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Abstract: Let K be an imaginary cyclic quartic number field whose 2 -class group is isomorphic to Z/2Z×Z/2Z , and
let K∗ denote the genus field of K . In this paper, we compute the rank of the 2 -class group of K∗

n the n -th layer of
the cyclotomic Z2 -extension of K∗ .
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1. Introduction
Let k be a number field. A cyclotomic Z2 -extension of k is an extension k∞/k defined by

k = k0 ⊂ k1 = k(
√
π2) ⊂ · · · ⊂ kn = k(

√
πn+1) ⊂ · · · ⊂ k∞ =

∪
n≥0

kn,

where π2 = 2 and πn+1 = 2+
√
πn for all n ≥ 2 , this sequence of fields is called the cyclotomic Iwasawa tower

of k . Note that the Galois group Gal(k∞/k) is isomorphic to Z2 , the additive group of 2 -adic integers, and
Gal(kn/k) ≃ Z/2nZ (see [16, p. 264]). For each integer n , denote by An the 2 -part of the class group of kn ,
the n -th layer of cyclotomic Z2 -extension of k . Let λ, µ ≥ 0 and ν be the Iwasawa invariants, then the order
of An is 2λn+µ2n+ν , for n large enough, by Iwasawa’s theorem [16, Theorem 13.13, p. 276].

Given a number field K , the computation of the rank of the 2 -class group of K is one of classical and
difficult problems in number theory, especially for the fields of higher degree. However, if K is a quadratic
extension of a number field k whose class number is odd, the ambiguous class number formula can be used to
compute this rank (see [7]). In the literature, there are many works who dealt with this problem, we cite for
example [1, 2] using an arithmetic method based on class field theory described in [13].

Let q and ℓ be two primes satisfying the following conditions:

q ≡ 3 (mod 8), ℓ ≡ 5 (mod 8), and
(
q

ℓ

)
= −1· (1.1)

Let K = Q
(√
−qε
√
ℓ

)
be an imaginary cyclic quartic field, where ε denotes the fundamental unit of Q(

√
ℓ) .

Then the genus field of K is K∗ = K(
√
q,
√
−1) , thus its n -th layer of the cyclotomic Z2 -extension is
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K∗
n = K(

√
q, ζ2n+2) . Brown and Parry [4, Theorem 3, p. 66] showed that the 2 -class group Cl2(K) of K

is isomorphic to Z/2Z × Z/2Z by using genus theory. In this work, we first determine the structure of the
2 -class group of K∗

1 . Next, we compute the rank of the 2 -class group of K∗
n , for n ≥ 3 , by using Iwasawa

theory. Finally, we deduce all possible cases of the rank, for n = 2 .

Notations
Let k be a number field and n be an integer ≥ 0 . The following notations will be used for the rest of this
paper:

▷ Qn = Q(
√
πn+1) : the maximal real subfield of Q(ζ2n+2) ;

▷ kn : the n -th layer of the Z2 -extension of k ;

▷ k∞ =
∪

n≥0 kn ;

▷ An : the 2 -part of the class group of kn ;

▷ A∞ = lim←−An ;

▷ τ : a topological generator of Gal(k∞/k) ;

▷ Λ = Z2JT K for T = τ − 1 ;

▷ µ(M), λ(M) : the Iwasawa invariants for a Λ -torsion module M ;

▷ µ(k) = µ(A∞) ;

▷ λ(k) = λ(A∞) ;

▷ λ−(k) = λ(A−
∞) (the definition of A−

∞ will be given later);

▷ h(k) : the class number of k ;

▷ h2(k) : the 2 -class number of k ;

▷ Ok : the ring of integers of k ;

▷ Ek : the unit group of k ;

▷ Wk : the group of roots of unity contained in k ;

▷ wk : the order of Wk ;

▷ k+ : the maximal real subfield of a CM-field k ;

▷ Qk = [Ek : WkEk+ ] : the Hasse’s unit index of a CM-field k ;

▷ NL/k : the relative norm for an extension L/k ;

▷ Cl2(k) : the 2 -part of the class group of k ;

▷ qk : the prime ideal of k above q ;
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▷

(
x

p

)
: the quadratic residue symbol for k ;

▷

(
x, y

p

)
: the Hilbert symbol for k ;

▷

(
a

p

)
: the quadratic residue (Legendre) symbol.

2. Some preliminary results in Iwasawa theory
In this section, we collect some results in Iwasawa theory that will be used in what follows.

