⊆ X . Recall
from [3, Theorem 4.1.3] that when v1, . . . ,vr span Rn , the sequence

0 // Zn // Zr // Cl(X) // 0,

is exact, where m = (m1, . . . ,mn) ∈ Zn maps to (〈m,v1〉, . . . , 〈m,vr 〉) ∈ Zr and a = (a1, . . . , ar) ∈ Zr maps
to divisor class [a1Dρ1 + · · ·+ arDρr ] ∈ Cl(X) . Since Cl(X) has no torsion element, the exact sequence can be
written as

P : 0 // Zn ϕ // Zr β // Zd // 0 , (1.1)

where the first map is multiplication by the matrix ϕ whose rows v1, . . . ,vr and d = r − n . The second
map is multiplication by a matrix β satisfying the condition ker(β) = Im(ϕ) . To simplify notation, we write
tb = tb11 · · · tbss for any b = (b1, . . . , bs) ∈ Zs . Dualizing the short exact sequence above yields the exact sequence

P∗ : 1 // G
i // (K∗)r

π // (K∗)n // 1 , (1.2)
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where π sends (t1, . . . , tr) ∈ (K∗)r to (tu1 , . . . , tun) such that u1, . . . ,un are columns of ϕ. It follows that
the torus TX is isomorphic to quotient of (K∗)r by the group G = ker(π) . Then every element of TX can
be defined as [p1 : · · · : pr] := G · (p1, . . . , pr) for some (p1, . . . , pr) ∈ (K∗)r . X has total coordinate ring
S = K[x1, . . . , xr] graded by the group Cl(X) ∼= Zd . The degree of a monomial xa = xa1

1 · · ·xas
r is

degZd(xa) := a1 degZd(x1) + · · ·+ ar degZd(xr) = a1β1 + · · ·+ arβr

such that βj := β(ej). The grading on S yields a direct sum decomposition S =
⊕

α∈Nβ
Sα where Sα is vector

space whose basis consists of the monomials having degree α and Nβ is semigroup generated by β1, . . . , βr.

For any matrix Q = [q1q2 · · ·qr] ∈ Ms×r(Z) , the subset YQ = {[tq1 : · · · : tqr ]|t ∈ (K∗)s} of TX is called
the toric set parameterized by Q . The subgroups of TX are exactly these parametric sets by [11, Theorem 3.2
and Corollary 3.7]. Given a subset Y ⊂ X , the vanishing ideal I(Y ) in S is the graded ideal generated by
homogenous polynomials in S which vanish at all the elements in Y . Vanishing ideals play an important role
in Algebraic Geometry and Coding Theory. Computing the generators of the vanishing ideal I(YQ) makes it
easy to determine its algebraic and geometric properties and to compute the basic parameters of a linear code
obtained by evaluating homogeneous polynomials at the points of YQ , see [2, 9, 10, 12].

The aim of this paper is to reveal that some of the results scattered in the literature about the vanishing
ideal of YQ can be generalised to the more general toric case by carefully adapting and modifying the arguments
used. The problem of giving an algorithm computing minimal generators for I(YQ) was solved by Villarreal,
Simis and Renteria in [9, Theorem 2.1], when X is a projective space. When YQ is the torus TX of a
weighted projective space X , Dias and Neves proved in [5] a generalized version of [9, Theorem 2.1]. Our first
generalization is Theorem 2.6, which gives an expression for I(YQ) , leading to a method (see Algorithm 1) via
elimination theory for computing a generating set. We provide a Macaulay2 code for Algorithm 1 in Procedure
2.7.

In [9, Theorem 2.5], the authors prove that I(YQ) = IL for the lattice L = LQ + (q − 1)Lβ under a
mild condition on Q . Applying this result they also proved in [9, Proposition 4.3] that YQ is nothing but the
zero set in the torus TX of the lattice ideal ILQ

, and concluded in [9, Corollary 4.4] that I(VX(IL)) = IL . We
generalize all these in Theorem 3.2 and Theorem 3.10.

Lopez, Villarreal, and Zarate computed in [7] the generators of the vanishing ideal of YQ by determining
the lattice L for toric sets parameterized by diagonal matrices in projective space. In [11], Şahin not only
showed that the vanishing ideal I(YQ) is a lattice ideal for more general toric varieties but also generalized this
result about diagonal matrices to more general toric varieties. We conclude the paper by giving an alternative
proof in Theorem 3.13.

