

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Turk J Math (2022) 46: 2545 – 2555 © TÜBİTAK doi:10.55730/1300-0098.3287

Research Article

On the 2-class group of some number fields of 2-power degree

Idriss JERRARI^{*}⁽⁰⁾, Abdelmalek AZIZI⁽⁰⁾

Department of Mathematics, Faculty of Sciences, Mohammed First University, Oujda, Morocco

Received: 11.01.2022	•	Accepted/Published Online: 23.05.2022	•	Final Version: 05.09.2022

Abstract: Let K be an imaginary cyclic quartic number field whose 2-class group is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, and let K^* denote the genus field of K. In this paper, we compute the rank of the 2-class group of K_n^* the *n*-th layer of the cyclotomic \mathbb{Z}_2 -extension of K^* .

Key words: Iwasawa theory, cyclotomic \mathbb{Z}_2 -extension, cyclic quartic field, 2-class group

1. Introduction

Let k be a number field. A cyclotomic \mathbb{Z}_2 -extension of k is an extension k_{∞}/k defined by

$$k = k_0 \subset k_1 = k(\sqrt{\pi_2}) \subset \cdots \subset k_n = k(\sqrt{\pi_{n+1}}) \subset \cdots \subset k_{\infty} = \bigcup_{n \ge 0} k_n,$$

where $\pi_2 = 2$ and $\pi_{n+1} = 2 + \sqrt{\pi_n}$ for all $n \ge 2$, this sequence of fields is called the cyclotomic Iwasawa tower of k. Note that the Galois group $\operatorname{Gal}(k_{\infty}/k)$ is isomorphic to \mathbb{Z}_2 , the additive group of 2-adic integers, and $\operatorname{Gal}(k_n/k) \simeq \mathbb{Z}/2^n\mathbb{Z}$ (see [16, p. 264]). For each integer n, denote by A_n the 2-part of the class group of k_n , the n-th layer of cyclotomic \mathbb{Z}_2 -extension of k. Let $\lambda, \mu \ge 0$ and ν be the Iwasawa invariants, then the order of A_n is $2^{\lambda n + \mu 2^n + \nu}$, for n large enough, by Iwasawa's theorem [16, Theorem 13.13, p. 276].

Given a number field K, the computation of the rank of the 2-class group of K is one of classical and difficult problems in number theory, especially for the fields of higher degree. However, if K is a quadratic extension of a number field k whose class number is odd, the ambiguous class number formula can be used to compute this rank (see [7]). In the literature, there are many works who dealt with this problem, we cite for example [1, 2] using an arithmetic method based on class field theory described in [13].

Let q and ℓ be two primes satisfying the following conditions:

$$q \equiv 3 \pmod{8}, \ \ell \equiv 5 \pmod{8}, \text{ and } \left(\frac{q}{\ell}\right) = -1.$$
 (1.1)

Let $K = \mathbb{Q}\left(\sqrt{-q\varepsilon\sqrt{\ell}}\right)$ be an imaginary cyclic quartic field, where ε denotes the fundamental unit of $\mathbb{Q}(\sqrt{\ell})$. Then the genus field of K is $K^* = K(\sqrt{q}, \sqrt{-1})$, thus its *n*-th layer of the cyclotomic \mathbb{Z}_2 -extension is

^{*}Correspondence: idriss_math@hotmail.fr

²⁰¹⁰ AMS Mathematics Subject Classification: 11R16, 11R18, 11R20, 11R23, 11R29

 $K_n^* = K(\sqrt{q}, \zeta_{2^{n+2}})$. Brown and Parry [4, Theorem 3, p. 66] showed that the 2-class group $\operatorname{Cl}_2(K)$ of K is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ by using genus theory. In this work, we first determine the structure of the 2-class group of K_1^* . Next, we compute the rank of the 2-class group of K_n^* , for $n \geq 3$, by using Iwasawa theory. Finally, we deduce all possible cases of the rank, for n = 2.

