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Abstract: Let K be an imaginary cyclic quartic number field whose 2-class group is isomorphic to Z/2Z x Z/2Z, and
let K* denote the genus field of K. In this paper, we compute the rank of the 2-class group of K, the n-th layer of

the cyclotomic Zs-extension of K™.
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1. Introduction

Let k be a number field. A cyclotomic Zs-extension of k is an extension ko, /k defined by

k=koChky=k(/m) C - Chkp=k(/Tng1) C - C koo = Ukm

n>0

where w3 =2 and 7,41 = 2+ /7, for all n > 2, this sequence of fields is called the cyclotomic Iwasawa tower
of k. Note that the Galois group Gal(k./k) is isomorphic to Zsg, the additive group of 2-adic integers, and
Gal(ky,/k) = Z/2"Z (see [16, p. 264]). For each integer n, denote by A, the 2-part of the class group of k,,
the n-th layer of cyclotomic Zs-extension of k. Let A\, > 0 and v be the Iwasawa invariants, then the order
of A, is 2’ TH2"+¥ for n large enough, by Iwasawa’s theorem [16, Theorem 13.13, p. 276].

Given a number field K, the computation of the rank of the 2-class group of K is one of classical and
difficult problems in number theory, especially for the fields of higher degree. However, if K is a quadratic
extension of a number field & whose class number is odd, the ambiguous class number formula can be used to
compute this rank (see [7]). In the literature, there are many works who dealt with this problem, we cite for
example [1, 2] using an arithmetic method based on class field theory described in [13].

Let ¢ and ¢ be two primes satisfying the following conditions:

¢g=3 (mod38), {=5 (mod 8), and <Z> =-1 (1.1)

Let K =Q <\/ qE\/Z) be an imaginary cyclic quartic field, where € denotes the fundamental unit of @(\/@)

Then the genus field of K is K* = K(\/q,v/—1), thus its n-th layer of the cyclotomic Z;-extension is
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K} = K(,/q,{an+2). Brown and Parry [4, Theorem 3, p. 66] showed that the 2-class group Cly(K) of K
is isomorphic to Z/2Z x Z/27Z by using genus theory. In this work, we first determine the structure of the
2-class group of K. Next, we compute the rank of the 2-class group of K}, for n > 3, by using Iwasawa

theory. Finally, we deduce all possible cases of the rank, for n = 2.

Notations

Let k£ be a number field and n be an integer > 0. The following notations will be used for the rest of this
paper:

> Qn = Q(y/Tny1) : the maximal real subfield of Q((an+2);
> k,: the n-th layer of the Zs-extension of k;

> koo = Unzo kn;

> A,: the 2-part of the class group of k,;

> A = @An;

> 7: a topological generator of Gal(ks/k);

> A=7Zo[T] for T =7 —1;

> w(M),A(M): the Iwasawa invariants for a A-torsion module M ;

> A (k) = AM(AL) (the definition of A will be given later);
> h(k): the class number of k;

> ho(k): the 2-class number of k;

> Oj: the ring of integers of k;

> FEj: the unit group of k;

> Wy : the group of roots of unity contained in k;

> wg: the order of Wy ;

> k*: the maximal real subfield of a CM-field k;

> Qi = [Ek : WiEy+]: the Hasse’s unit index of a CM-field k;
> Npji: the relative norm for an extension L/k;

> Cly(k): the 2-part of the class group of k;

> qg: the prime ideal of k£ above g;
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> (i) : the quadratic residue symbol for k;

> (x;y) : the Hilbert symbol for k;
> <a> : the quadratic residue (Legendre) symbol.
b

2. Some preliminary results in Iwasawa theory

In this section, we collect some results in Iwasawa theory that will be used in what follows.

Proposition 2.1 ([6], p. 3) Let n > 2 be a positive integer. Then we have

(1) If p is a prime such that p =3 (mod 8), then, p decomposes into the product of 2 prime ideals of Q((an+2)

while it is inert in Q, .

(2) If p is a prime such that p =7 (mod 16), then, p decomposes into the product of 4 prime ideals of Q(Can+2)

while it decomposes into the product of 2 prime ideals of Q,, .

Recall that A} is the group of strongly ambiguous classes with respect to the extension k,/k;", where k" is

the totally real subfield of k,,, and A, = A, /Al . Let A denote the projective limit of A, . We have:

Theorem 2.2 ([15], Theorem 2.5, p. 374) Let k be a CM-field containing the fourth roots of unity. Then

there is no finite A-submodule in AL .

Lemma 2.3 ([8], Lemma 3.4) If the extension k,/k;} is unramified and h(k) is odd, for all n > 0. Then
AL =Ax.