2. Vanishing ideal via elimination theory
In this section, we give a method yielding an algorithm for computing the generators of the vanishing ideal of
YQ . The following basic theorems will be used to obtain our first main result giving this method.

Lemma 2.1 [1, Lemma 2.1] Let K be a field and f be a polynomial in K[x1, . . . , xs] such that degxi
f ≤ ki

for all i . Let Ki ⊆ K be a finite set with |Ki| ≥ ki + 1 for 1 ≤ i ≤ s . If f vanishes on K1 × K2 × · · · × Ks ,
then f = 0 .
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Theorem 2.2 [4, Theorem 2, p.87] Let I ⊂ K[x1, . . . , xk] be an ideal and let G be a Gröbner basis of I with
respect to lex order where x1 > x2 > · · · > xk . Then, for every 0 ≤ l ≤ k the set

Gl = G ∩K[xl+1, . . . , xk]

is a Gröbner basis of the l -th elimination ideal Il = I ∩K[xl+1, . . . , xk] .

When X = Pn , S is graded by A = Z via deg(xi) = 1 for all i . In this case, there is a method to
compute the vanishing ideal I(YQ) , see [9, Theorem 2.1]. Recently, Tochimani and Villarreal [13] generalized
this result to subsets of X = Pn that are parameterized by ratios of Laurent polynomials, whose proof does not
generalize to all toric varieties. When X = P(w1, . . . , wr) is the weighted projective space, S is also Z -graded
via deg(xi) = wi ∈ N using the degree map β = [w1 · · ·wr] . In [5], Dias and Neves extended the same result
to weighted projective spaces if Q is the identity matrix, that is, YQ = TX . Our main contribution is to make
necessary arrangements needed for a general toric variety to adapt the corresponding proof in [9, Theorem
2.1]. Before we generalize these results to arbitrary toric varieties, let us recall that m = m+ − m− , where
m+,m− ∈ Nr , and xm denotes the monomial xm1

1 · · ·xmr
r for any m = (m1, . . . ,mr) ∈ Zr .

Theorem 2.3 Let R = K[x1, . . . , xr, y1, . . . , ys, z1, . . . , zd, w] be a polynomial ring which is an extension of S .
Then I(YQ) = J ∩ S , where

J = 〈{xiy
qi

−zβi
−
− yqi

+zβi
+

}ri=1 ∪ {yq−1
i − 1}si=1, wy

q1
−
zβ1

−
· · ·yqr

−
zβr

−
− 1〉.

Proof We follow the steps in the proof of [9, Theorem 2.1] making some necessary modifications. I(YQ) is
generated by homogeneous polynomials, since it is a homogeneous ideal. To show the inclusion I(YQ) ⊆ J ∩S ,

