Turkish Journal of Mathematics
http://journals.tubitak.gov.tr/math/

Turk J Math
(2022) 46: 2167 - 2177
© TÜBİTAK
doi:10.55730/1300-0098.3261

Birotational hypersurface and the second Laplace-Beltrami operator in the four dimensional Euclidean space \mathbb{E}^{4}

Erhan GÜLER ${ }^{1, *}{ }^{(1)}$, Yusuf YAYLI ${ }^{2}$ © ${ }^{(D)}$ Hasan Hilmi HACISALİHOĞLU ${ }^{3}$ ©
${ }^{1}$ Department of Mathematics, Faculty of Sciences, Bartın University, Bartın, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Sciences, Ankara University, Ankara, Turkey
${ }^{3}$ Department of Mathematics, Faculty of Sciences, Bilecik Şeyh Edebali University, Bilecik, Turkey

Received: 04.09.2021 • Accepted/Published Online: 19.04.2022 • Final Version: 04.07 .2022

Abstract

We consider the birotational hypersurface $\mathbf{x}(u, v, w)$ with the second Laplace-Beltrami operator in the four dimensional Euclidean space \mathbb{E}^{4}. We give the i-th curvatures of \mathbf{x}. In addition, we compute the second Laplace-Beltrami operator of the birotational hypersurface satisfying $\Delta^{I I} \mathbf{x}=\mathcal{A} \mathbf{x}$ for some 4×4 matrix \mathcal{A}.

Key words: Euclidean spaces, four space, birotational hypersurface, Gauss map, i-th curvature, second LaplaceBeltrami operator

1. Introduction

With Chen [13-16], the researches of the submanifolds of the finite type whose immersion into the \mathbb{E}^{m} (or \mathbb{E}_{ν}^{m}) by using a finite number of eigenfunctions of their Laplacian have been examined for almost 50 years.

Takahashi [46] introduced that a connected Euclidean submanifold is of 1-type, iff it is either minimal in \mathbb{E}^{m} or minimal in some hypersphere of \mathbb{E}^{m}. Submanifolds of the finite type closest in simplicity to the minimal ones are the 2 -type spherical submanifolds (where spherical means into a sphere). Some results of the 2 -type spherical closed submanifolds were studied by $[9,10,14]$. Garay [28] worked an extension of the Takahashi's theorem in \mathbb{E}^{m}. Cheng and Yau gave the hypersurfaces with constant scalar curvature; Chen and Piccinni [17] considered the submanifolds with the finite type Gauss map in \mathbb{E}^{m}. Dursun [23] focused on the hypersurfaces with pointwise 1 -type Gauss map in \mathbb{E}^{n+1}.

In \mathbb{E}^{3}; Takahashi [46] gave that the minimal surfaces and spheres are the only surfaces satisfying the condition $\Delta r=\lambda r, \lambda \in \mathbb{R}$; Ferrandez et al. [25] classified that the surfaces satisfying $\Delta H=A H, A \in \operatorname{Mat}(3,3)$ are either minimal, or an open piece of sphere or of a right circular cylinder; Choi and Kim [20] found the minimal helicoid in terms of the pointwise 1-type Gauss map of the first kind; Garay [27] worked on the certain class of the finite type surfaces of revolution; Dillen et al. [21] focused that the only surfaces satisfying $\Delta r=A r+B$, $A \in \operatorname{Mat}(3,3), B \in \operatorname{Mat}(3,1)$ are the minimal surfaces, the spheres and the circular cylinders; Stamatakis and Zoubi [45] obtained the surfaces of revolution satisfying $\Delta^{I I I} x=A x$; Senoussi and Bekkar [44] introduced the helicoidal surfaces M^{2} which are of the finite type with respect to the fundamental forms $I, I I$ and $I I I$, i.e.

[^0]their position vector field $r(u, v)$ satisfies the condition $\Delta^{J} r=A r, J=I, I I, I I I$, where $A \in M a t(3,3)$; Kim et al. [37] gave the Cheng-Yau's operator and the Gauss map of the surfaces of revolution.

In \mathbb{E}^{4}; Moore [41, 42] gave the general rotational surfaces; Hasanis and Vlachos [34] studied the hypersurfaces with the harmonic mean curvature vector field; Cheng and Wan [18] considered the complete hypersurfaces with CMC; Kim and Turgay [38] studied the surfaces with the L_{1}-pointwise 1-type Gauss map; Arslan et al. [3] introduced Vranceanu surface with pointwise 1-type Gauss map; Arslan et al. [4] introduced generalized rotational surfaces; Arslan et al. [5] obtained the tensor product surfaces with pointwise 1-type Gauss map; Kahraman Aksoyak and Yaylı [35] considered the rotational surfaces with the pointwise 1-type Gauss map; Güler et al. [32] worked the helicoidal hypersurfaces; Güler et al. [31] introduced the Gauss map and the third Laplace-Beltrami operator of the rotational hypersurface; Güler and Turgay [33] obtained the Cheng-Yau's operator and the Gauss map of the rotational hypersurfaces; Güler [30] worked the rotational hypersurfaces satisfying $\Delta^{I} R=A R$, where $A \in \operatorname{Mat}(4,4)$. He [29] also examined the fundamental form $I V$ and the curvature formulas of the hypersphere; Arslan et al. [7] introduced the rotational λ-hypersurfaces in the Euclidean spaces.

In Minkowski 4-space \mathbb{E}_{1}^{4}; Ganchev and Milousheva [26] indicated analogue of surfaces of [41, 42]; Arvanitoyeorgos et al. [8] studied that if the mean curvature vector field of M_{1}^{3} satisfies the equation $\Delta H=\alpha H$ (α a constant), then M_{1}^{3} has CMC; Arslan and Milousheva [6] considered the meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map; Turgay [47] introduced some classifications of the Lorentzian surfaces with the finite type Gauss map; Dursun and Turgay [24] gave the space-like surfaces in with the pointwise 1-type Gauss map. Kahraman Aksoyak and Yayll [36] worked the general rotational surfaces with pointwise 1-type Gauss map in \mathbb{E}_{2}^{4}; Bektaş et al. [11] considered surfaces in a pseudo-sphere with 2-type pseudospherical Gauss map in \mathbb{E}_{2}^{5}. They [12] also gave the pseudo-spherical submanifolds with 1-type pseudo-spherical Gauss map.