Proposition 2.1 ([6], p. 3) Let n ≥ 2 be a positive integer. Then we have

(1) If p is a prime such that p ≡ 3 (mod 8) , then, p decomposes into the product of 2 prime ideals of Q(ζ2n+2)

while it is inert in Qn .

(2) If p is a prime such that p ≡ 7 (mod 16) , then, p decomposes into the product of 4 prime ideals of Q(ζ2n+2)

while it decomposes into the product of 2 prime ideals of Qn .

Recall that A+
n is the group of strongly ambiguous classes with respect to the extension kn/k

+
n , where k+n is

the totally real subfield of kn , and A−
n = An/A

+
n . Let A−

∞ denote the projective limit of A−
n . We have:

Theorem 2.2 ([15], Theorem 2.5, p. 374) Let k be a CM-field containing the fourth roots of unity. Then
there is no finite Λ-submodule in A−

∞ .

Lemma 2.3 ([8], Lemma 3.4) If the extension kn/k
+
n is unramified and h(k+n ) is odd, for all n ≥ 0 . Then

A−
∞ = A∞ .

Theorem 2.4 ([11], Theorem 3, p. 341) Let L/F a finite 2-extension of abelian CM-fields. Then we have

λ−(L)− δ(L) = [L∞ : F∞] · (λ−(F )− δ(F )) +
∑
β∤2

(eβ − 1)−
∑
β+∤2

(eβ+ − 1), (2.1)

where δ(k) takes the values 1 or 0 according to whether k∞ contains the fourth roots of unity or not, and eβ

(resp. eβ+) is the ramification index in L∞/F∞ (resp. L+
∞/F+

∞) of a finite prime β of L∞ (resp. β+ of
L+
∞) .

Theorem 2.5 ([5], Theorem 3.3, p. 8) Let k∞ be a Z2 -extension of a number field k and assume that any
prime of k lying above 2 is totally ramified in k∞/k . If µ(k) = 0 and A∞ is an elementary Λ-module, then
rank2(An) = λ(k) for all n ≥ λ(k) .

Proposition 2.6 ([16], Proposition 13.22, p. 284) Let k∞ be a Z2 -extension of a number field k and
assume that there exists only one prime of k lying above 2 and that this prime is totally ramified in k∞/k .
Then

2 ∤ h(k)⇐⇒ 2 ∤ h(kn) , for all n ≥ 0 .
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3. The 2-class group of K∗
1

In all this section, we assume that q and ℓ are two primes satisfying the conditions (1.1). This section is one
of the steps of the proof of Theorem 4.2, in which we shall determine the structure of the 2 -class group of
K∗

1 = K(
√
q, ζ8) of degree 32 over Q .

Proposition 3.1 ([2], Proposition 5.1, p. 270) Consider M = Q
(√

ε
√
ℓ,
√
−1

)
. Then the class number

h(M+) of M+ is odd. Moreover, QM the Hasse’s unit index of M equals 2 and h(M) is odd too.

Proposition 3.2 The class number of F = Q
(√

ε
√
ℓ,
√
q
)

is odd.

Proof Put L = Q(
√

ε
√
l) . So from Proposition 3.1, the class number of L is odd. Then, by [7, p. 25], the

2 -rank of class group Cl(F ) of F is given by the following formula:

rank2(Cl(F )) = t− 1− e ,

where t is the number of primes of L which ramify in F and the integer e is defined by 2e = [EL :

EL ∩ NF/L(F
×)] . There exists only one prime of L lying above q which ramifies in F (i.e. t = 1), because(

ε
√
ℓ

q

)
=

(
ℓ

q

)
= −1 where q is a prime ideal of Q(

√
ℓ) dividing q . Therefore rank2(Cl(F )) = −e must be

equal to 0 . So h(F ) is odd. 2

For the rest of this section, we need the following proposition:

Proposition 3.3 ([12], p. 355) Let K/k be a V4 -extension of CM-fields; let K ′ , K ′′ and K+ be its three
quadratic subfields. Then

h(K) =
QK

QK′QK′′
· wK

wK′wK′′
· h(K

′)h(K ′′)h(K+)

h(k)2
·

Lemma 3.4 The 2-class number of K = Q(
√
ℓ,
√
−2q) is equal to 4 .

