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Abstract: We consider the birotational hypersurface x(u, v, w) with the second Laplace–Beltrami operator in the four
dimensional Euclidean space E4. We give the i -th curvatures of x . In addition, we compute the second Laplace–Beltrami
operator of the birotational hypersurface satisfying ∆IIx =Ax for some 4× 4 matrix A .

Key words: Euclidean spaces, four space, birotational hypersurface, Gauss map, i -th curvature, second Laplace–
Beltrami operator

1. Introduction
With Chen [13–16], the researches of the submanifolds of the finite type whose immersion into the Em (or Em

ν )
by using a finite number of eigenfunctions of their Laplacian have been examined for almost 50 years.

Takahashi [46] introduced that a connected Euclidean submanifold is of 1-type, iff it is either minimal in
Em or minimal in some hypersphere of Em . Submanifolds of the finite type closest in simplicity to the minimal
ones are the 2-type spherical submanifolds (where spherical means into a sphere). Some results of the 2-type
spherical closed submanifolds were studied by [9, 10, 14]. Garay [28] worked an extension of the Takahashi’s
theorem in Em . Cheng and Yau gave the hypersurfaces with constant scalar curvature; Chen and Piccinni [17]
considered the submanifolds with the finite type Gauss map in Em . Dursun [23] focused on the hypersurfaces
with pointwise 1-type Gauss map in En+1 .

In E3 ; Takahashi [46] gave that the minimal surfaces and spheres are the only surfaces satisfying the
condition ∆r = λr, λ ∈ R ; Ferrandez et al. [25] classified that the surfaces satisfying ∆H = AH , A ∈ Mat(3, 3)

are either minimal, or an open piece of sphere or of a right circular cylinder; Choi and Kim [20] found the minimal
helicoid in terms of the pointwise 1-type Gauss map of the first kind; Garay [27] worked on the certain class of
the finite type surfaces of revolution; Dillen et al. [21] focused that the only surfaces satisfying ∆r = Ar + B,

A ∈ Mat(3, 3), B ∈ Mat(3, 1) are the minimal surfaces, the spheres and the circular cylinders; Stamatakis and
Zoubi [45] obtained the surfaces of revolution satisfying ∆IIIx = Ax ; Senoussi and Bekkar [44] introduced the
helicoidal surfaces M2 which are of the finite type with respect to the fundamental forms I, II and III, i.e.
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their position vector field r(u, v) satisfies the condition ∆Jr = Ar, J = I, II, III, where A ∈ Mat(3, 3) ; Kim
et al. [37] gave the Cheng–Yau’s operator and the Gauss map of the surfaces of revolution.

In E4 ; Moore [41, 42] gave the general rotational surfaces; Hasanis and Vlachos [34] studied the hypersur-
faces with the harmonic mean curvature vector field; Cheng and Wan [18] considered the complete hypersurfaces
with CMC; Kim and Turgay [38] studied the surfaces with the L1 -pointwise 1 -type Gauss map; Arslan et al.
[3] introduced Vranceanu surface with pointwise 1 -type Gauss map; Arslan et al. [4] introduced generalized
rotational surfaces; Arslan et al. [5] obtained the tensor product surfaces with pointwise 1-type Gauss map;
Kahraman Aksoyak and Yaylı [35] considered the rotational surfaces with the pointwise 1-type Gauss map;
Güler et al. [32] worked the helicoidal hypersurfaces; Güler et al. [31] introduced the Gauss map and the third
Laplace–Beltrami operator of the rotational hypersurface; Güler and Turgay [33] obtained the Cheng–Yau’s
operator and the Gauss map of the rotational hypersurfaces; Güler [30] worked the rotational hypersurfaces
satisfying ∆IR = AR , where A ∈ Mat(4, 4). He [29] also examined the fundamental form IV and the curvature
formulas of the hypersphere; Arslan et al. [7] introduced the rotational λ -hypersurfaces in the Euclidean spaces.