We consider the birotational hypersurface with the second Laplace-Beltrami operator in the four dimensional Euclidean space \mathbb{E}^{4}. In Section 2, we indicate the fundamental notions of the four dimensional Euclidean geometry. We obtain the curvature formulas of a hypersurface in \mathbb{E}^{4} in Section 3. In Section 4, we give the birotational hypersurface. Additionally, we examine the birotational hypersurface satisfying $\Delta^{I I} \mathbf{x}=\mathcal{A} \mathbf{x}$ for some 4×4 matrix \mathcal{A} in \mathbb{E}^{4} in Section 5 . Finally, we give some results in Section 6 .

2. Preliminaries

In this section, giving some of basic facts and definitions, we describe notations used whole paper. Let \mathbb{E}^{m} denote the Euclidean m-space with the canonical Euclidean metric tensor given by $\widetilde{g}=\langle\rangle=,\sum_{i=1}^{m} d x_{i}^{2}$, where $\left(x_{1}, x_{2}, \ldots, x_{m}\right)$ is a rectangular coordinate system in \mathbb{E}^{m}. Consider an m-dimensional Riemannian submanifold of the space \mathbb{E}^{m}. We denote the Levi-Civita connections of \mathbb{E}^{m} and M by $\widetilde{\nabla}$ and ∇, respectively. We shall use the letters X, Y, Z, W (resp., ξ, η) to denote the vectors fields tangent (resp., normal) to M. The Gauss and Weingarten formulas are given, respectively, by

$$
\begin{align*}
\widetilde{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \tag{2.1}\\
\widetilde{\nabla}_{X} \xi & =-A_{\xi}(X)+D_{X} \xi \tag{2.2}
\end{align*}
$$

GÜLER et al./Turk J Math

where h, D and A are the second fundamental form, the normal connection and the shape operator of M, respectively.

For each $\xi \in T_{p}^{\perp} M$, the shape operator A_{ξ} is a symmetric endomorphism of the tangent space $T_{p} M$ at $p \in M$. The shape operator and the second fundamental form are related by

$$
\langle h(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle
$$

The Gauss and Codazzi equations are given, respectively, by

$$
\begin{align*}
\langle R(X, Y,) Z, W\rangle & =\langle h(Y, Z), h(X, W)\rangle-\langle h(X, Z), h(Y, W)\rangle \tag{2.3}\\
\left(\bar{\nabla}_{X} h\right)(Y, Z) & =\left(\bar{\nabla}_{Y} h\right)(X, Z), \tag{2.4}
\end{align*}
$$

where R, R^{D} are the curvature tensors associated with connections ∇ and D, respectively, and $\bar{\nabla} h$ is defined by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

2.1. Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space $\mathbb{E}^{n+1}, \mathbf{S}$ its shape operator (i.e. Weingarten map) and x its position vector. We consider a local orthonormal frame field $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ of consisting of principal directions of M corresponding from the principal curvature k_{i} for $i=1,2, \ldots n$. Let the dual basis of this frame field be $\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{n}\right\}$. Then the first structural equation of Cartan is given by

$$
\begin{equation*}
d \theta_{i}=\sum_{i=1}^{n} \theta_{j} \wedge \omega_{i j}, \quad i, j=1,2, \ldots, n \tag{2.5}
\end{equation*}
$$

where $\omega_{i j}$ denotes the connection forms corresponding to the chosen frame field. We denote the Levi-Civita connection of M and \mathbb{E}^{n+1} by ∇ and $\widetilde{\nabla}$, respectively. Then, from the Codazzi equation (2.3), we have

$$
\begin{align*}
e_{i}\left(k_{j}\right) & =\omega_{i j}\left(e_{j}\right)\left(k_{i}-k_{j}\right), \tag{2.6}\\
\omega_{i j}\left(e_{l}\right)\left(k_{i}-k_{j}\right) & =\omega_{i l}\left(e_{j}\right)\left(k_{i}-k_{l}\right) \tag{2.7}
\end{align*}
$$

for distinct $i, j, l=1,2, \ldots, n$.
We put $s_{j}=\sigma_{j}\left(k_{1}, k_{2}, \ldots, k_{n}\right)$, where σ_{j} is the j-th elementary symmetric function given by

$$
\sigma_{j}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{1 \leq i_{1}<i_{2}<\ldots<i_{j} \leq n} a_{i_{1}} a_{i_{2}} \ldots a_{i_{j}} .
$$

We use the following notation

$$
r_{i}^{j}=\sigma_{j}\left(k_{1}, k_{2}, \ldots, k_{i-1}, k_{i+1}, k_{i+2}, \ldots, k_{n}\right)
$$

By the definition, we have $r_{i}^{0}=1$ and $s_{n+1}=s_{n+2}=\cdots=0$. We call the function s_{k} as the k-th mean curvature of M. We would like to note that functions $H=\frac{1}{n} s_{1}$ and $K=s_{n}$ are called the mean curvature and the Gauss-Kronecker curvature of M, respectively. In particular, M is said to be the j-minimal if $s_{j} \equiv 0$ on M.

GÜLER et al./Turk J Math

In \mathbb{E}^{n+1}, to find the i-th curvature formulas \mathfrak{C}_{i} (Curvature formulas sometimes are represented as the mean curvature H_{i}, and sometimes as the Gaussian curvature K_{i} by different writers, such as [1] and [39]. We will call it just the i-th curvature \mathfrak{C}_{i} in this paper.), where $i=0, \ldots, n$, firstly, we use the characteristic polynomial of \mathbf{S} :

$$
\begin{equation*}
P_{\mathbf{S}}(\lambda)=0=\operatorname{det}\left(\mathbf{S}-\lambda \mathcal{I}_{n}\right)=\sum_{k=0}^{n}(-1)^{k} s_{k} \lambda^{n-k} \tag{2.8}
\end{equation*}
$$

where $i=0, \ldots, n, \mathcal{I}_{n}$ denotes the identity matrix of order n. Then, we get curvature formulas $\binom{n}{i} \mathfrak{C}_{i}=s_{i}$. That is, $\binom{n}{0} \mathfrak{C}_{0}=s_{0}=1$ (by definition), $\binom{n}{1} \mathfrak{C}_{1}=s_{1}, \ldots,\binom{n}{n} \mathfrak{C}_{n}=s_{n}=K$.