Notations

Let k be a number field and n be an integer ≥ 0 . The following notations will be used for the rest of this paper:

- $\triangleright \mathbb{Q}_n = \mathbb{Q}(\sqrt{\pi_{n+1}})$: the maximal real subfield of $\mathbb{Q}(\zeta_{2^{n+2}})$;
- $\triangleright k_n$: the *n*-th layer of the \mathbb{Z}_2 -extension of k;
- $\triangleright \ k_{\infty} = \bigcup_{n>0} k_n;$
- \triangleright A_n : the 2-part of the class group of k_n ;
- $\triangleright \ A_{\infty} = \varprojlim A_n;$
- $\triangleright \tau$: a topological generator of $\operatorname{Gal}(k_{\infty}/k)$;
- $\triangleright \ \Lambda = \mathbb{Z}_2[\![T]\!] \text{ for } T = \tau 1;$
- $\triangleright \mu(M), \lambda(M)$: the Iwasawa invariants for a Λ -torsion module M;
- $\triangleright \ \mu(k) = \mu(A_{\infty});$
- $\triangleright \ \lambda(k) = \lambda(A_{\infty});$
- $\triangleright \ \lambda^-(k) = \lambda(A_\infty^-)$ (the definition of A_∞^- will be given later);
- \triangleright h(k): the class number of k;
- \triangleright $h_2(k)$: the 2-class number of k;
- $\triangleright \mathcal{O}_k$: the ring of integers of k;
- $\triangleright E_k$: the unit group of k;
- \triangleright W_k : the group of roots of unity contained in k;
- $\triangleright w_k$: the order of W_k ;
- $\triangleright k^+$: the maximal real subfield of a CM-field k;
- $\triangleright \ Q_k = [E_k : W_k E_{k^+}]: \text{ the Hasse's unit index of a CM-field } k;$
- $\triangleright N_{L/k}$: the relative norm for an extension L/k;
- \triangleright Cl₂(k): the 2-part of the class group of k;
- $\triangleright q_k$: the prime ideal of k above q;

$$\triangleright \left(\frac{x}{\mathfrak{p}}\right): \text{ the quadratic residue symbol for } k;$$

$$\triangleright \left(\frac{x,y}{\mathfrak{p}}\right): \text{ the Hilbert symbol for } k;$$

$$\triangleright \left(\frac{a}{p}\right): \text{ the quadratic residue (Legendre) symbol.}$$

2. Some preliminary results in Iwasawa theory

In this section, we collect some results in Iwasawa theory that will be used in what follows.

Proposition 2.1 ([6], p. 3) Let $n \ge 2$ be a positive integer. Then we have

- (1) If p is a prime such that $p \equiv 3 \pmod{8}$, then, p decomposes into the product of 2 prime ideals of $\mathbb{Q}(\zeta_{2^{n+2}})$ while it is inert in \mathbb{Q}_n .
- (2) If p is a prime such that $p \equiv 7 \pmod{16}$, then, p decomposes into the product of 4 prime ideals of $\mathbb{Q}(\zeta_{2^{n+2}})$ while it decomposes into the product of 2 prime ideals of \mathbb{Q}_n .

Recall that A_n^+ is the group of strongly ambiguous classes with respect to the extension k_n/k_n^+ , where k_n^+ is the totally real subfield of k_n , and $A_n^- = A_n/A_n^+$. Let A_∞^- denote the projective limit of A_n^- . We have:

Theorem 2.2 ([15], Theorem 2.5, p. 374) Let k be a CM-field containing the fourth roots of unity. Then there is no finite Λ -submodule in A_{∞}^- .

Lemma 2.3 ([8], Lemma 3.4) If the extension k_n/k_n^+ is unramified and $h(k_n^+)$ is odd, for all $n \ge 0$. Then $A_{\infty}^- = A_{\infty}$.