Theorem 2.4 ([11], Theorem 3, p. 341) Let L/F a finite 2-extension of abelian CM-fields. Then we have

A(L) = 8(E) = [Low s Fuc) - " (F) = 6(F) + S (e = 1) = 3 (epr — 1), o)
Bf2 BH12
where 0(k) takes the values 1 or 0 according to whether ko, contains the fourth roots of unity or not, and eg
(resp. eg+) is the ramification index in Lo /Fs (resp. LI /FY) of a finite prime  of Lo (resp. BT of
LY).

Theorem 2.5 ([5], Theorem 3.3, p. 8) Let ko be a Zy-extension of a number field k and assume that any
prime of k lying above 2 is totally ramified in koo /k. If u(k) =0 and A is an elementary A-module, then
ranke(Ap) = A(k) for all n > A(k).

Proposition 2.6 ([16], Proposition 13.22, p. 284) Let ko, be a Zo-extension of a number field k and
assume that there exists only one prime of k lying above 2 and that this prime is totally ramified in koo /k.
Then

2t h(k) <> 2t h(ky), for all n > 0.
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3. The 2-class group of K7

In all this section, we assume that ¢ and ¢ are two primes satisfying the conditions (1.1). This section is one
of the steps of the proof of Theorem 4.2, in which we shall determine the structure of the 2-class group of
K} = K(,/q,(g) of degree 32 over Q.

Proposition 3.1 ([2], Proposition 5.1, p. 270) Consider M = Q (\/ Ve, \/71>. Then the class number
h(M™) of M* is odd. Moreover, Qp the Hasse’s unit index of M equals 2 and h(M) is odd too.

Proposition 3.2 The class number of F = Q (\/ eV, \/(j) is odd.

Proof Put L = Q(v/eV1). So from Proposition 3.1, the class number of L is odd. Then, by [7, p. 25|, the
2-rank of class group CI(F) of F is given by the following formula:

ranko(Cl(F)) =t —1—e,

where ¢ is the number of primes of L which ramify in F and the integer e is defined by 2°¢ = [EL :
Er, N N/ (F*)]. There exists only one prime of L lying above ¢ which ramifies in F' (i.e. ¢ = 1), because

<€\q/z> = <£> = —1 where q is a prime ideal of @(\/Z) dividing ¢g. Therefore ranks(Cl(F')) = —e must be
q

equal to 0. So h(F) is odd. O

For the rest of this section, we need the following proposition:

Proposition 3.3 ([12], p. 355) Let K/k be a Vy-extension of CM-fields; let K', K" and K™ be its three
quadratic subfields. Then
QK WK h(K/)h(K//)h(K+)

M) = G wrrwre h(k)?

Lemma 3.4 The 2-class number of K = Q(v/1,/=2q) is equal to 4.

Proof Consider Figure 1 below:

Figure 1. Subextensions of K/Q.
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So K/ Q is a Vj-extension of CM-fields, of quadratic subextensions K’, K” and K*. Then by Proposition
3.3, we have
QK ) WK ] hg(K/) . hQ(K”) . hg(K+)
Qr - Qe wgs - wgr h2(Q)?

ha(K)

2 2-4-1

1
1-1 2.2 1

=~

)

where ha(K') = 2 (cf. Kaplan [9]), ho(K”) = 4 and he(K") = 1 (cf. Kaplan [10]); and where Qx = Qg =
Qx» =1 (using [12, Theorem 1]), because K/K*, K'/Q and K”/Q are essentially ramified. O

Lemma 3.5 The 2-class number of L =Q (\/ Ve, «/—2q) is equal to 8.

Proof Here, consider Figure 2 below:

]L:Q( Ve, 72q)

e

L =Q(vVev) L= <\/72qeﬂ> L = Q(v7, v=29)

N

k=Q(0)

Figure 2. Subextensions of L/k.

So L/k is a Vj-extension of CM-fields, of quadratic subextensions I/, I” and L*. Then by Proposition

3.3, we have

holy = —Qu . wn hal) hy(LY) - hy(LY)
2 Qu - Qur  wr - wr ha(k)?

_ b2 4401

1.1 2.2 1

= 87

where ho(L') = 4 (cf. Brown and Parry [4]), he(L”) = 4 (by Lemma 3.4) and he(L*T) = 1 (by Proposition

3.1); and where Qr = Q. = Qu» = 1 (using [12, Theorem 1]), because L/L*, L'/k and L”/k are essentially

ramified. O

Lemma 3.6 The 2-class number of F = Q (\/ eV, /= ,\/5) is equal to 8.
Proof Now, consider Figure 3 below:
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IF+:Q( E\[Z-,\/i) ]F’:@( 5\/27\/5[1) FN:Q(\/«?\/E,\/TZQ

Figure 3. Subextensions of F/L.