For a Euclidean submanifold $x: M \longrightarrow \mathbb{E}^{m}$, the immersion (M, x) is called finite type, if x can be expressed as a finite sum of eigenfunctions of the Laplacian Δ of (M, x), i.e. $x=x_{0}+\sum_{i=1}^{k} x_{i}$, where x_{0} is a constant map, x_{1}, \ldots, x_{k} nonconstant maps, and $\Delta x_{i}=\lambda_{i} x_{i}, \lambda_{i} \in \mathbb{R}, i=1, \ldots, k$. If λ_{i} are different, M is called k-type. See [14] for details.

Let $\mathbf{x}=\mathbf{x}(u, v, w)$ be an isometric immersion from $M^{3} \subset \mathbb{E}^{3}$ to \mathbb{E}^{4}. The triple vector product of $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right), \vec{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ of \mathbb{E}^{4} is defined by:

$$
\vec{x} \times \vec{y} \times \vec{z}=\operatorname{det}\left(\begin{array}{cccc}
e_{1} & e_{2} & e_{3} & e_{4} \\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right)
$$

For a hypersurface \mathbf{x} in 4 -space, we see $\left(g_{i j}\right)_{3 \times 3},\left(h_{i j}\right)_{3 \times 3}$, where $\left(g_{i j}\right)$ and $\left(h_{i j}\right)$ are the first, and the second fundamental form matrices, respectively, and $g_{11}=\mathbf{x}_{u} \cdot \mathbf{x}_{u}, g_{12}=\mathbf{x}_{u} \cdot \mathbf{x}_{v}, g_{22}=\mathbf{x}_{v} \cdot \mathbf{x}_{v}, g_{13}=\mathbf{x}_{u} \cdot \mathbf{x}_{v}$, $g_{23}=\mathbf{x}_{v} \cdot \mathbf{x}_{w}, g_{33}=\mathbf{x}_{w} \cdot \mathbf{x}_{w}, h_{11}=\mathbf{x}_{u u} \cdot e, h_{12}=\mathbf{x}_{u v} \cdot e, h_{22}=\mathbf{x}_{v v} \cdot e, h_{13}=\mathbf{x}_{u w} \cdot e, h_{23}=\mathbf{x}_{v w} \cdot e$, $h_{33}=\mathbf{x}_{w w} \cdot e$. Here,

$$
\begin{equation*}
e=\frac{\mathbf{x}_{u} \times \mathbf{x}_{v} \times \mathbf{x}_{w}}{\left\|\mathbf{x}_{u} \times \mathbf{x}_{v} \times \mathbf{x}_{w}\right\|} \tag{2.9}
\end{equation*}
$$

is the unit normal (i.e. the Gauss map) of the hypersurface \mathbf{x}.
The product matrices $\left(g_{i j}\right)^{-1} \cdot\left(h_{i j}\right)$ gives the matrix of the shape operator \mathbf{S} of the hypersurface \mathbf{x} in 4 -space. See [31-33] for details.

3. i-th curvatures

In \mathbb{E}^{4}, to compute the i-th mean curvature formula \mathfrak{C}_{i}, where $i=0,1,2,3$, we use the characteristic polynomial $P_{\mathbf{S}}(\lambda)=a \lambda^{3}+b \lambda^{2}+c \lambda+d=0:$

$$
P_{\mathbf{S}}(\lambda)=\operatorname{det}\left(\mathbf{S}-\lambda I_{3}\right)=0
$$

Then, obtain $\mathfrak{C}_{0}=1$ (by definition), $\binom{3}{1} \mathfrak{C}_{1}=\binom{3}{1} H=-\frac{b}{a},\binom{3}{2} \mathfrak{C}_{2}=\frac{c}{a},\binom{3}{3} \mathfrak{C}_{3}=K=-\frac{d}{a}$.
Therefore, we find i-th curvature folmulas depends on the coefficients of the first and second fundamental forms in 4-space.

Theorem 3.1 Any hypersurface \mathbf{x} in \mathbb{E}^{4} has the following curvature formulas, $\mathfrak{C}_{0}=1$ (by definition),

$$
\begin{align*}
& \mathfrak{C}_{1}=\frac{\left\{\begin{array}{c}
\left(g_{11} h_{22}+g_{22} h_{11}-2 g_{12} h_{12}\right) g_{33}+\left(g_{11} g_{22}-g_{12}^{2}\right) h_{33}-g_{23}^{2} h_{11}-g_{13}^{2} h_{22} \\
-2\left(g_{13} h_{13} g_{22}-g_{23} h_{13} g_{12}-g_{13} h_{23} g_{12}+g_{11} g_{23} h_{23}-g_{13} g_{23} h_{12}\right)
\end{array}\right\}}{3\left[\left(g_{11} g_{22}-g_{12}^{2}\right) g_{33}-g_{11} g_{23}^{2}+2 g_{12} g_{13} g_{23}-g_{22} g_{13}^{2}\right]}, \tag{3.1}\\
& \mathfrak{C}_{2}= \tag{3.2}\\
& \mathfrak{C}_{3}=\frac{\left\{\begin{array}{c}
\left(g_{11} h_{22}+g_{22} h_{11}-2 g_{12} h_{12}\right) h_{33}+\left(h_{11} h_{22}-g_{12}^{2}\right) g_{33}-g_{11} h_{23}^{2}-g_{22} h_{13}^{2} \\
-2\left(g_{13} h_{13} h_{22}-g_{23} h_{13} h_{12}-g_{13} h_{23} h_{12}+g_{23} h_{23} h_{11}-h_{13} h_{23} g_{12}\right)
\end{array}\right\}}{3\left[\left(g_{11} g_{22}-g_{12}^{2}\right) g_{33}-g_{11} g_{23}^{2}+2 g_{12} g_{13} g_{23}-g_{22} g_{13}^{2}\right]}, \tag{3.3}\\
& \left(h_{11} h_{22}-h_{12}^{2}\right) h_{33}-h_{11} h_{23}^{2}+2 h_{12} h_{13} h_{23}-h_{22} h_{13}^{2} \\
& \left(g_{11} g_{22}-g_{12}^{2}\right) g_{33}-g_{11} g_{23}^{2}+2 g_{12} g_{13} g_{23}-g_{22} g_{13}^{2}
\end{align*},
$$

See [29] for details.