Theorem 2.4 ([11], Theorem 3, p. 341) Let L/F a finite 2-extension of abelian CM-fields. Then we have

$$\lambda^{-}(L) - \delta(L) = [L_{\infty} : F_{\infty}] \cdot (\lambda^{-}(F) - \delta(F)) + \sum_{\beta \nmid 2} (e_{\beta} - 1) - \sum_{\beta + j \geq 2} (e_{\beta^{+}} - 1),$$
(2.1)

where $\delta(k)$ takes the values 1 or 0 according to whether k_{∞} contains the fourth roots of unity or not, and e_{β} (resp. e_{β^+}) is the ramification index in L_{∞}/F_{∞} (resp. $L_{\infty}^+/F_{\infty}^+$) of a finite prime β of L_{∞} (resp. β^+ of L_{∞}^+).

Theorem 2.5 ([5], **Theorem 3.3**, p. 8) Let k_{∞} be a \mathbb{Z}_2 -extension of a number field k and assume that any prime of k lying above 2 is totally ramified in k_{∞}/k . If $\mu(k) = 0$ and A_{∞} is an elementary Λ -module, then $\operatorname{rank}_2(A_n) = \lambda(k)$ for all $n \geq \lambda(k)$.

Proposition 2.6 ([16], Proposition 13.22, p. 284) Let k_{∞} be a \mathbb{Z}_2 -extension of a number field k and assume that there exists only one prime of k lying above 2 and that this prime is totally ramified in k_{∞}/k . Then

$$2 \nmid h(k) \iff 2 \nmid h(k_n), \text{ for all } n \ge 0.$$

3. The 2-class group of K_1^*

In all this section, we assume that q and ℓ are two primes satisfying the conditions (1.1). This section is one of the steps of the proof of Theorem 4.2, in which we shall determine the structure of the 2-class group of $K_1^* = K(\sqrt{q}, \zeta_8)$ of degree 32 over \mathbb{Q} .

Proposition 3.1 ([2], Proposition 5.1, p. 270) Consider $M = \mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{-1}\right)$. Then the class number $h(M^+)$ of M^+ is odd. Moreover, Q_M the Hasse's unit index of M equals 2 and h(M) is odd too.

Proposition 3.2 The class number of $F = \mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{q}\right)$ is odd.

Proof Put $L = \mathbb{Q}(\sqrt{\varepsilon\sqrt{l}})$. So from Proposition 3.1, the class number of L is odd. Then, by [7, p. 25], the 2-rank of class group $\operatorname{Cl}(F)$ of F is given by the following formula:

$$\operatorname{rank}_2(\operatorname{Cl}(F)) = t - 1 - e,$$

where t is the number of primes of L which ramify in F and the integer e is defined by $2^e = [E_L : E_L \cap N_{F/L}(F^{\times})]$. There exists only one prime of L lying above q which ramifies in F (i.e. t = 1), because $\left(\frac{\varepsilon\sqrt{\ell}}{\mathfrak{q}}\right) = \left(\frac{\ell}{q}\right) = -1$ where \mathfrak{q} is a prime ideal of $\mathbb{Q}(\sqrt{\ell})$ dividing q. Therefore rank₂(Cl(F)) = -e must be equal to 0. So h(F) is odd.

For the rest of this section, we need the following proposition:

Proposition 3.3 ([12], p. 355) Let K/k be a V_4 -extension of CM-fields; let K', K'' and K^+ be its three quadratic subfields. Then

$$h(K) = \frac{Q_K}{Q_{K'}Q_{K''}} \cdot \frac{w_K}{w_{K'}w_{K''}} \cdot \frac{h(K')h(K'')h(K^+)}{h(k)^2} \cdot \frac{h(K')h(K''')h(K'')h(K'')h(K'')h(K'')h(K'')h(K'')h(K'')h(K'')h(K'')h($$

Lemma 3.4 The 2-class number of $\mathbb{K} = \mathbb{Q}(\sqrt{\ell}, \sqrt{-2q})$ is equal to 4.

Proof Consider Figure 1 below:

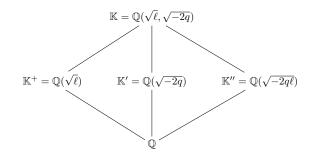


Figure 1. Subextensions of \mathbb{K}/\mathbb{Q} .