pick any generator f =
k∑

i=1

cix
mi of degree α =

r∑
j=1

βjmij . We use binomial theorem to write any monomial

xmi as

xmi = xmi1
1 · · ·xmir

r =

(
x1 −

yq1
+zβ1

+

yq1
−zβ1

− +
yq1

+zβ1
+

yq1
−zβ1

−

)mi1

· · ·

(
xr −

yqr
+zβ1

+

yqr
−zβ1

− +
yqr

+zβr
+

yqr
−zβr

−

)mir

=
r∑

j=1

gij
xjy

qj
−zβj

− − yqj
+zβj

+(
yq1

−zβ1
−)mi1 · · ·

(
yqr

−zβr
−)mir

+ zα

(
yq1

+

yq1
−

)mi1

· · ·

(
yqr

+

yqr
−

)mir

where gi1, ..., gir ∈ R for all i . Substituting all the xmi in f , we get

f =

r∑
j=1

gj
xjy

qj
−zβj

− − yqj
+zβj

+(
yq1

−zβ1
−)m′

1 · · ·
(
yqr

−zβr
−)m′

r
+ zαf(yq1 , . . . ,yqr ),

where gj =
k∑

i=1

cjgi,j and m′
j =

k∑
i=1

mij . Then set m =
r∑

j=1

k∑
i=1

mij . We multiply f by hm to clear all the

denominators which yields that

fhm =

r∑
j=1

Gj

(
xjy

qj
−

zβj
−
− yqj

+

zβj
+
)
+ zα′

(
yq1

−
· · ·yqr

−
)m

f(yq1 , . . . ,yqr ),

2143



BARAN ÖZKAN/Turk J Math

where h = yq1
−
zβ1

− · · ·yqr
−
zβr

− and

α′ =

r∑
j=1

[
βj

−(m−mij) + βj
+mij

]
∈ Nn, Gj = gj

r∏
j=1

(
yqj

−
zβj

−
)m−m′

j

∈ R.

We can apply division algorithm and divide F =
(
yq1

− · · ·yqr
−
)m

f(yq1 , . . . ,yqr ) by {yiq−1 − 1}si=1 which

leads to

fhm =
r∑

j=1

Gi

(
xjy

qj
−zβj

− − yqj
+zβj

+
)
+ zα′

(
s∑

i=1

Hi(yi
q−1 − 1) + E(y1, . . . , ys)

)
. (2.1)

Lemma 2.1 forces that E is the zero polynomial, as E(t) = 0 for all t = (t1, . . . , ts) ∈ (K∗)
s .

Multiplying now the equation (2.1) by wm , we have

f(hw)m =

r∑
j=1

wmGj

(
xjy

qj
−

zβj
−
− yqj

+

zβj
+
)
+ wmzα′

s∑
i=1

Hi(yi
q−1 − 1).

As f(hw)m = f(hw − 1 + 1)m = f(H(hw − 1) + 1) = fH(hw − 1) + f for some H ∈ R by binomial theorem,
it follows that

f =

r∑
j=1

wmGi

(
xjy

qj
−

zβj
−
− yqj

+

zβj
+
)
+ wmzα′

s∑
i=1

Hi(yi
q−1 − 1)− fH(hw − 1)

which establishes the inclusion I(YQ) ⊆ J ∩ S .

As J is generated by binomials, so is J ∩ S by Theorem 2.2. Take f = xa − xb ∈ J ∩ S and write

f =

r∑
j=1

Gj

(
xjy

qj
−

zβj
−
− yqj

+

zβj
+
)
+

s∑
i=1

Hi(yi
q−1 − 1) +H(hw − 1), (2.2)

for some polynomials G1, . . . , Gr,H1, . . . , Hs,H in R . As the last equality is valid also in the ring R[z1
−1, . . . , zd

−1]

setting yi = 1, xi = zβi , w = 1/zβ1
− · · · zβr

− gives

za1β1+···+arβr − zb1β1+···+brβr = 0.

Thus, f = xa − xb is homogeneous. By setting xi = tqi , yj = tj , zk = 1 for all i, j, k and w = 1/tq
−
1 · · · tq−

r in
(2.2), we obtain f(tq1 , . . . , tqr ) = 0 and so f ∈ I(YQ) . Consequently, J ∩ S ⊆ I(YQ) . 2

Remark 2.4 Given complete simplicial toric variety X , we have the exact sequence P in 1.1. Recall that
the rows of ϕ are the primitive generators of the rays in the fan of X . There are many alternatives for the
matrix β as it can be chosen so that the condition ker(β) = Im(ϕ) is satisfied. However, by [8, Theorem 8.6
and Corollary 8.8], we can choose βj ∈ Nd , where N is the set of non-negative integers, since the dimension
dimK(Sα) is finite for all α ∈ Nβ by [3, Proposition 4.3.8].

Example 2.5 The matrix β obtained by the following Macaulay2 procedure has negative entries.
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i1 : q=11; Phi=matrix{{1,0},{0,1},{-1,2},{0,-1}}; r=numRows Phi;
i2 : n=numColumns Phi; (D,P,K) = smithNormalForm Phi; Beta=P^{n..r-1};
o2 = | -1 2 -1 0 |

| 0 1 0 1 |

Note that multiplying the first row by −1 and then adding twice the second row we get β =

[
1 0 1 2
0 1 0 1

]
to be

a better alternative!