So F/L is a Vj-extension of CM-fields, of quadratic subextensions F’, F” and F*. Then by Proposition
3.3, we have
Qr WE ho(F") - ha(F") - ho(FT)
Qe Qe wer - wer ha(L)?
1 W 2-8-1
11 we-2 1

ho(F) =

= 8’

where hs(F') = 2 (cf. [3, Theorem 5.19]), ho(F”) = 8 (by Lemma 3.5) and ho(Ft) =1 (cf. [8, Proposition
4.2]); and where Qr = Qp = Qp» = 1 (using [12, Theorem 1]), because F/F*, F’'/L and F”/L are essentially

ramified. Moreover, wg = wp: and wpr = 2. O

Proposition 3.7 Let q be the prime ideal of F above q, then q is not principal in F.

Proof Keep the notations of the previous proof. Assume that q is principal in F, then there exists § € F

such that q = §Op, this implies that q?> = 620p = 7O where 7 € F* (because qp+ = 7Op+ and qp+ Op = q?),

therefore there exists ¢’ a unit of F such that 62 = &’w. Since Qr = 1, we have two cases to discuss:

First case: If ¢ € Eg+, then &'r = (a+by/—q)? = a® — gb* + 2ab\/—q with a and b in F™, thus a=0 or b=10

because &'r € FT.

(1) If a = 0, then ¢'7 = —¢b?, applying the norm in F*/L, we get Np+,1(¢")q = ¢*Np+ 1, (b)?, this yields that
8= qN]FJr/L(b)2 where 3 denotes Np+,p(¢"). We know that 8 € Er, then we have:

(a) If g e {-1,1}, then /E£q € L which is absurd.

(b) If B = &, then eq is a square in L, this means that there exist z,y € Q(\/Z) such that eq =

(x + yVeVil)? = 22 + y?*eVl + 2xy\/ eV, therefore © =0 or y = 0 because eq € Q(v7). If z =0,
then ¢ = y2v/¢, applying the norm in (@(\/Z)/Q, we get v/ —¢ € Q which is absurd. Similarly, if y =0,
we find that v/—1 € Q which is absurd.

(c) If B¢ {—1,1,¢}, by applying the norm in L/Q(\/?), we get /—1 € Q(+v/¢) which is absurd.

2550



JERRARI and AZIZI/Turk J Math

(2) If b =0, with the same argument as for a = 0, we find a contradiction.

Second case: If ¢/ € Wy and ¢ = 3, (i.e. ¢ = j where j is a root of the polynomial X2 + X + 1), we have

jm = 6%, applying the norm in F/F’, we find that j?q = Ng/p/(5)?, this implies that /g € F/ which is absurd.
O

Proposition 3.8 The class number of H* = Q (\/ Vi, /a, ﬂ) is odd, where o € {—1,q}.

Proof Put H*=Q (\/ Ve, \/a) . We first need to count the number of primes of H* above 2 ramifying in
H®. For this, let 2;, be a unique prime ideal of L = Q (\/ 5\/2) lying above 2, then 2; remains inert in H*.

In fact, we can write H* = L ( aeﬂ) and we find

() ()
2L 2Q(vo)
(aex/z, 2)
2Q(v2)
N@(ﬂ)/@(%ﬂ% 2
2

(*57)
- (%)

2
= (6) (cf. [14, Lemma 2.27, p. 63])

= ~1.

Moreover, the prime ideal 25« of H® dividing 27 ramifies in H® which is the first layer of the cyclotomic

Zy-extension of H®, because 2y, ramifies in L(v/2). So we conclude that there exists only one prime of H®
lying above 2 which is totally ramified in H . On the other hand, Propositions 3.1 and 3.2 show that h(H®*)
is odd, thus h(H®) is odd using Proposition 2.6. O

Corollary 3.9 The class number of HY is odd, for all n.

Proposition 3.10 The 2-class number of Ki = K(/q,(g) is equal to 4.

Proof Keep the previous notations. We can write Ki = Q (\/ eVe, Vi vV—1, ﬂ) , so we can regard K;/F+

as a Vy-extension of CM-fields, of quadratic subextensions F, H~! and H?. Then by Proposition 3.3, we have

QK; ] Wk ] hQ(Hil) . hg(Hq) . hQ(]F)
Qr - Qu-1  wr - wy-—1 ho(F*)?
i WK 1-1-8
1-2 2- U}Kl* 1

ha(K7)

= 4
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In fact; we have Qp = 1 because F/FT is essentially ramified, and Qkr: = Qu-1 = 2 because Kj/HY
and H~!/F* are not essentially ramified and ho(H?) = ho(F+) = 1 (using [12, Theorem 1]). Moreover,

wy - wy-1 = 2wk, and we have hy(F) =8 (by Lemma 3.6) and hy(H™') = ho(H9) = 1 (by Proposition 3.8).
O

Proposition 3.11 The 2-class group of K is cyclic of order 4.