In Minkowski 4-space E4
1 ; Ganchev and Milousheva [26] indicated analogue of surfaces of [41, 42];

Arvanitoyeorgos et al. [8] studied that if the mean curvature vector field of M3
1 satisfies the equation ∆H = αH

(α a constant), then M3
1 has CMC; Arslan and Milousheva [6] considered the meridian surfaces of elliptic or

hyperbolic type with pointwise 1-type Gauss map; Turgay [47] introduced some classifications of the Lorentzian
surfaces with the finite type Gauss map; Dursun and Turgay [24] gave the space-like surfaces in with the
pointwise 1-type Gauss map. Kahraman Aksoyak and Yaylı [36] worked the general rotational surfaces with
pointwise 1-type Gauss map in E4

2; Bektaş et al. [11] considered surfaces in a pseudo-sphere with 2-type pseudo-
spherical Gauss map in E5

2. They [12] also gave the pseudo-spherical submanifolds with 1-type pseudo-spherical
Gauss map.

We consider the birotational hypersurface with the second Laplace-Beltrami operator in the four dimen-
sional Euclidean space E4 . In Section 2, we indicate the fundamental notions of the four dimensional Euclidean
geometry. We obtain the curvature formulas of a hypersurface in E4 in Section 3. In Section 4, we give the
birotational hypersurface. Additionally, we examine the birotational hypersurface satisfying ∆IIx =Ax for
some 4× 4 matrix A in E4 in Section 5. Finally, we give some results in Section 6.

2. Preliminaries
In this section, giving some of basic facts and definitions, we describe notations used whole paper. Let Em

denote the Euclidean m -space with the canonical Euclidean metric tensor given by g̃ = ⟨ , ⟩ =
m∑
i=1

dx2
i , where

(x1, x2, . . . , xm) is a rectangular coordinate system in Em . Consider an m -dimensional Riemannian submanifold

of the space Em . We denote the Levi–Civita connections of Em and M by ∇̃ and ∇ , respectively. We shall
use the letters X,Y, Z,W (resp., ξ, η ) to denote the vectors fields tangent (resp., normal) to M . The Gauss
and Weingarten formulas are given, respectively, by

∇̃XY = ∇XY + h(X,Y ), (2.1)

∇̃Xξ = −Aξ(X) +DXξ, (2.2)
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where h , D and A are the second fundamental form, the normal connection and the shape operator of M ,
respectively.

For each ξ ∈ T⊥
p M , the shape operator Aξ is a symmetric endomorphism of the tangent space TpM at

p ∈ M . The shape operator and the second fundamental form are related by

⟨h(X,Y ), ξ⟩ = ⟨AξX,Y ⟩ .

The Gauss and Codazzi equations are given, respectively, by

⟨R(X,Y, )Z,W ⟩ = ⟨h(Y, Z), h(X,W )⟩ − ⟨h(X,Z), h(Y,W )⟩, (2.3)

(∇̄Xh)(Y, Z) = (∇̄Y h)(X,Z), (2.4)

where R, RD are the curvature tensors associated with connections ∇ and D , respectively, and ∇̄h is defined
by

(∇̄Xh)(Y, Z) = DXh(Y, Z)− h(∇XY, Z)− h(Y,∇XZ).

2.1. Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space En+1 , S its shape operator (i.e. Weingarten
map) and x its position vector. We consider a local orthonormal frame field {e1, e2, . . . , en} of consisting of
principal directions of M corresponding from the principal curvature ki for i = 1, 2, . . . n . Let the dual basis
of this frame field be {θ1, θ2, . . . , θn} . Then the first structural equation of Cartan is given by

dθi =

n∑
i=1

θj ∧ ωij , i, j = 1, 2, . . . , n, (2.5)

where ωij denotes the connection forms corresponding to the chosen frame field. We denote the Levi–Civita

connection of M and En+1 by ∇ and ∇̃ , respectively. Then, from the Codazzi equation (2.3), we have

ei(kj) = ωij(ej)(ki − kj), (2.6)

ωij(el)(ki − kj) = ωil(ej)(ki − kl) (2.7)

for distinct i, j, l = 1, 2, . . . , n .
We put sj = σj(k1, k2, . . . , kn) , where σj is the j -th elementary symmetric function given by

σj(a1, a2, . . . , an) =
∑

1≤i1<i2<...<ij≤n

ai1ai2 . . . aij .