JERRARI and AZIZI/Turk J Math

So \mathbb{K}/\mathbb{Q} is a V_4 -extension of CM-fields, of quadratic subextensions \mathbb{K}' , \mathbb{K}'' and \mathbb{K}^+ . Then by Proposition 3.3, we have

$$h_2(\mathbb{K}) = \frac{Q_{\mathbb{K}}}{Q_{\mathbb{K}'} \cdot Q_{\mathbb{K}''}} \cdot \frac{w_{\mathbb{K}}}{w_{\mathbb{K}'} \cdot w_{\mathbb{K}''}} \cdot \frac{h_2(\mathbb{K}') \cdot h_2(\mathbb{K}'') \cdot h_2(\mathbb{K}^+)}{h_2(\mathbb{Q})^2}$$
$$= \frac{1}{1 \cdot 1} \cdot \frac{2}{2 \cdot 2} \cdot \frac{2 \cdot 4 \cdot 1}{1}$$
$$= 4,$$

where $h_2(\mathbb{K}') = 2$ (cf. Kaplan [9]), $h_2(\mathbb{K}'') = 4$ and $h_2(\mathbb{K}^+) = 1$ (cf. Kaplan [10]); and where $Q_{\mathbb{K}} = Q_{\mathbb{K}'} = Q_{\mathbb{K}'} = 1$ (using [12, Theorem 1]), because \mathbb{K}/\mathbb{K}^+ , \mathbb{K}'/\mathbb{Q} and \mathbb{K}''/\mathbb{Q} are essentially ramified. \Box

Lemma 3.5 The 2-class number of $\mathbb{L} = \mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{-2q}\right)$ is equal to 8.

Proof Here, consider Figure 2 below:

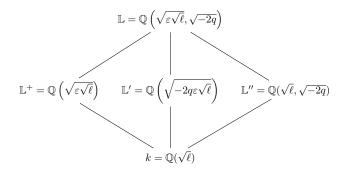


Figure 2. Subextensions of \mathbb{L}/k .

So \mathbb{L}/k is a V_4 -extension of CM-fields, of quadratic subextensions \mathbb{L}' , \mathbb{L}'' and \mathbb{L}^+ . Then by Proposition 3.3, we have

$$h_2(\mathbb{L}) = \frac{Q_{\mathbb{L}}}{Q_{\mathbb{L}'} \cdot Q_{\mathbb{L}''}} \cdot \frac{w_{\mathbb{L}}}{w_{\mathbb{L}'} \cdot w_{\mathbb{L}''}} \cdot \frac{h_2(\mathbb{L}') \cdot h_2(\mathbb{L}'') \cdot h_2(\mathbb{L}^+)}{h_2(k)^2}$$
$$= \frac{1}{1 \cdot 1} \cdot \frac{2}{2 \cdot 2} \cdot \frac{4 \cdot 4 \cdot 1}{1}$$
$$= 8,$$

where $h_2(\mathbb{L}') = 4$ (cf. Brown and Parry [4]), $h_2(\mathbb{L}'') = 4$ (by Lemma 3.4) and $h_2(\mathbb{L}^+) = 1$ (by Proposition 3.1); and where $Q_{\mathbb{L}} = Q_{\mathbb{L}'} = Q_{\mathbb{L}'} = 1$ (using [12, Theorem 1]), because \mathbb{L}/\mathbb{L}^+ , \mathbb{L}'/k and \mathbb{L}''/k are essentially ramified.

Lemma 3.6 The 2-class number of $\mathbb{F} = \mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{-q}, \sqrt{2}\right)$ is equal to 8.

Proof Now, consider Figure 3 below:

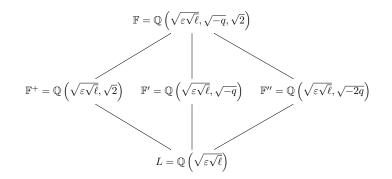


Figure 3. Subextensions of \mathbb{F}/L .