4. Birotational hypersurface

In this section, we define the rotational hypersurface, then find its differential geometric properties in Euclidean 4 -space \mathbb{E}^{4}. We would like to note that the definition of the rotational hypersurfaces in Riemannian space forms were defined in [22]. A rotational hypersurface $M \subset \mathbb{E}^{n+1}$ generated by a curve γ around an axis γ that does not meet γ is obtained by taking the orbit of γ under those orthogonal transformations of \mathbb{E}^{n+1} that leaves \mathfrak{r} pointwise fixed (See [22, Remark 2.3]).

We use curve γ as $(\mathbf{f}(u), 0, \mathbf{g}(u), 0)$ with the following rotation matrix

$$
\left(\begin{array}{cccc}
\cos v & -\sin v & 0 & 0 \\
\sin v & \cos v & 0 & 0 \\
0 & 0 & \cos w & -\sin w \\
0 & 0 & \sin w & \cos w
\end{array}\right)
$$

and give the following definition:
Definition 4.1 A birotational hypersurface in \mathbb{E}^{4} is defined by

$$
\begin{equation*}
\mathbf{x}(u, v, w)=(\mathbf{f}(u) \cos v, \mathbf{f}(u) \sin v, \mathbf{g}(u) \cos w, \mathbf{g}(u) \sin w) \tag{4.1}
\end{equation*}
$$

where \mathbf{f}, \mathbf{g} are differentiable functions, and $0 \leq v, w \leq 2 \pi$.
Remark 4.2 While $\mathbf{f}(u)=\mathbf{g}(u)=1$ in (4.1), we obtain the Clifford torus in \mathbb{E}^{4}. See [2, 48] for details. Moreover, when $v=w$ in (4.1), we get the tensor product surface in \mathbb{E}^{4}. See [5, 43] for details.

Considering the following first order derivative of (4.1) with respect to u, v, w, respectively,

$$
\mathbf{x}_{u}=\left(\begin{array}{c}
\mathbf{f}^{\prime} \cos v \\
\mathbf{f}^{\prime} \sin v \\
\mathbf{g}^{\prime} \cos w \\
\mathbf{g}^{\prime} \sin w
\end{array}\right), \mathbf{x}_{v}=\left(\begin{array}{c}
-\mathbf{f} \sin v \\
\mathbf{f} \cos v \\
0 \\
0
\end{array}\right), \mathbf{x}_{w}=\left(\begin{array}{c}
0 \\
0 \\
-\mathbf{g} \sin w \\
\mathbf{g} \cos w
\end{array}\right)
$$

we find the following first quantities of (4.1):

$$
\begin{equation*}
\left(g_{i j}\right)=\operatorname{diag}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}, \mathbf{f}^{2}, \mathbf{g}^{2}\right) \tag{4.2}
\end{equation*}
$$

GÜLER et al./Turk J Math

where \mathbf{f}^{\prime} and \mathbf{g}^{\prime} denote the first order derivative of \mathbf{f} and \mathbf{g} respect to u, respectively. Here,

$$
g=\operatorname{det}\left(g_{i j}\right)=\mathbf{f}^{2} \mathbf{g}^{2}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)
$$

Using (2.9) , we get the following Gauss map of the birotational hypersurface (4.1):

$$
\begin{equation*}
e=\frac{1}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}}\left(-\mathbf{g}^{\prime} \cos v,-\mathbf{g}^{\prime} \sin v, \mathbf{f}^{\prime} \cos w, \mathbf{f}^{\prime} \sin w\right) \tag{4.3}
\end{equation*}
$$

With the help of the second differentials of (4.1) with respect to u, v, w, and the Gauss map (4.3) of the birotational hypersurface (4.1), we have the following second quantities:

$$
\begin{equation*}
\left(h_{i j}\right)=\operatorname{diag}\left(\frac{\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}}, \frac{\mathbf{f g}^{\prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}},-\frac{\mathbf{g f}^{\prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}}\right) \tag{4.4}
\end{equation*}
$$

where $\mathbf{f}^{\prime \prime}$ and $\mathbf{g}^{\prime \prime}$ denote the second order derivative of \mathbf{f} and \mathbf{g} respect to u, respectively. So, we get

$$
h=\operatorname{det}\left(h_{i j}\right)=-\frac{\mathbf{f g f}^{\prime} \mathbf{g}^{\prime}\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{f}^{\prime \prime} \mathbf{g}^{\prime}\right)}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{3 / 2}} .
$$

We calculate the shape operator matrix of the birotational hypersurface (4.1), by using (4.2) and (4.4), then, obtain the following

$$
\mathbf{S}=\operatorname{diag}\left(\frac{\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}}{\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{3 / 2}}, \frac{\mathbf{g}^{\prime}}{\mathbf{f}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}},-\frac{\mathbf{f}^{\prime}}{\mathbf{g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}}\right)
$$

Finally, by using (3.1), (3.2), and (3.3), with (4.2), (4.4), respectively, we find the following curvatures of the birotational hypersurface (4.1):

Corollary 4.3 Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). The \mathbf{x} has the following (mean) 1-curvature

$$
\mathfrak{C}_{1}=\frac{\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}\right) \mathbf{f g}-\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)\left(\mathbf{f f}^{\prime}-\mathbf{g g}^{\prime}\right)}{3 \mathbf{f g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{3 / 2}}
$$

Corollary 4.4 Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). The \mathbf{x} has the following 2-curvature

$$
\mathfrak{C}_{2}=\frac{\left(\mathbf{f f}^{\prime}-\mathbf{g g}^{\prime}\right)\left(\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}-\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}\right)-\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right) \mathbf{f}^{\prime} \mathbf{g}^{\prime}}{3 \mathbf{f g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{2}}
$$