Proof Let Q be the prime ideal of H~! above ¢, then vg(q) = 1. Since K; = H~!(,/—¢q), so we have

() - (59
@A)
R

= 1.

By genus theory, the ideal class of qk; is a square in K7, hence there exists an ideal I of K7 such that
qx; ~ I?, then the ideal class [I] is of order 4. In fact, if I* ~ 1 then qg: ~ 1, applying the norm in Kj/F,
we get qr ~ 1, and this contradicts Proposition 3.7. Finally, we conclude that the 2-class group of K} is cyclic

of order 4 generated by the ideal class [I]. O

4. Main results
Let ¢ and ¢ be two primes satisfying the conditions (1.1). Let A, denote the 2-class group of the n-th layer
of the cyclotomic Zj-extension of the genus field K* = K(/q,v/—1). The main results of this paper are the

following:
Theorem 4.1 The Iwasawa module Ao, is isomorphic to Z3 .

Proof Let H and F denote Q (\/ E\/Z,M—Q) and Q (\/ Ve, \/—1), respectively; and let L denote K*

which coincides with Q (\/ eVe, VGV 71) . Consider Figure 4 below:

L:Q<\/5W,\/a,ﬁ)

1t = (Vevi, va) H =0 (V=i v=q) F=Q(VevEv=T)

Ftr=Q ( 6\/?)
Figure 4. Subextensions of L/F™.
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By Corollary 3.9, the class number of F), is odd, this implies that A\(F) = 0, therefore A= (F) = 0. On
the other hand, we have ¢ splits into 2 prime ideals of F'. In fact, let q be the unique prime ideal of F'T lying

(—1> _ (NF+/@<\/Z>(_1)> _
q Govo)

Since ¢ = 3 (mod 8), by Proposition 2.1, we have ¢ splits into 2 primes of Q({i6) and it is inert in Qg =

above ¢, so we have:

Q(y/m3), then ¢ splits into the product of 8 primes in F» = Q (\/ Ve, 416) because it splits into 4 primes
in F2Jr =Q (\/ Ve, w/7r3) . Thus ¢ splits into 8 primes in F,, = Q (\/ Ve, C2n+z) while it decomposes into 4

primes in F;f =Q (\/ 5\/@,,/7rn+1), for all n > 2. Note that [Lo : Fioo]l = [LL, : 5] =2 and eg = eg+ = 2,
then by Theorem 2.4, we have
A (L)—1=2-(0—-1)+8—4,
thus
AT (L) =3.
By Corollary 3.9, we have the class number of L} is odd, this means that A(LT) = 0, therefore A" (L) =
AML*)=0. Then,
ML) = AT (L)+ A (L) =3.
Since the extension L, /L; is unramified and h(L;}) is odd, for all n > 0, then by Lemma 2.3, A, = A.,. By

Theorem 2.2 there is no finite A-submodule in A7, hence A is a A-module without finite part. So,

Ag ~ 73,
O
Theorem 4.2 The structure of A, is given by:
0 forn =0,
Z/AZ forn =1,

S
3
1

7.)2°7 x 7.)2°7  or ZJ2°7 x ZJ2YZ x 7.J2°Z  forn = 2,

7.)2°77 x 7.]2" 7 x 7./]2°" 7. for alln > 3,
where {a,b,c,an, by, cp} C N*.

Proof Keep the notations we have introduced in the previous proof. By Theorem 4.1, we have

Ao =T = P M/(95(T)),

where each g; is distinguished and Zj degg; = A(L), this shows that A, is an elementary A-module.

Moreover, we have L/Q is an abelian extension, i.e. u(L) = 0. Then, by Theorem 2.5,

ranks(A,) =3, forall n >3,
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this implies that
Ap ~7)2 L x )22 7 x 7.2 Z,  for all n > 3.

Since the 2-class group of K7 is cyclic of order 4 by Proposition 3.11, then
Ay ~Z/4Z.
So we conclude all possible structures of Ay which are:
Ay ~7)2°7 x 7J2°Z  or Ay ~7/2°7 x L./2°7 x 7./2°Z.

Finally, we know that the class number of K* is odd by [3, Theorem 5.19], then

AO ~ 0.
O
The following example was computed using PARI/GP:
1+v5
Example 4.3 Let K = Q( —35\/5) where € = 5 Since 5 = 5 (mod 8), 3 = 3 (mod 8) and

(2) = —1, we have

0 forn =0,
A, =< Z/AZ forn =1,
ZJ16Z X 7/8Z x 727 forn=2.

Moreover, Ay >~ Zg where A., s attached to K*.
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