So \mathbb{F}/L is a V_4 -extension of CM-fields, of quadratic subextensions \mathbb{F}' , \mathbb{F}'' and \mathbb{F}^+ . Then by Proposition 3.3, we have

$$h_{2}(\mathbb{F}) = \frac{Q_{\mathbb{F}}}{Q_{\mathbb{F}'} \cdot Q_{\mathbb{F}''}} \cdot \frac{w_{\mathbb{F}}}{w_{\mathbb{F}'} \cdot w_{\mathbb{F}''}} \cdot \frac{h_{2}(\mathbb{F}') \cdot h_{2}(\mathbb{F}'') \cdot h_{2}(\mathbb{F}^{+})}{h_{2}(L)^{2}}$$
$$= \frac{1}{1 \cdot 1} \cdot \frac{w_{\mathbb{F}}}{w_{\mathbb{F}'} \cdot 2} \cdot \frac{2 \cdot 8 \cdot 1}{1}$$
$$= 8,$$

where $h_2(\mathbb{F}') = 2$ (cf. [3, Theorem 5.19]), $h_2(\mathbb{F}'') = 8$ (by Lemma 3.5) and $h_2(\mathbb{F}^+) = 1$ (cf. [8, Proposition 4.2]); and where $Q_{\mathbb{F}} = Q_{\mathbb{F}'} = Q_{\mathbb{F}'} = 1$ (using [12, Theorem 1]), because \mathbb{F}/\mathbb{F}^+ , \mathbb{F}'/L and \mathbb{F}''/L are essentially ramified. Moreover, $w_{\mathbb{F}} = w_{\mathbb{F}'}$ and $w_{\mathbb{F}''} = 2$.

Proposition 3.7 Let \mathfrak{q} be the prime ideal of \mathbb{F} above q, then \mathfrak{q} is not principal in \mathbb{F} .

Proof Keep the notations of the previous proof. Assume that \mathfrak{q} is principal in \mathbb{F} , then there exists $\delta \in \mathbb{F}$ such that $\mathfrak{q} = \delta \mathcal{O}_{\mathbb{F}}$, this implies that $\mathfrak{q}^2 = \delta^2 \mathcal{O}_{\mathbb{F}} = \pi \mathcal{O}_{\mathbb{F}}$ where $\pi \in \mathbb{F}^+$ (because $\mathfrak{q}_{\mathbb{F}^+} = \pi \mathcal{O}_{\mathbb{F}^+}$ and $\mathfrak{q}_{\mathbb{F}^+} \mathcal{O}_{\mathbb{F}} = \mathfrak{q}^2$), therefore there exists ε' a unit of \mathbb{F} such that $\delta^2 = \varepsilon' \pi$. Since $Q_{\mathbb{F}} = 1$, we have two cases to discuss: <u>First case</u>: If $\varepsilon' \in E_{\mathbb{F}^+}$, then $\varepsilon' \pi = (a + b\sqrt{-q})^2 = a^2 - qb^2 + 2ab\sqrt{-q}$ with a and b in \mathbb{F}^+ , thus a = 0 or b = 0 because $\varepsilon' \pi \in \mathbb{F}^+$.

- (1) If a = 0, then $\varepsilon' \pi = -qb^2$, applying the norm in \mathbb{F}^+/L , we get $N_{\mathbb{F}^+/L}(\varepsilon')q = q^2 N_{\mathbb{F}^+/L}(b)^2$, this yields that $\beta = qN_{\mathbb{F}^+/L}(b)^2$ where β denotes $N_{\mathbb{F}^+/L}(\varepsilon')$. We know that $\beta \in E_L$, then we have:
 - (a) If $\beta \in \{-1, 1\}$, then $\sqrt{\pm q} \in L$ which is absurd.
 - (b) If $\beta = \varepsilon$, then εq is a square in L, this means that there exist $x, y \in \mathbb{Q}(\sqrt{\ell})$ such that $\varepsilon q = (x + y\sqrt{\varepsilon\sqrt{\ell}})^2 = x^2 + y^2\varepsilon\sqrt{\ell} + 2xy\sqrt{\varepsilon\sqrt{\ell}}$, therefore x = 0 or y = 0 because $\varepsilon q \in \mathbb{Q}(\sqrt{\ell})$. If x = 0, then $q = y^2\sqrt{\ell}$, applying the norm in $\mathbb{Q}(\sqrt{\ell})/\mathbb{Q}$, we get $\sqrt{-\ell} \in \mathbb{Q}$ which is absurd. Similarly, if y = 0, we find that $\sqrt{-1} \in \mathbb{Q}$ which is absurd.
 - (c) If $\beta \notin \{-1, 1, \varepsilon\}$, by applying the norm in $L/\mathbb{Q}(\sqrt{\ell})$, we get $\sqrt{-1} \in \mathbb{Q}(\sqrt{\ell})$ which is absurd.