In practice, different matrices Q may give the same subgroup YQ of TX . As we work over the finite field
Fq , we note that restricting to matrices Q with non-negative entries strictly smaller than q− 1 , does not harm
the generality, since tq−1 ≡ 1mod q , for any t ∈ F∗

q . This reduction together with the assumption that βj ∈ Nd

will decrease the complexity of the algorithm for finding a generating set for I(YQ) which will be based on the
following result whose proof is skipped.

Theorem 2.6 Let R = K[x1, . . . , xr, y1, . . . , ys, z1, . . . , zd] be a polynomial ring which is an extension of S .
Then I(YQ) = J ∩ S , where

J = 〈{xi − yqizβi}ri=1 ∪ {yq−1
i − 1}si=1〉.

Theorem 2.6 gives rise to Algorithm 1 for computing the binomial generators of the ideal I(YQ) in the
ring Fq[x1, . . . , xr] from the given matrices Q and β with entries from the set N of non-negative integers, for
every prime power q .

Algorithm 1 Computing the generators of vanishing ideal I(YQ) .
Input The matrices Q ∈ Ms×r(N) , β ∈ Md×r(N) and a prime power q .
Output The generators of I(YQ) .

1: Write the ideal J of R using Theorem 2.6.
2: Find the Gröbner basis G of J wrt. lex order z1 > · · · > zd > y1 > · · · > ys > x1 > · · · > xr .
3: Find G ∩ S so that I(YQ) = 〈G ∩ S〉 .

Using the function toBinomial creating a binomial from a list of integers (see [6]), we write a Macaulay2
code which implements this algorithm.

Procedure 2.7 Given a particular input q , Q, β , the following procedure finds the generators of I(YQ) .

i2 : toBinomial = (b,R) -> (top := 1_R; bottom := 1_R;
scan(#b, i -> if b_i > 0 then top = top * R_i^(b_i)
else if b_i < 0 then bottom = bottom * R_i^(-b_i)); top - bottom);
i3 : r=numColumns Q;s=numRows Q; d=numRows Beta; F=ZZ/q;
i4 : C=(id_(ZZ^r)| -transpose Q | -transpose Beta);
i5 : R=F[x_1..x_r,y_1..y_s,z_1..z_d];
i6 : J = ideal apply(entries C, b -> toBinomial(b,R))+ideal apply (s,i->R_(r+i) ^(q-1)-1)
i7 : IYQ=eliminate (J,for i from r to r+s+d-1 list R_i)
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Example 2.8 Let X = H2 be the Hirzebruch surface over K = F11 . The fan for X has primitive ray gener-
ators v1 = (1, 0) , v2 = (0, 1) , v3 = (−1, 2) , v4 = (0,−1) and its coordinate ring S = K[x1, x2, x3, x4] . Then
for X , the matrices ϕ and β in 1.1 are given by

ϕ =


1 0
0 1
−1 2
0 −1

 , β =

[
1 0 1 2
0 1 0 1

]
.

This shows that S = K[x1, x2, x3, x4] is graded by letting

degZ2(x1) = degZ2(x3) = (1, 0), degZ2(x2) = (0, 1), degZ2(x4) = (2, 1).

Since the map π in 1.2 is defined by π : t 7→ (t1t
−1
3 , t2t

2
3t

−1
4 ) for X ,

G = ker(π) = {(t1, t2, t1, t21t2) | t1, t2 ∈ K∗} ∼= (K∗)2.

Thus the torus of X = XΣ has quotient representation TX
∼= (K∗)2 ∼= (K∗)4/G . Consider the set parameterized

by Q = [1 2 3 4] , that is, YQ = {[t : t2 : t3 : t4] | t ∈ K∗} . In order to compute the generators of I(YQ) in
Macaulay2 it suffices to supply q together with Q and β :

i1 : q=11; Beta=matrix {{1,0,1,2},{0,1,0,1}}; Q=matrix {{1,2,3,4}};

and we obtain I(YQ) = 〈x2
1x2−x4, x

5
1−x5

3〉 by using Procedure 2.7. The vanishing ideal I(YQ) is also evaluated
in [2, Example 3.7] by computing the lattice L asociated I(YQ) .

3. Conceptual descriptions of the lattice of a vanishing ideal

A subgroup L ⊆ Zr is called a lattice. For any lattice L , the lattice ideal corresponding to L , denoted IL , is
the ideal generated by binomials xa − xb for all a,b ∈ Nr such that a − b ∈ L .