Corollary 4.5 Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). The \mathbf{x} has the following (Gaussian) 3-curvature

$$
\mathfrak{C}_{3}=-\frac{\mathbf{f}^{\prime} \mathbf{g}^{\prime}\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime}\right)}{\mathbf{f g}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{5 / 2}}
$$

Example 4.6 Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of \mathbf{x} is parametrized by the arc length, and $\mathbf{f}(u)=\cos u, \mathbf{g}(u)=\sin u$, the birotational hypersurface has the following curvatures

$$
\begin{aligned}
& \mathfrak{C}_{1}=1, \text { i.e. } \mathbf{x} \text { has positive } C M C \\
& \mathfrak{C}_{2}=1, \text { i.e. } \mathbf{x} \text { has positive contant 2-curvature, } \\
& \mathfrak{C}_{3}=1, \text { i.e. } \mathbf{x} \text { has positive } C G C
\end{aligned}
$$

Example 4.7 Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of \mathbf{x} is parametrized by $\mathbf{f}(u)=\mathbf{g}(u)=\frac{u}{\sqrt{2}}$, the birotational hypersurface has the following curvatures

$$
\begin{aligned}
& \mathfrak{C}_{1}=0 \text {, i.e. } \mathbf{x} \text { is } 1 \text {-minimal, } \\
& \mathfrak{C}_{2}=-\frac{1}{3 u^{2}}, \text { i.e. } \mathbf{x} \text { has negative 2-curvature, } \\
& \mathfrak{C}_{3}=0 \text {, i.e. } \mathbf{x} \text { is 3-minimal. }
\end{aligned}
$$

5. Birotational hypersurface satisfying $\Delta^{I I} \mathbf{x}=\mathcal{A} \mathbf{x}$

In this section, we give the second Laplace-Beltrami operator of a smooth function. Therefore, we calculate the second Laplace-Beltrami operator of the birotational hypersurface.

The inverse of the matrix $I I$, i.e.

$$
\left(h_{i j}\right)=\left(\begin{array}{ccc}
h_{11} & h_{12} & h_{13} \\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right)
$$

is given by

$$
\frac{1}{h}\left(\begin{array}{ccc}
h_{22} h_{33}-h_{23} h_{32} & -\left(h_{12} h_{33}-h_{13} h_{32}\right) & h_{12} h_{23}-h_{13} h_{22} \\
-\left(h_{21} h_{33}-h_{31} h_{23}\right) & h_{11} h_{33}-h_{13} h_{31} & -\left(h_{11} h_{23}-h_{21} h_{13}\right) \\
h_{21} h_{32}-h_{22} h_{31} & -\left(h_{11} h_{32}-h_{12} h_{31}\right) & h_{11} h_{22}-h_{12} h_{21}
\end{array}\right)
$$

where

$$
\begin{aligned}
h & =\operatorname{det}\left(h_{i j}\right) \\
& =h_{11} h_{22} h_{33}-h_{11} h_{23} h_{32}+h_{12} h_{31} h_{23}-h_{12} h_{21} h_{33}+h_{21} h_{13} h_{32}-h_{13} h_{22} h_{31}
\end{aligned}
$$

Definition 5.1 The second Laplace-Beltrami operator of a smooth function $\varphi=\left.\varphi\left(x^{1}, x^{2}, x^{3}\right)\right|_{\mathbf{D}}\left(\mathbf{D} \subset \mathbb{R}^{3}\right)$ of class C^{3} with respect to the second fundamental form of a hypersurface \mathbf{x} is the operator $\Delta^{I I}$ defined by

$$
\begin{equation*}
\Delta^{I I} \varphi=\frac{1}{h^{1 / 2}} \sum_{i, j=1}^{3} \frac{\partial}{\partial x^{i}}\left(h^{1 / 2} h^{i j} \frac{\partial \varphi}{\partial x^{j}}\right) \tag{5.1}
\end{equation*}
$$

where $\left(h^{i j}\right)=\left(h_{k l}\right)^{-1}$ and $h=\operatorname{det}\left(h_{i j}\right)$.
We can write (5.1), clearly, as follows:

$$
\Delta^{I I} \varphi=\frac{1}{|h|^{1 / 2}}\left\{\begin{array}{c}
\frac{\partial}{\partial x^{1}}\left(|h|^{1 / 2} h^{11} \frac{\partial \varphi}{\partial x^{1}}\right)-\frac{\partial}{\partial x^{1}}\left(|h|^{1 / 2} h^{12} \frac{\partial \varphi}{\partial x^{2}}\right)+\frac{\partial}{\partial x^{1}}\left(|h|^{1 / 2} h^{13} \frac{\partial \varphi}{\partial x^{3}}\right) \\
-\frac{\partial}{\partial x^{2}}\left(|h|^{1 / 2} h^{21} \frac{\partial \varphi}{\partial x^{1}}\right)+\frac{\partial}{\partial x^{2}}\left(|h|^{1 / 2} h^{22} \frac{\partial \varphi}{\partial x^{2}}\right)-\frac{\partial}{\partial x^{2}}\left(|h|^{1 / 2} h^{23} \frac{\partial \varphi}{\partial x^{3}}\right) \\
+\frac{\partial}{\partial x^{3}}\left(|h|^{1 / 2} h^{31} \frac{\partial \varphi}{\partial x^{1}}\right)-\frac{\partial}{\partial x^{3}}\left(|h|^{1 / 2} h^{32} \frac{\partial \varphi}{\partial x^{2}}\right)+\frac{\partial}{\partial x^{3}}\left(|h|^{1 / 2} h^{33} \frac{\partial \varphi}{\partial x^{3}}\right)
\end{array}\right\} .
$$

For any rotational hypersurface $h_{i j}=0$, when $i \neq j$. Hence, we can rewrite the second Laplace-Beltrami operator:

$$
\Delta^{I I} \varphi=\frac{1}{|h|^{1 / 2}}\left\{\frac{\partial}{\partial x^{1}}\left(|h|^{1 / 2} h^{11} \frac{\partial \varphi}{\partial x^{1}}\right)+\frac{\partial}{\partial x^{2}}\left(|h|^{1 / 2} h^{22} \frac{\partial \varphi}{\partial x^{2}}\right)+\frac{\partial}{\partial x^{3}}\left(|h|^{1 / 2} h^{33} \frac{\partial \varphi}{\partial x^{3}}\right)\right\}
$$