(2) If b = 0, with the same argument as for a = 0, we find a contradiction.

Second case: If $\varepsilon' \in W_{\mathbb{F}}$ and q = 3, (i.e. $\varepsilon' = j$ where j is a root of the polynomial $X^2 + X + 1$), we have $j\pi = \delta^2$, applying the norm in \mathbb{F}/\mathbb{F}' , we find that $j^2q = N_{\mathbb{F}/\mathbb{F}'}(\delta)^2$, this implies that $\sqrt{q} \in \mathbb{F}'$ which is absurd.

Proposition 3.8 The class number of $\mathbb{H}^{\alpha} = \mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{\alpha}, \sqrt{2}\right)$ is odd, where $\alpha \in \{-1, q\}$.

Proof Put $H^{\alpha} = \mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{\alpha}\right)$. We first need to count the number of primes of H^{α} above 2 ramifying in \mathbb{H}^{α} . For this, let 2_L be a unique prime ideal of $L = \mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}\right)$ lying above 2, then 2_L remains inert in H^{α} . In fact, we can write $H^{\alpha} = L\left(\sqrt{\alpha\varepsilon\sqrt{\ell}}\right)$ and we find

$$\left(\frac{\alpha\varepsilon\sqrt{\ell}}{2_L}\right) = \left(\frac{\alpha\varepsilon\sqrt{\ell}}{2_{\mathbb{Q}(\sqrt{\ell})}}\right) \\
= \left(\frac{\alpha\varepsilon\sqrt{\ell},2}{2_{\mathbb{Q}(\sqrt{\ell})}}\right) \\
= \left(\frac{N_{\mathbb{Q}(\sqrt{\ell})/\mathbb{Q}}(\alpha\varepsilon\sqrt{\ell}),2}{2}\right) \\
= \left(\frac{\alpha^2\ell,2}{2}\right) \\
= \left(\frac{\ell,2}{2}\right) \\
= \left(\frac{2}{\ell}\right) \quad (cf. [14, Lemma 2.27, p. 63]) \\
= -1.$$

Moreover, the prime ideal $2_{H^{\alpha}}$ of H^{α} dividing 2_L ramifies in \mathbb{H}^{α} which is the first layer of the cyclotomic \mathbb{Z}_2 -extension of H^{α} , because 2_L ramifies in $L(\sqrt{2})$. So we conclude that there exists only one prime of H^{α} lying above 2 which is totally ramified in H^{α}_{∞} . On the other hand, Propositions 3.1 and 3.2 show that $h(H^{\alpha})$ is odd, thus $h(\mathbb{H}^{\alpha})$ is odd using Proposition 2.6.

Corollary 3.9 The class number of H_n^{α} is odd, for all n.

Proposition 3.10 The 2-class number of $K_1^* = K(\sqrt{q}, \zeta_8)$ is equal to 4.