We use the following notation

rji = σj(k1, k2, . . . , ki−1, ki+1, ki+2, . . . , kn).

By the definition, we have r0i = 1 and sn+1 = sn+2 = · · · = 0 . We call the function sk as the k -th mean
curvature of M . We would like to note that functions H = 1

ns1 and K = sn are called the mean curvature
and the Gauss–Kronecker curvature of M , respectively. In particular, M is said to be the j -minimal if sj ≡ 0

on M .
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In En+1, to find the i -th curvature formulas Ci (Curvature formulas sometimes are represented as the
mean curvature Hi, and sometimes as the Gaussian curvature Ki by different writers, such as [1] and [39].
We will call it just the i -th curvature Ci in this paper.), where i = 0, ..., n, firstly, we use the characteristic
polynomial of S :

PS(λ) = 0 = det(S− λIn) =
n∑

k=0

(−1)
k
skλ

n−k, (2.8)

where i = 0, ..., n, In denotes the identity matrix of order n. Then, we get curvature formulas
(
n
i

)
Ci = si .

That is,
(
n
0

)
C0 = s0 = 1 (by definition),

(
n
1

)
C1 = s1, . . . ,

(
n
n

)
Cn = sn = K.

For a Euclidean submanifold x : M −→ Em , the immersion (M,x) is called finite type, if x can be

expressed as a finite sum of eigenfunctions of the Laplacian ∆ of (M,x) , i.e. x = x0 +
∑k

i=1 xi , where x0 is
a constant map, x1, . . . , xk nonconstant maps, and ∆xi = λixi, λi ∈ R , i = 1, . . . , k . If λi are different, M is
called k-type. See [14] for details.

Let x = x(u, v, w) be an isometric immersion from M3 ⊂ E3 to E4 . The triple vector product of
−→x = (x1, x2, x3, x4),

−→y = (y1, y2, y3, y4),
−→z = (z1, z2, z3, z4) of E4 is defined by:

−→x ×−→y ×−→z = det


e1 e2 e3 e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

 .

For a hypersurface x in 4-space, we see (gij)3×3 , (hij)3×3 , where (gij) and (hij) are the first, and the second
fundamental form matrices, respectively, and g11 = xu · xu, g12 = xu · xv, g22 = xv · xv, g13 = xu · xv,

g23 = xv · xw, g33 = xw · xw, h11 = xuu · e, h12 = xuv · e, h22 = xvv · e, h13 = xuw · e, h23 = xvw · e,
h33 = xww · e. Here,

e =
xu × xv × xw

∥xu × xv × xw∥
(2.9)

is the unit normal (i.e. the Gauss map) of the hypersurface x .

The product matrices (gij)
−1·(hij) gives the matrix of the shape operator S of the hypersurface x in

4-space. See [31–33] for details.

3. i-th curvatures

In E4 , to compute the i -th mean curvature formula Ci , where i = 0, 1, 2, 3, we use the characteristic polynomial
PS(λ) = aλ3 + bλ2 + cλ+ d = 0 :

PS(λ) = det(S− λI3) = 0.

Then, obtain C0 = 1 (by definition),
(
3
1

)
C1 =

(
3
1

)
H = − b

a ,
(
3
2

)
C2 = c

a ,
(
3
3

)
C3 = K = − d

a .

Therefore, we find i -th curvature folmulas depends on the coefficients of the first and second fundamental
forms in 4-space.
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Theorem 3.1 Any hypersurface x in E4 has the following curvature formulas, C0 = 1 (by definition),

C1 =

{
(g11h22 + g22h11 − 2g12h12)g33 + (g11g22 − g212)h33 − g223h11 − g213h22

−2(g13h13g22 − g23h13g12 − g13h23g12 + g11g23h23 − g13g23h12)

}
3 [(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213]

, (3.1)

C2 =

{
(g11h22 + g22h11 − 2g12h12)h33 +

(
h11h22 − g212

)
g33 − g11h

2
23 − g22h

2
13

−2 (g13h13h22 − g23h13h12 − g13h23h12 + g23h23h11 − h13h23g12)

}
3 [(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213]

, (3.2)

C3 =

(
h11h22 − h2

12

)
h33 − h11h

2
23 + 2h12h13h23 − h22h

2
13

(g11g22 − g212)g33 − g11g223 + 2g12g13g23 − g22g213
. (3.3)

See [29] for details.