Proof Consider Figure 1 below:

√
K = Q( `,

√
−2q)

√
K+ = Q( `) K′ = Q(

√
−2q)

Q

K′′ = Q(
√
−2q`)

Figure 1. Subextensions of K/Q .
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So K/Q is a V4 -extension of CM-fields, of quadratic subextensions K′ , K′′ and K+ . Then by Proposition
3.3, we have

h2(K) =
QK

QK′ ·QK′′
· wK

wK′ · wK′′
· h2(K′) · h2(K′′) · h2(K+)

h2(Q)2

=
1

1 · 1
· 2

2 · 2
· 2 · 4 · 1

1

= 4,

where h2(K′) = 2 (cf. Kaplan [9]), h2(K′′) = 4 and h2(K+) = 1 (cf. Kaplan [10]); and where QK = QK′ =

QK′′ = 1 (using [12, Theorem 1]), because K/K+ , K′/Q and K′′/Q are essentially ramified. 2

Lemma 3.5 The 2-class number of L = Q
(√

ε
√
ℓ,
√
−2q

)
is equal to 8 .

Proof Here, consider Figure 2 below:

L = Q
(√

ε
√
`,
√ )
−2q

(√
L+ = Q ε

√
`
)

L′ = Q
(√ √
−2qε `

) √
L′′ = Q( `,

√
−2q)

√
k = Q( `)

Figure 2. Subextensions of L/k .

So L/k is a V4 -extension of CM-fields, of quadratic subextensions L′ , L′′ and L+ . Then by Proposition
3.3, we have

h2(L) =
QL

QL′ ·QL′′
· wL

wL′ · wL′′
· h2(L′) · h2(L′′) · h2(L+)

h2(k)2

=
1

1 · 1
· 2

2 · 2
· 4 · 4 · 1

1

= 8,

where h2(L′) = 4 (cf. Brown and Parry [4]), h2(L′′) = 4 (by Lemma 3.4) and h2(L+) = 1 (by Proposition
3.1); and where QL = QL′ = QL′′ = 1 (using [12, Theorem 1]), because L/L+ , L′/k and L′′/k are essentially
ramified. 2

Lemma 3.6 The 2-class number of F = Q
(√

ε
√
ℓ,
√
−q,
√
2
)

is equal to 8 .

Proof Now, consider Figure 3 below:
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F = Q
(√

ε
√
`,
√ √
−q, 2

)

F+ = Q
(√

ε
√
`,
√

2
) (√

F′ = Q ε
√
`,
√ )
−q F′′ = Q

(√
ε
√
`,
√ )
−2q

L = Q
(√

ε
√
`
)

Figure 3. Subextensions of F/L .

So F/L is a V4 -extension of CM-fields, of quadratic subextensions F′ , F′′ and F+ . Then by Proposition
3.3, we have

h2(F) =
QF

QF′ ·QF′′
· wF

wF′ · wF′′
· h2(F′) · h2(F′′) · h2(F+)

h2(L)2

=
1

1 · 1
· wF

wF′ · 2
· 2 · 8 · 1

1

= 8,

where h2(F′) = 2 (cf. [3, Theorem 5.19]), h2(F′′) = 8 (by Lemma 3.5) and h2(F+) = 1 (cf. [8, Proposition
4.2]); and where QF = QF′ = QF′′ = 1 (using [12, Theorem 1]), because F/F+ , F′/L and F′′/L are essentially
ramified. Moreover, wF = wF′ and wF′′ = 2 . 2

Proposition 3.7 Let q be the prime ideal of F above q , then q is not principal in F .

Proof Keep the notations of the previous proof. Assume that q is principal in F , then there exists δ ∈ F
such that q = δOF , this implies that q2 = δ2OF = πOF where π ∈ F+ (because qF+ = πOF+ and qF+OF = q2 ),
therefore there exists ε′ a unit of F such that δ2 = ε′π . Since QF = 1 , we have two cases to discuss:
First case: If ε′ ∈ EF+ , then ε′π = (a+ b

√
−q)2 = a2− qb2+2ab

√
−q with a and b in F+ , thus a = 0 or b = 0

because ε′π ∈ F+ .

(1) If a = 0 , then ε′π = −qb2 , applying the norm in F+/L , we get NF+/L(ε
′)q = q2NF+/L(b)

2 , this yields that
β = qNF+/L(b)

2 where β denotes NF+/L(ε
′) . We know that β ∈ EL , then we have:

(a) If β ∈ {−1, 1} , then √±q ∈ L which is absurd.

(b) If β = ε , then εq is a square in L , this means that there exist x, y ∈ Q(
√
ℓ) such that εq =

(x + y
√

ε
√
ℓ)2 = x2 + y2ε

√
ℓ + 2xy

√
ε
√
ℓ , therefore x = 0 or y = 0 because εq ∈ Q(

√
ℓ) . If x = 0 ,

then q = y2
√
ℓ , applying the norm in Q(

√
ℓ)/Q , we get

√
−ℓ ∈ Q which is absurd. Similarly, if y = 0 ,

we find that
√
−1 ∈ Q which is absurd.