The vanishing ideal I(YQ) is a lattice ideal, see [11]. Then the lattice associated with I(YQ) is identified
in the following lemma.

Lemma 3.1 [2, Lemma 3.2] The ideal I(YQ) is equal to IL where L = {m ∈ Lβ : Qm ≡ 0 mod (q − 1)} .

This description is not very useful in practice, for it requires some operations. In this section, we give a handier
description of the lattice of the ideal I(YQ) , in terms of Q and β , under a condition on the lattice L = QLβ =

{Qm|m ∈ Lβ} using Lemma 3.1. Before stating it, let us remind that L : (q − 1) = {m ∈ Zs|(q − 1)m ∈ L}
and the colon module L : (q − 1)Zs are the same. Given any matrix Q , kerZ Q is a lattice, denoted LQ .

Theorem 3.2 Let L = (LQ ∩ Lβ) + (q − 1)Lβ . Then IL ⊆ I(YQ) . The equality holds if and only if
L = L : (q − 1) .

Proof We start with the proof of the inclusion IL ⊆ I(YQ) . By the virtue of Lemma 3.1, it suffices
to prove that L ⊆ L1 = {m ∈ Lβ : Qm ≡ 0 mod (q − 1)} , as I(YQ) = IL1

. Take m ∈ L . Since
L = (LQ ∩Lβ) + (q− 1)Lβ ⊆ Lβ , we have m ∈ Lβ . On the other hand, we can write m = m′ + (q− 1)m′′ for
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some m′ ∈ LQ ∩ Lβ and m′′ ∈ Lβ . Since Qm = (q − 1)Qm′′ , it follows that m ∈ L1 , completing the proof of
the inclusion.

Now, in order to show that I(YQ) ⊆ IL iff L = L : (q − 1) , it is enough to prove that L1 ⊆ L iff
L : (q − 1) ⊆ L . Assume first that L1 ⊆ L and take z ∈ L : (q − 1) . This means that there exist m ∈ Lβ

such that (q − 1)z = Qm . So, m ∈ L1 ⊆ L and we have m = m′ + (q − 1)m′′ for some m′ ∈ LQ ∩ Lβ and
m′′ ∈ Lβ . Thus, (q − 1)z = Qm = (q − 1)Qm′′ , and we have z = Qm′′ ∈ L . Therefore, L : (q − 1) ⊆ L .

Suppose now that L : (q − 1) ⊆ L and let m ∈ L1 . Then m ∈ Lβ and Qm = (q − 1)z for some
z ∈ Zs . So, z ∈ L : (q − 1) ⊆ L yielding z = Qm′ for some m′ ∈ Lβ . Hence Q(m − (q − 1)m′) = 0 and so,
m− (q − 1)m′ ∈ LQ ∩ Lβ . This implies that m = (m− (q − 1)m′) + (q − 1)m′ ∈ L . Hence, L1 ⊆ L . 2

We can check if the condition above is satisfied and in the affirmative case, we can compute the generators
of the lattice using the following code in Macaulay2.

Procedure 3.3 Check if the condition L = L : (q − 1) holds and produces a basis for L .

i2: s=numRows Q;
i3: LL=image (Q*Phi);
i4: if LL:(q-1)*(ZZ^s)==LL then print yes else print no;
i5: ML=mingens ((q-1)*(image Phi)+intersect(ker Q,image Phi));

Example 3.4 Consider the Hirzebruch surface X = H2 over the field F2 and take Q = [1 2 3 4] . The input
is as follows:

i1 : q=2;Phi=matrix{{1,0},{0,1},{-1,2},{0,-1}};Q=matrix {{1,2,3,4}};

and then Procedure 3.3 tells us that the condition is satisfied and gives L = 〈(−1, 0, 1, 0), (−2,−1, 0, 1)〉 .

Definition 3.5 Q is called homogeneous, if there is a matrix A ∈ Md×s(Q) such that AQ = β .

Lemma 3.6 Let Q = [q1 · · ·qr] ∈ Ms×r(Z) . Q is homogeneous iff LQ ⊆ Lβ .