4. Birotational hypersurface
In this section, we define the rotational hypersurface, then find its differential geometric properties in Euclidean
4-space E4 . We would like to note that the definition of the rotational hypersurfaces in Riemannian space forms
were defined in [22]. A rotational hypersurface M ⊂ En+1 generated by a curve γ around an axis γ that does
not meet γ is obtained by taking the orbit of γ under those orthogonal transformations of En+1 that leaves r

pointwise fixed (See [22, Remark 2.3]).
We use curve γ as (f(u), 0,g(u), 0) with the following rotation matrix

cos v − sin v 0 0
sin v cos v 0 0
0 0 cosw − sinw
0 0 sinw cosw

 ,

and give the following definition:

Definition 4.1 A birotational hypersurface in E4 is defined by

x(u, v, w) = (f(u) cos v, f(u) sin v,g(u) cosw,g(u) sinw) , (4.1)

where f ,g are differentiable functions, and 0 ≤ v, w ≤ 2π.

Remark 4.2 While f(u) = g(u) = 1 in (4.1) , we obtain the Clifford torus in E4. See [2, 48] for details.
Moreover, when v = w in (4.1) , we get the tensor product surface in E4 . See [5, 43] for details.

Considering the following first order derivative of (4.1) with respect to u, v, w, respectively,

xu =


f ′ cos v
f ′ sin v
g′ cosw
g′ sinw

 , xv =


−f sin v
f cos v

0
0

 , xw =


0
0

−g sinw
g cosw

 ,

we find the following first quantities of (4.1) :

(gij) = diag
(
f ′2 + g′2, f2,g2

)
, (4.2)
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where f ′ and g′ denote the first order derivative of f and g respect to u , respectively. Here,

g = det (gij) = f2g2
(
f ′2 + g′2) .

Using (2.9) , we get the following Gauss map of the birotational hypersurface (4.1) :

e =
1

(f ′2 + g′2)
1/2

(−g′ cos v,−g′ sin v, f ′ cosw, f ′ sinw) . (4.3)

With the help of the second differentials of (4.1) with respect to u, v, w, and the Gauss map (4.3) of the
birotational hypersurface (4.1) , we have the following second quantities:

(hij) = diag

(
f ′g′′ − g′f ′′

(f ′2 + g′2)
1/2

,
fg′

(f ′2 + g′2)
1/2

,− gf ′

(f ′2 + g′2)
1/2

)
, (4.4)

where f ′′ and g′′ denote the second order derivative of f and g respect to u , respectively. So, we get

h = det (hij) = − fgf ′g′ (f ′g′′ − f ′′g′)

(f ′2 + g′2)
3/2

.

We calculate the shape operator matrix of the birotational hypersurface (4.1) , by using (4.2) and (4.4) , then,
obtain the following

S = diag

(
f ′g′′ − g′f ′′

(f ′2 + g′2)
3/2

,
g′

f (f ′2 + g′2)
1/2

,− f ′

g (f ′2 + g′2)
1/2

)
.

Finally, by using (3.1) , (3.2) , and (3.3) , with (4.2) , (4.4) , respectively, we find the following curvatures of the
birotational hypersurface (4.1) :

Corollary 4.3 Let x : M3 −→ E4 be an immersion given by (4.1) . The x has the following (mean)
1-curvature

C1 =
(f ′g′′ − g′f ′′) fg−

(
f ′2 + g′2) (ff ′ − gg′)

3fg (f ′2 + g′2)
3/2

.