Therefore, more clear form of the second Laplace-Beltrami operator of any rotational hypersurface $\mathbf{x}(u, v, w)$ is given by

$$
\begin{equation*}
\Delta^{I I} \mathbf{x}=\frac{1}{|h|^{1 / 2}}\left\{\frac{\partial}{\partial u}\left(\frac{h_{22} h_{33}}{|h|^{1 / 2}} \mathbf{x}_{u}\right)+\frac{\partial}{\partial v}\left(\frac{h_{11} h_{33}}{|h|^{1 / 2}} \mathbf{x}_{v}\right)+\frac{\partial}{\partial w}\left(\frac{h_{11} h_{22}}{|h|^{1 / 2}} \mathbf{x}_{w}\right)\right\} \tag{5.2}
\end{equation*}
$$

Differentiating $\frac{h_{22} h_{33}}{|h|^{1 / 2}} \mathbf{x}_{u}, \frac{h_{11} h_{33}}{|h|^{1 / 2}} \mathbf{x}_{v}, \frac{h_{11} h_{22}}{|h|^{1 / 2}} \mathbf{x}_{w}$, with respect to u, v, w, respectively, and substituting them into (5.2), we get the following.

Theorem 5.2 The second Laplace-Beltrami operator of the birotational hypersurface (4.1) is given by

$$
\Delta^{I I} \mathbf{x}=\left(\begin{array}{c}
\Delta^{I I} \mathbf{x}_{1} \\
\Delta^{I I} \mathbf{x}_{2} \\
\Delta^{I I} \mathbf{x}_{3} \\
\Delta^{I I} \mathbf{x}_{4}
\end{array}\right)=\left(\begin{array}{c}
\mathfrak{f}(u) \cos v \\
\mathfrak{f}(u) \sin v \\
\mathfrak{g}(u) \cos w \\
\mathfrak{g}(u) \sin w
\end{array}\right)
$$

where

$$
\begin{aligned}
& \mathfrak{f}(u)=\frac{\left\{\begin{array}{c}
-\mathbf{f g f ^ { \prime }} \mathbf{g}^{\prime 2}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right) \mathbf{f}^{\prime \prime \prime}+\mathbf{f g f}^{\prime 2} \mathbf{g}^{\prime}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right) \mathbf{g}^{\prime \prime \prime} \\
+\left(\begin{array}{c}
-\mathbf{f g g ^ { \prime }}\left(4 \mathbf{f}^{\prime 2}+5 \mathbf{g}^{\prime 2}\right) \mathbf{f}^{\prime \prime} \\
\mathbf{\mathbf { f g f } ^ { \prime } (\mathbf { f } ^ { \prime 2 } + 2 \mathbf { g } ^ { \prime 2 })} \mathbf{g}^{\prime \prime} \\
+\binom{\prime \prime}{-\mathbf{f}^{\prime} \mathbf{g}^{\prime}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)\left(\mathbf{f g}^{\prime}+\mathbf{g f}^{\prime}\right)}
\end{array}\right)\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{f}^{\prime \prime} \mathbf{g}^{\prime}\right)
\end{array}\right\},}{\mathbf{f g g}^{\prime}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{f}^{\prime \prime} \mathbf{g}^{\prime}\right)^{2}}, \\
& \mathfrak{g}(u)=\frac{\left\{\begin{array}{c}
-\mathbf{f g} \mathbf{f}^{\prime} \mathbf{g}^{\prime 2}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right) \mathbf{f}^{\prime \prime \prime}+\mathbf{f g f}^{\prime 2} \mathbf{g}^{\prime}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right) \mathbf{g}^{\prime \prime \prime} \\
+\left(\mathbf{f g g}^{\prime}\left(2 \mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right) \mathbf{f}^{\prime \prime}\right. \\
+\left(\begin{array}{c}
\mathbf{f g}^{\prime}\left(5 \mathbf{f}^{\prime 2}+4 \mathbf{g}^{\prime 2}\right) \\
\mathbf{g}^{\prime \prime} \\
-\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)\left(\mathbf{f} \mathbf{g}^{\prime}+\mathbf{g} \mathbf{f}^{\prime}\right)\right.
\end{array}\right)
\end{array}\right)\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{f}^{\prime \prime} \mathbf{g}^{\prime}\right)}{} \mathbf{f g f}^{\prime}\left(\mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)^{1 / 2}\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime}-\mathbf{f}^{\prime \prime} \mathbf{g}^{\prime}\right)^{2} \quad,
\end{aligned}
$$

and $\mathbf{f}^{\prime \prime \prime}$ and $\mathbf{g}^{\prime \prime \prime}$ denote the third order derivative of \mathbf{f} and \mathbf{g} respect to u, respectively.

6. Conclusion

Considering the findings in the previous section, we obtain the following results:

Corollary 6.1 Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). The birotational hypersurface \mathbf{x} satisfies $\Delta^{I I} \mathbf{x}=\mathcal{A} \mathbf{x}$, where

$$
\mathcal{A}=\operatorname{diag}\left(\frac{\mathfrak{f}}{\mathbf{f}} \mathcal{I}_{2}, \frac{\mathfrak{g}}{\mathbf{g}} \mathcal{I}_{2}\right)
$$

and $\mathcal{A} \in \operatorname{Mat}(4,4), \mathcal{I}_{2}$ is the identity matrix.