Proof Suppose that Q is homogeneous. So, AQ = β for some matrix A ∈ Md×s(Q) . Take an element m
of LQ . Since Qm = 0 , we have βm = AQm = 0 . Hence, m ∈ Lβ and thus LQ ⊆ Lβ . Conversely, assume
that LQ ⊆ Lβ . Denote by Q′ the (s+ d)× r matrix [Q β]T . Then LQ′ = LQ ∩ Lβ = LQ which implies that
the rows of β belong to the row space of Q . So, a row of β can be expressed as a Q -linear combination of the
rows of Q . Let the following be the i -th row of β :

ai1[q11 · · · q1r] + · · ·+ ais[qs1 · · · qsr] = [(ai1q11 + · · ·+ aisqs1) · · · (ai1q1r + · · ·+ aisqsr)]
= [([ai1 · · · ais]q1) · · · ([ai1 · · · ais]qr)].

So, for A = (aij) ∈ Md×s(Q) we have AQ = β . 2

The next corollary is a generalization of Theorem 2.5 in [9] studying the case X = Pn .

Corollary 3.7 Let Q = [q1 · · ·qr] ∈ Ms×r(Z) be a homogeneous matrix and L = LQ + (q − 1)Lβ . Then
IL ⊆ I(YQ) . The equality holds if and only if L = L : (q − 1) .
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Proof Since Q is homogeneous, LQ ⊆ Lβ shows that L = LQ ∩Lβ +(q− 1)Lβ = LQ+(q− 1)Lβ . Therefore,
I(YQ) = IL from Theorem 3.2. 2

Using Theorem 3.2, we give other proofs of the following facts proven for the first time in [11].

Corollary 3.8 I(TX) = I(q−1)Lβ

Proof TX is the toric set parameterized by the identity matrix Q = Ir . It is clear that LQ = kerZIr = {0} .
Notice also that L = QLβ = {Irm|m ∈ Lβ} = Lβ . Since Lβ is torsion free, the condition L = L : (q − 1) is
satisfied. As L = (q − 1)Lβ , we have that I(TX) = I(q−1)Lβ

by Theorem 3.2. 2

Corollary 3.9 The vanishing ideal of the point [1 : · · · : 1] is the toric ideal ILβ
.

Proof Take Q = β . Then YQ = {[1 : · · · : 1]} and LQ = Lβ . So, L = QLβ = {Qm|m ∈ LQ} = 0 . Thus,
L = Lβ + (q − 1)Lβ = Lβ . This gives I([1 : · · · : 1]) = ILβ

by Theorem 3.2. 2

Before giving another consequence of Theorem 3.2, let us introduce more notation. For a homogeneous
ideal J , we define its zero locus in X to be the following:

VX(J) := {[P ] ∈ X : F (P ) = 0, for all homogeneous F ∈ J}.

It follows from Lemma 3.6 and [11, Proposition 2.3] that Q is homogeneous if and only if the toric ideal ILQ

is homogeneous. Assuming Q to be homogeneous, the zero locus VQ := VX(ILQ
) ∩ TX in TX of the toric

ideal ILQ
is a subgroup, by [11, Corollary 2.4] since we study over a finite field. The following consequence of

Theorem 3.2 ensures that it coincides with the subgroup YQ if the condition L = L : (q− 1) holds, generalizing
[9, Proposition 4.3] and [9, Corollary 4.4].

Theorem 3.10 (Finite Nullstellensatz) If Q is homogeneous and L = LQ + (q − 1)Lβ , then we have the
following

1. VQ = VX(IL) ,

2. VQ = YQ , if the condition L = L : (q − 1) holds,

3. I(VX(IL)) = IL , if the condition L = L : (q − 1) holds.

Proof Notice that m ∈ L ⇐⇒ m = m1 +m2 , for m1 ∈ LQ and m2 ∈ (q − 1)Lβ . It follows that

m ∈ L ⇐⇒ m+ = m+
1 +m+

2 + c and m− = m−
1 +m−

2 + c, for some c ∈ Nr.

Turning these vectors into monomials, we get the following relation

xm+

− xm−
= xc[xm+

2 (xm+
1 − xm−

1 ) + xm−
1 (xm+

2 − xm−
2 )].