(c) If β /∈ {−1, 1, ε} , by applying the norm in L/Q(
√
ℓ) , we get

√
−1 ∈ Q(

√
ℓ) which is absurd.
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(2) If b = 0 , with the same argument as for a = 0 , we find a contradiction.

Second case: If ε′ ∈ WF and q = 3 , (i.e. ε′ = j where j is a root of the polynomial X2 + X + 1), we have
jπ = δ2 , applying the norm in F/F′ , we find that j2q = NF/F′(δ)2 , this implies that √q ∈ F′ which is absurd.

2

Proposition 3.8 The class number of Hα = Q
(√

ε
√
ℓ,
√
α,
√
2
)

is odd, where α ∈ {−1, q} .

Proof Put Hα = Q
(√

ε
√
ℓ,
√
α
)

. We first need to count the number of primes of Hα above 2 ramifying in

Hα . For this, let 2L be a unique prime ideal of L = Q
(√

ε
√
ℓ
)

lying above 2 , then 2L remains inert in Hα .

In fact, we can write Hα = L
(√

αε
√
ℓ
)

and we find

(
αε
√
ℓ

2L

)
=

(
αε
√
ℓ

2Q(
√
ℓ)

)
=

(
αε
√
ℓ, 2

2Q(
√
ℓ)

)
=

(
NQ(

√
ℓ)/Q(αε

√
ℓ), 2

2

)
=

(
α2ℓ, 2

2

)
=

(
ℓ, 2

2

)
=

(
2

ℓ

)
(cf. [14, Lemma 2.27, p. 63])

= −1.

Moreover, the prime ideal 2Hα of Hα dividing 2L ramifies in Hα which is the first layer of the cyclotomic
Z2 -extension of Hα , because 2L ramifies in L(

√
2) . So we conclude that there exists only one prime of Hα

lying above 2 which is totally ramified in Hα
∞ . On the other hand, Propositions 3.1 and 3.2 show that h(Hα)

is odd, thus h(Hα) is odd using Proposition 2.6. 2

Corollary 3.9 The class number of Hα
n is odd, for all n .

Proposition 3.10 The 2-class number of K∗
1 = K(

√
q, ζ8) is equal to 4 .

Proof Keep the previous notations. We can write K∗
1 = Q

(√
ε
√
ℓ,
√
q,
√
−1,
√
2
)

, so we can regard K∗
1/F+

as a V4 -extension of CM-fields, of quadratic subextensions F , H−1 and Hq . Then by Proposition 3.3, we have

h2(K
∗
1 ) =

QK∗
1

QF ·QH−1

·
wK∗

1

wF · wH−1

· h2(H−1) · h2(Hq) · h2(F)
h2(F+)2

=
2

1 · 2
·

wK∗
1

2 · wK∗
1

· 1 · 1 · 8
1

= 4.
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In fact; we have QF = 1 because F/F+ is essentially ramified, and QK∗
1

= QH−1 = 2 because K∗
1/Hq

and H−1/F+ are not essentially ramified and h2(Hq) = h2(F+) = 1 (using [12, Theorem 1]). Moreover,
wF ·wH−1 = 2 ·wK∗

1
, and we have h2(F) = 8 (by Lemma 3.6) and h2(H−1) = h2(Hq) = 1 (by Proposition 3.8).

2

Proposition 3.11 The 2-class group of K∗
1 is cyclic of order 4 .

Proof Let Q be the prime ideal of H−1 above q , then vQ(q) = 1 . Since K∗
1 = H−1(

√
−q) , so we have

(
−q, q
Q

)
=

(
−1, q
Q

)
·
(
q, q

Q

)
=

(
−1
Q

)vQ(q)

·
(
−1
Q

)
=

(
−1
Q

)2

= 1.

By genus theory, the ideal class of qK∗
1

is a square in K∗
1 , hence there exists an ideal I of K∗

1 such that
qK∗

1
∼ I2 , then the ideal class [I] is of order 4 . In fact, if I2 ∼ 1 then qK∗

1
∼ 1 , applying the norm in K∗

1/F ,
we get qF ∼ 1 , and this contradicts Proposition 3.7. Finally, we conclude that the 2 -class group of K∗

1 is cyclic
of order 4 generated by the ideal class [I] . 2

4. Main results
Let q and ℓ be two primes satisfying the conditions (1.1). Let An denote the 2 -class group of the n -th layer
of the cyclotomic Z2 -extension of the genus field K∗ = K(

√
q,
√
−1) . The main results of this paper are the

following:

Theorem 4.1 The Iwasawa module A∞ is isomorphic to Z3
2 .