Corollary 6.2 Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of birotational hypersurface \mathbf{x} is parametrized by the arc length, the \mathbf{x} holds $\Delta^{I I} \mathbf{x}=\mathcal{B} \mathbf{x}$, where

$$
\mathcal{B}=\operatorname{diag}\left(\mathfrak{p} \mathcal{I}_{2}, \mathfrak{q} \mathcal{I}_{2}\right)
$$

and

$$
\begin{aligned}
& \mathfrak{p}(u)=\mathbf{f}^{\prime}\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime \prime}\right)-\left(4 \mathbf{f}^{\prime 2}+5 \mathbf{g}^{\prime 2}\right) \mathbf{f}^{\prime \prime}+\frac{\mathbf{f}^{\prime}\left(\mathbf{f}^{\prime 2}+2 \mathbf{g}^{\prime 2}\right)}{\mathbf{g}^{\prime}} \mathbf{g}^{\prime \prime}-\frac{\mathbf{f}^{\prime}\left(\mathbf{f g}^{\prime}+\mathbf{g} \mathbf{f}^{\prime}\right)}{\mathbf{f g}} \\
& \mathfrak{q}(u)=\mathbf{g}^{\prime}\left(\mathbf{f}^{\prime} \mathbf{g}^{\prime \prime \prime}-\mathbf{g}^{\prime} \mathbf{f}^{\prime \prime \prime}\right)+\frac{\mathbf{g}^{\prime}\left(2 \mathbf{f}^{\prime 2}+\mathbf{g}^{\prime 2}\right)}{\mathbf{f}^{\prime}} \mathbf{f}^{\prime \prime}-\left(5 \mathbf{f}^{\prime 2}+4 \mathbf{g}^{\prime 2}\right) \mathbf{g}^{\prime \prime}-\frac{\mathbf{g}^{\prime}\left(\mathbf{f g}^{\prime}+\mathbf{g f}^{\prime}\right)}{\mathbf{f g}}
\end{aligned}
$$

and $\mathcal{B} \in \operatorname{Mat}(4,4), \mathcal{I}_{2}$ is the identity matrix.

Corollary 6.3 Let $\mathbf{x}: M^{3} \longrightarrow \mathbb{E}^{4}$ be an immersion given by (4.1). When the curve γ of \mathbf{x} is parametrized $\mathbf{f}(u)=\cos u, \mathbf{g}(u)=\sin u$, the birotational hypersurface \mathbf{x} supplies $\Delta^{I I} \mathbf{x}=\mathcal{C} \mathbf{x}$, where

$$
\mathcal{C}=3 \operatorname{diag}\left(\cos u \mathcal{I}_{2}, \sin u \mathcal{I}_{2}\right),
$$

and $\mathcal{C} \in \operatorname{Mat}(4,4), \mathcal{I}_{2}$ is the identity matrix.

Example 6.4 Considering the hypersphere $S^{3}(r)=\left\{\xi \in \mathbb{E}^{4} \mid\langle\xi, \xi\rangle=r^{2}\right\}$ for radius $r>0$:

$$
\begin{equation*}
\xi(u, v, w)=(r \cos u \cos v, r \cos u \sin v, r \sin u \cos w, r \sin u \sin w), \tag{6.1}
\end{equation*}
$$

we have the shape operator $\mathbf{S}=\frac{1}{r} \mathcal{I}_{3}$, and find the following curvatures of it:

$$
\mathfrak{C}_{0}=1, \mathfrak{C}_{1}=H=\frac{1}{r}, \mathfrak{C}_{2}=\frac{1}{r^{2}}, \mathfrak{C}_{3}=K=\frac{1}{r^{3}}
$$

Here, $H \mathfrak{C}_{2}=K, H^{2}=\mathfrak{C}_{2}$, and $H^{3}=K$, i.e. the hypersurface (6.1) is the birotational umbilical hypersphere.

References

[1] Alias LJ, Gürbüz N. An extension of Takashi theorem for the linearized operators of the highest order mean curvatures. Geometriae Dedicata 2006; 121: 113-127.
[2] Aminov Y. The Geometry of Submanifolds. Gordon and Breach Sci. Pub., Amsterdam, 2001.
[3] Arslan K, Bayram BK, Bulca B., Kim YH, Murathan C, Öztürk G. Vranceanu surface in \mathbb{E}^{4} with pointwise 1-type Gauss map. Indian Journal of Pure and Applied Mathematics 2011; 42 (1): 41-51.
[4] Arslan K, Bayram BK, Bulca B, Öztürk G. Generalized rotation surfaces in \mathbb{E}^{4}. Results in Mathematics 2012; 61 (3): 315-327.
[5] Arslan K, Bulca B, Kılıç B, Kim YH, Murathan C, Öztürk G. Tensor product surfaces with pointwise 1-type Gauss map. Bulletin of the Korean Mathematical Society 2011; 48 (3): 601-609.
[6] Arslan K, Milousheva V. Meridian surfaces of elliptic or hyperbolic type with pointwise 1-type Gauss map in Minkowski 4-space. Taiwanese Journal of Mathematics 2016; 20 (2): 311-332.