Hence, the ideal IL = ILQ
+ I(q−1)Lβ

. By Corollary 3.8, we also have IL = ILQ
+ I(TX) so that VQ = VX(IL)

establishing (1).
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Take a point [P ] = [tq1 : · · · : tqr ] ∈ YQ . We have (xm+ − xm−
)(P ) = tQm+ − tQm−

= 0 whenever
m ∈ LQ . So, we observe that YQ ⊆ VX(ILQ

) . As YQ is a subgroup of TX , it follows that YQ ⊆ VQ . Taking
ideals of both sides yields I(VQ) ⊆ I(YQ) . As VQ = VX(IL) by (1) above, we finally have IL ⊆ I(VQ) ⊆ I(YQ) .
Under the assumptions, I(YQ) = IL by Theorem 3.2, so the three ideals coincide in the last containment,
verifying (3). By [11, Lemma 2.8], ȲQ = VX(I(YQ)) and V̄Q = VX(I(VQ)) . As we work over a finite field, any
set is closed with respect to Zariski topology and thus YQ = VQ proving (2). 2

There are examples for which YQ 6= VQ , when the condition L = L : (q − 1) is broken.

Example 3.11 Let X = H2 be the Hirzebruch surface over F11 and Q = [1 2 3 4] . Although Q is not
homogeneous, we can remedy this by adjoining β and obtaining the homogeneous matrix Q′ = [Q β]T . Notice
that YQ = YQ′ and so I(YQ′) = 〈x2

1x2 − x4, x
5
1 − x5

3〉 , see Example 2.8 .
By Theorem 3.10, we have VQ′ = VX(IL) for the lattice L = LQ′ +(q−1)Lβ . Since LQ′ = 〈(2, 1, 0,−1)〉

and Lβ = 〈(2, 1, 0,−1), (1, 0,−1, 0)〉 we have L = 〈(2, 1, 0,−1), (10, 0,−10, 0)〉 and hence the ideal IL =

〈x2
1x2 − x4, x

10
1 − x10

3 〉 . Applying [11, Algorithm 1], we obtain the matrix A below whose subgroup YA is
precisely the zero locus VX(IL) of the lattice ideal IL :

A =


−1 2 −1 0
0 1 0 1
0 10 0 0
0 0 1 0


We now apply one of the algorithms developed in the previous sections to conclude that

I(VQ′) = I(VX(IL)) = I(YA) = IL.

Therefore, VQ′ 6= YQ′ as otherwise, they would have the same vanishing ideals.

We close this section by discussing another special case where Q is diagonal.

Definition 3.12 The toric set parameterized by a diagonal matrix is called a degenerate torus.

Let η be a generator of the cyclic group K∗ , then for all ti ∈ K∗ we can write ti = ηhi for some
0 ≤ hi ≤ q − 2 . The following is the generalized version of the corresponding result in [7] valid for X = Pn .
The first proof is given in [11] and we give another here using Lemma 3.1.

Theorem 3.13 Let Q = diag(q1, . . . , qr) ∈ Mr×r(Z) and D = diag(d1, . . . , dr) where di = |ηqi | . Then
I(YQ) = IL for L = D(LβD) .

Proof By Lemma 3.1, it is enough to show that L = L1 where L1 = {m ∈ Lβ : Qm ≡ 0 mod (q − 1)} . Let
m be any element in L . Then m = Dz for some z ∈ Zr and m ∈ Lβ . Since di = (q − 1)/gcd(q − 1, qi) ,
qidi ≡ 0 mod (q − 1) for all di . Therefore, Qm = QDz ≡ 0 mod (q − 1) and so, m ∈ L1 .

Take m ∈ L1 . Then Qm ≡ 0 mod (q − 1) , that is, for every 1 ≤ i ≤ r there exist zi ∈ Z such that
qimi = (q − 1)zi . Hence,

qi
gcd(q − 1, qi)

mi =
q − 1

gcd(q − 1, qi)
zi = dizi.
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Since qi/gcd(q−1, qi) and q − 1/gcd(q−1, qi) are coprime, it follows that di divides mi . Therefore, mi = diz
′
i

for some z′i ∈ Z and so, m = Dz′ for z′ = (z′1, . . . , z
′
r) . Hence, m ∈ L. 2
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