Corollary 4.4 Let x : M3 −→ E4 be an immersion given by (4.1) . The x has the following 2-curvature

C2 =

(
ff ′ − gg′) (g′f ′′ − f ′g′′)−

(
f ′2 + g′2) f ′g′

3fg (f ′2 + g′2)
2 .

Corollary 4.5 Let x : M3 −→ E4 be an immersion given by (4.1) . The x has the following (Gaussian)
3-curvature

C3 = − f ′g′ (f ′g′′ − g′f ′′)

fg (f ′2 + g′2)
5/2

.
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Example 4.6 Let x : M3 −→ E4 be an immersion given by (4.1) . When the curve γ of x is parametrized
by the arc length, and f(u) = cosu , g(u) = sinu , the birotational hypersurface has the following curvatures

C1 = 1, i.e. x has positive CMC,
C2 = 1, i.e. x has positive contant 2-curvature,
C3 = 1, i.e. x has positive CGC.

Example 4.7 Let x : M3 −→ E4 be an immersion given by (4.1) . When the curve γ of x is parametrized
by f(u) = g(u) = u√

2
, the birotational hypersurface has the following curvatures

C1 = 0, i.e. x is 1-minimal,

C2 = − 1

3u2
, i.e. x has negative 2-curvature,

C3 = 0, i.e. x is 3-minimal.

5. Birotational hypersurface satisfying ∆IIx =Ax

In this section, we give the second Laplace–Beltrami operator of a smooth function. Therefore, we calculate the
second Laplace–Beltrami operator of the birotational hypersurface.

The inverse of the matrix II, i.e.

(hij) =

 h11 h12 h13

h21 h22 h23

h31 h32 h33


is given by

1

h

 h22h33 − h23h32 − (h12h33 − h13h32) h12h23 − h13h22

− (h21h33 − h31h23) h11h33 − h13h31 − (h11h23 − h21h13)
h21h32 − h22h31 − (h11h32 − h12h31) h11h22 − h12h21

 ,

where

h = det (hij)

= h11h22h33 − h11h23h32 + h12h31h23 − h12h21h33 + h21h13h32 − h13h22h31.

Definition 5.1 The second Laplace−Beltrami operator of a smooth function φ = φ(x1, x2, x3) |D (D ⊂ R3)

of class C3 with respect to the second fundamental form of a hypersurface x is the operator ∆II defined by

∆IIφ =
1

h1/2

3∑
i,j=1

∂

∂xi

(
h1/2hij ∂φ

∂xj

)
, (5.1)

where
(
hij
)
= (hkl)

−1 and h = det (hij) .

We can write (5.1) , clearly, as follows:

∆IIφ =
1

|h|1/2


∂

∂x1

(
|h|1/2 h11 ∂φ

∂x1

)
− ∂

∂x1

(
|h|1/2 h12 ∂φ

∂x2

)
+ ∂

∂x1

(
|h|1/2 h13 ∂φ

∂x3

)
− ∂

∂x2

(
|h|1/2 h21 ∂φ

∂x1

)
+ ∂

∂x2

(
|h|1/2 h22 ∂φ

∂x2

)
− ∂

∂x2

(
|h|1/2 h23 ∂φ

∂x3

)
+ ∂

∂x3

(
|h|1/2 h31 ∂φ

∂x1

)
− ∂

∂x3

(
|h|1/2 h32 ∂φ

∂x2

)
+ ∂

∂x3

(
|h|1/2 h33 ∂φ

∂x3

)
 .
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For any rotational hypersurface hij = 0, when i ̸= j. Hence, we can rewrite the second Laplace–Beltrami
operator:

∆IIφ =
1

|h|1/2

{
∂

∂x1

(
|h|1/2 h11 ∂φ

∂x1

)
+

∂

∂x2

(
|h|1/2 h22 ∂φ

∂x2

)
+

∂

∂x3

(
|h|1/2 h33 ∂φ

∂x3

)}
.