Proof Let H and F denote Q
(√

ε
√
ℓ,
√
−q

)
and Q

(√
ε
√
ℓ,
√
−1

)
, respectively; and let L denote K∗

which coincides with Q
(√

ε
√
ℓ,
√
q,
√
−1

)
. Consider Figure 4 below:

L = Q
(√

ε
√
`,
√
q,
√
−1
)

L+ = Q
(√

ε
√
`,
√
q
)

H = Q
(√

ε
√
`,
√
−q
)

F = Q
(√

ε
√
`,
√ )
−1

(√
F+ = Q ε

√
`
)

Figure 4. Subextensions of L/F+ .
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By Corollary 3.9, the class number of Fn is odd, this implies that λ(F ) = 0 , therefore λ−(F ) = 0 . On
the other hand, we have q splits into 2 prime ideals of F . In fact, let q be the unique prime ideal of F+ lying
above q , so we have: (

−1
q

)
=

(
NF+/Q(

√
ℓ)(−1)

qQ(
√
ℓ)

)
= 1.

Since q ≡ 3 (mod 8) , by Proposition 2.1, we have q splits into 2 primes of Q(ζ16) and it is inert in Q2 =

Q(
√
π3) , then q splits into the product of 8 primes in F2 = Q

(√
ε
√
ℓ, ζ16

)
because it splits into 4 primes

in F+
2 = Q

(√
ε
√
ℓ,
√
π3

)
. Thus q splits into 8 primes in Fn = Q

(√
ε
√
ℓ, ζ2n+2

)
while it decomposes into 4

primes in F+
n = Q

(√
ε
√
ℓ,
√
πn+1

)
, for all n ≥ 2 . Note that [L∞ : F∞] = [L+

∞ : F+
∞] = 2 and eβ = eβ+ = 2 ,

then by Theorem 2.4, we have
λ−(L)− 1 = 2 · (0− 1) + 8− 4,

thus
λ−(L) = 3.

By Corollary 3.9, we have the class number of L+
n is odd, this means that λ(L+) = 0 , therefore λ+(L) =

λ(L+) = 0 . Then,
λ(L) = λ+(L) + λ−(L) = 3.

Since the extension Ln/L
+
n is unramified and h(L+

n ) is odd, for all n ≥ 0 , then by Lemma 2.3, A−
∞ = A∞ . By

Theorem 2.2 there is no finite Λ -submodule in A−
∞ , hence A∞ is a Λ -module without finite part. So,

A∞ ≃ Z3
2.

2

Theorem 4.2 The structure of An is given by:

An ≃



0 for n = 0,

Z/4Z for n = 1,

Z/2aZ× Z/2bZ or Z/2aZ× Z/2bZ× Z/2cZ for n = 2,

Z/2anZ× Z/2bnZ× Z/2cnZ for all n ≥ 3,

where {a, b, c, an, bn, cn} ⊂ N∗.

Proof Keep the notations we have introduced in the previous proof. By Theorem 4.1, we have

A∞ ≃ Zλ(L)
2 ≃

⊕
j

Λ/(gj(T )),

where each gj is distinguished and
∑

j deg gj = λ(L) , this shows that A∞ is an elementary Λ -module.
Moreover, we have L/Q is an abelian extension, i.e. µ(L) = 0 . Then, by Theorem 2.5,

rank2(An) = 3, for all n ≥ 3 ,
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this implies that
An ≃ Z/2anZ× Z/2bnZ× Z/2cnZ, for all n ≥ 3 .

Since the 2 -class group of K∗
1 is cyclic of order 4 by Proposition 3.11, then

A1 ≃ Z/4Z.

So we conclude all possible structures of A2 which are:

A2 ≃ Z/2aZ× Z/2bZ or A2 ≃ Z/2aZ× Z/2bZ× Z/2cZ.

Finally, we know that the class number of K∗ is odd by [3, Theorem 5.19], then

A0 ≃ 0.

2

The following example was computed using PARI/GP:

Example 4.3 Let K = Q
(√
−3ε
√
5
)

where ε =
1 +
√
5

2
. Since 5 ≡ 5 (mod 8) , 3 ≡ 3 (mod 8) and(

3

5

)
= −1 , we have

An ≃


0 for n = 0,

Z/4Z for n = 1,

Z/16Z× Z/8Z× Z/2Z for n = 2.

Moreover, A∞ ≃ Z3
2 where A∞ is attached to K∗ .
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