GÜLER et al./Turk J Math

[7] Arslan K, Sütveren A, Bulca B. Rotational λ-hypersurfaces in Euclidean spaces. Creative Mathematics and Informatics 2021; 30 (1): 29-40.
[8] Arvanitoyeorgos A, Kaimakamis G, Magid M. Lorentz hypersurfaces in \mathbb{E}_{1}^{4} satisfying $\Delta H=\alpha H$. Illinois Journal of Mathematics 2009; 53 (2): 581-590.
[9] Barros M, Chen BY. Stationary 2-type surfaces in a hypersphere. Journal of the Mathematical Society of Japan 1987; 39 (4): 627-648.
[10] Barros M, Garay OJ. 2-type surfaces in S^{3}. Geometriae Dedicata 1987; 24 (3): 329-336.
[11] Bektaş B, Canfes EÖ, Dursun U. Classification of surfaces in a pseudo-sphere with 2-type pseudo-spherical Gauss map. Mathematische Nachrichten 2017; 290 (16): 2512-2523.
[12] Bektaş B, Canfes EÖ, Dursun U. Pseudo-spherical submanifolds with 1-type pseudospherical Gauss map. Results in Mathematics 2017; 71 (3): 867-887
[13] Chen BY. On submanifolds of finite type. Soochow Journal of Mathematics 1983; 9: 65-81.
[14] Chen BY. Total Mean Curvature and Submanifolds of Finite Type. World Scientific, Singapore, 1984.
[15] Chen BY. Finite Type submanifolds and Generalizations. University of Rome, 1985.
[16] Chen BY. Finite type submanifolds in pseudo-Euclidean spaces and applications. Kodai Mathematical Journal 1985; 8 (3): 358-374.
[17] Chen BY, Piccinni, P. Submanifolds with finite type Gauss map. Bulletin of the Australian Mathematical Society 1987; 35: 161-186.
[18] Cheng QM, Wan QR. Complete hypersurfaces of \mathbb{R}^{4} with constant mean curvature. Monatshefte für Mathematik. 1994; 118: 171-204.
[19] Cheng SY, Yau ST. Hypersurfaces with constant scalar curvature. Mathematische Annalen 1977; 225: 195-204.
[20] Choi M, Kim YH. Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map. Bulletin of the Korean Mathematical Society 2001; 38: 753-761.
[21] Dillen F, Pas J, Verstraelen L. On surfaces of finite type in Euclidean 3-space. Kodai Mathematical Journal 1990; 13: 10-21.
[22] Do Carmo MP, Dajczer M. Rotation hypersurfaces in spaces of constant curvature. Transactions of the American Mathematical Society 1983; 277: 685-709.
[23] Dursun U. Hypersurfaces with pointwise 1-type Gauss map. Taiwanese Journal of Mathematics 2007; 11 (5): 14071416.
[24] Dursun U, Turgay NC. Space-like surfaces in Minkowski space \mathbb{E}_{1}^{4} with pointwise 1-type Gauss map. Ukrainian Mathematical Journal 2019; 71 (1): 64-80.
[25] Ferrandez A, Garay OJ, Lucas P. On a certain class of conformally at Euclidean hypersurfaces. In: Global Analysis and Global Differential Geometry; Springer: Berlin, Germany, 1990, pp. 48-54.
[26] Ganchev G., Milousheva V. General rotational surfaces in the 4-dimensional Minkowski space. Turkish Journal of Mathematics 2014; 38: 883-895.
[27] Garay OJ. On a certain class of finite type surfaces of revolution. Kodai Mathematical Journal 1988; 11: 25-31.
[28] Garay OJ. An extension of Takahashi's theorem. Geometriae Dedicata 1990; 34: 105-112.
[29] Güler E. Fundamental form $I V$ and curvature formulas of the hypersphere. Malaya Journal of Matematik 2020; 8 (4): 2008-2011.
[30] Güler E. Rotational hypersurfaces satisfying $\Delta^{I} R=A R$ in the four-dimensional Euclidean space. Journal of Polytechnic 2021; 24 (2): 517-520.

GÜLER et al./Turk J Math

[31] Güler E, Hacısalihoğlu HH, Kim YH. The Gauss map and the third Laplace - Beltrami operator of the rotational hypersurface in 4 -space. Symmetry 2018; 10 (9): 1-12.
[32] Güler E, Magid M, Yaylı Y. Laplace-Beltrami operator of a helicoidal hypersurface in four-space. Journal of Geometry and Symmetry in Physics 2016; 41: 77-95.
[33] Güler E, Turgay NC. Cheng - Yau operator and Gauss map of rotational hypersurfaces in 4-space. Mediterranean Journal of Mathematics 2019; 16 (3): 1-16.
[34] Hasanis Th, Vlachos Th. Hypersurfaces in \mathbb{E}^{4} with harmonic mean curvature vector field. Mathematische Nachrichten 1995; 172: 145-169.
[35] Kahraman Aksoyak F, Yayl Y. Flat rotational surfaces with pointwise 1-type Gauss map in \mathbb{E}^{4}. Honam Mathematical Journal 2016; 38 (2): 305-316.
[36] Kahraman Aksoyak F, Yaylı Y. General rotational surfaces with pointwise 1-type Gauss map in pseudo-Euclidean space \mathbb{E}_{2}^{4}. Indian Journal of Pure and Applied Mathematics 2015; 46 (1): 107-118.
[37] Kim DS, Kim JR, Kim YH. Cheng - Yau operator and Gauss map of surfaces of revolution. Bulletin of the Malaysian Mathematical Sciences Society 2016; 39 (4): 1319-1327.
[38] Kim YH, Turgay NC. Surfaces in \mathbb{E}^{4} with L_{1}-pointwise 1-type Gauss map. Bulletin of the Korean Mathematical Society 2013; 50 (3): 935-949.
[39] Kühnel W. Differential Geometry: Curves-Surfaces-Manifolds. Third ed. Translated from the 2013 German ed. AMS, Providence, RI, 2015.
[40] Levi-Civita T. Famiglie di superficie isoparametriche nellordinario spacio euclideo. Atti della Accademia Nazionale dei Lince 1937; 26, 355-362.
[41] Moore CLE. Surfaces of rotation in a space of four dimensions. Annals of Mathematics Second Series 1919; 21: 81-93.
[42] Moore CLE. Rotation surfaces of constant curvature in space of four dimensions. American Mathematical Society 1920; 26: 454-460.
[43] Özkaldı S, Yaylı Y. Tensor product surfaces in \mathbb{R}^{4} and Lie groups. Bulletin of the Malaysian Mathematical Sciences Society 2010; 2 (1): 69-77.
[44] Senoussi B, Bekkar M. Helicoidal surfaces with $\Delta^{J} r=A r$ in 3-dimensional Euclidean space. Studia Universitatis Babeș-Bolyai Mathematica 2015; 60 (3): 437-448.
[45] Stamatakis S, Zoubi H. Surfaces of revolution satisfying $\Delta^{I I I} x=A x$. Journal for Geometry and Graphics 2010; 14 (2): 181-186.
[46] Takahashi T. Minimal immersions of Riemannian manifolds. Journal of the Mathematical Society of Japan 1966; 18: 380-385.
[47] Turgay NC. Some classifications of Lorentzian surfaces with finite type Gauss map in the Minkowski 4-space. Journal of the Australian Mathematical Society 2015; 99 (3): 415-427.
[48] Yoon DW. Some properties of the Clifford torus as rotation surfaces. ndian Journal of Pure and Applied Mathematics 2003; 34 (6): 907-915.

[^0]: *Correspondence: eguler@bartin.edu.tr
 2010 AMS Mathematics Subject Classification: Primary 53B25; Secondary 53C40