Therefore, more clear form of the second Laplace–Beltrami operator of any rotational hypersurface x(u, v, w)

is given by

∆IIx =
1

|h|1/2

{
∂

∂u

(
h22h33

|h|1/2
xu

)
+

∂

∂v

(
h11h33

|h|1/2
xv

)
+

∂

∂w

(
h11h22

|h|1/2
xw

)}
. (5.2)

Differentiating h22h33

|h|1/2 xu , h11h33

|h|1/2 xv , h11h22

|h|1/2 xw , with respect to u, v, w, respectively, and substituting them into

(5.2) , we get the following.

Theorem 5.2 The second Laplace–Beltrami operator of the birotational hypersurface (4.1) is given by

∆IIx =


∆IIx1

∆IIx2

∆IIx3

∆IIx4

 =


f(u) cos v
f(u) sin v
g(u) cosw
g(u) sinw

 ,

where

f(u) =


−fgf ′g′2 (f ′2 + g′2) f ′′′ + fgf ′2g′ (f ′2 + g′2)g′′′

+

 −fgg′ (4f ′2 + 5g′2) f ′′
+

(
fgf ′

(
f ′2 + 2g′2)g′′

−f ′g′ (f ′2 + g′2) (fg′ + gf ′
) )

 (f ′g′′ − f ′′g′)


fgg′ (f ′2 + g′2)

1/2
(f ′g′′ − f ′′g′)

2
,

g(u) =


−fgf ′g

′2 (
f ′2 + g′2) f ′′′ + fgf ′2g

′ (
f ′2 + g′2)g′′′

+

 + fgg′ (2f ′2 + g′2) f ′′
−
(

fgf ′
(
5f ′2 + 4g′2)g′′

+f ′g′ (f ′2 + g′2) (fg′ + gf ′
) )

 (f ′g′′ − f ′′g′)


fgf ′ (f ′2 + g′2)

1/2
(f ′g′′ − f ′′g′)

2
,

and f ′′′ and g′′′ denote the third order derivative of f and g respect to u , respectively.

6. Conclusion
Considering the findings in the previous section, we obtain the following results:

Corollary 6.1 Let x : M3 −→ E4 be an immersion given by (4.1) . The birotational hypersurface x satisfies
∆IIx = Ax, where

A = diag

(
f

f
I2,

g

g
I2
)
,

and A ∈ Mat (4, 4) , I2 is the identity matrix .
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Corollary 6.2 Let x : M3 −→ E4 be an immersion given by (4.1) . When the curve γ of birotational
hypersurface x is parametrized by the arc length, the x holds ∆IIx = Bx, where

B = diag (pI2, qI2) ,

and

p (u) = f ′ (f ′g′′′ − g′f ′′′)−
(
4f ′2 + 5g′2) f ′′ + f ′

(
f ′2 + 2g′2)

g′ g′′ −
f ′
(
fg′ + gf ′

)
fg

,

q (u) = g′
(
f ′g

′′′ − g′f ′′′
)
+

g′ (2f ′2 + g′2)
f ′

f ′′ −
(
5f ′2 + 4g′2)g′′ −

g′ (fg′ + gf ′
)

fg
,

and B ∈ Mat (4, 4) , I2 is the identity matrix .

Corollary 6.3 Let x : M3 −→ E4 be an immersion given by (4.1) . When the curve γ of x is parametrized
f(u) = cosu, g(u) = sinu, the birotational hypersurface x supplies ∆IIx = Cx, where

C = 3 diag (cosu I2, sinu I2) ,

and C ∈ Mat (4, 4) , I2 is the identity matrix .

Example 6.4 Considering the hypersphere S3(r) =
{
ξ ∈E4 | ⟨ξ, ξ⟩ = r2

}
for radius r > 0 :

ξ(u, v, w) = (r cosu cos v, r cosu sin v, r sinu cosw, r sinu sinw) , (6.1)

we have the shape operator S = 1
rI3, and find the following curvatures of it:

C0 = 1, C1 = H =
1

r
, C2 =

1

r2
, C3 = K =

1

r3
.

Here, HC2 = K, H2 = C2, and H3 = K , i.e. the hypersurface (6.1) is the birotational umbilical hypersphere.
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