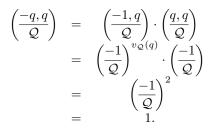
Proof Keep the previous notations. We can write $K_1^* = \mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{q}, \sqrt{-1}, \sqrt{2}\right)$, so we can regard K_1^*/\mathbb{F}^+ as a V_4 -extension of CM-fields, of quadratic subextensions \mathbb{F} , \mathbb{H}^{-1} and \mathbb{H}^q . Then by Proposition 3.3, we have

$$h_2(K_1^*) = \frac{Q_{K_1^*}}{Q_{\mathbb{F}} \cdot Q_{\mathbb{H}^{-1}}} \cdot \frac{w_{K_1^*}}{w_{\mathbb{F}} \cdot w_{\mathbb{H}^{-1}}} \cdot \frac{h_2(\mathbb{H}^{-1}) \cdot h_2(\mathbb{H}^q) \cdot h_2(\mathbb{F})}{h_2(\mathbb{F}^+)^2}$$
$$= \frac{2}{1 \cdot 2} \cdot \frac{w_{K_1^*}}{2 \cdot w_{K_1^*}} \cdot \frac{1 \cdot 1 \cdot 8}{1}$$
$$= 4.$$

In fact; we have $Q_{\mathbb{F}} = 1$ because \mathbb{F}/\mathbb{F}^+ is essentially ramified, and $Q_{K_1^*} = Q_{\mathbb{H}^{-1}} = 2$ because K_1^*/\mathbb{H}^q and $\mathbb{H}^{-1}/\mathbb{F}^+$ are not essentially ramified and $h_2(\mathbb{H}^q) = h_2(\mathbb{F}^+) = 1$ (using [12, Theorem 1]). Moreover, $w_{\mathbb{F}} \cdot w_{\mathbb{H}^{-1}} = 2 \cdot w_{K_1^*}$, and we have $h_2(\mathbb{F}) = 8$ (by Lemma 3.6) and $h_2(\mathbb{H}^{-1}) = h_2(\mathbb{H}^q) = 1$ (by Proposition 3.8).

Proposition 3.11 The 2-class group of K_1^* is cyclic of order 4.

Proof Let \mathcal{Q} be the prime ideal of \mathbb{H}^{-1} above q, then $v_{\mathcal{Q}}(q) = 1$. Since $K_1^* = \mathbb{H}^{-1}(\sqrt{-q})$, so we have



By genus theory, the ideal class of $\mathfrak{q}_{K_1^*}$ is a square in K_1^* , hence there exists an ideal I of K_1^* such that $\mathfrak{q}_{K_1^*} \sim I^2$, then the ideal class [I] is of order 4. In fact, if $I^2 \sim 1$ then $\mathfrak{q}_{K_1^*} \sim 1$, applying the norm in K_1^*/\mathbb{F} , we get $\mathfrak{q}_{\mathbb{F}} \sim 1$, and this contradicts Proposition 3.7. Finally, we conclude that the 2-class group of K_1^* is cyclic of order 4 generated by the ideal class [I].

4. Main results

Let q and ℓ be two primes satisfying the conditions (1.1). Let A_n denote the 2-class group of the *n*-th layer of the cyclotomic \mathbb{Z}_2 -extension of the genus field $K^* = K(\sqrt{q}, \sqrt{-1})$. The main results of this paper are the following:

Theorem 4.1 The Iwasawa module A_{∞} is isomorphic to \mathbb{Z}_2^3 .

Proof Let *H* and *F* denote $\mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{-q}\right)$ and $\mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{-1}\right)$, respectively; and let *L* denote K^* which coincides with $\mathbb{Q}\left(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{q}, \sqrt{-1}\right)$. Consider Figure 4 below:

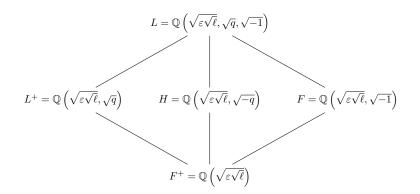


Figure 4. Subextensions of L/F^+ .

By Corollary 3.9, the class number of F_n is odd, this implies that $\lambda(F) = 0$, therefore $\lambda^-(F) = 0$. On the other hand, we have q splits into 2 prime ideals of F. In fact, let q be the unique prime ideal of F^+ lying above q, so we have:

$$\left(\frac{-1}{\mathfrak{q}}\right) \ = \ \left(\frac{N_{F^+/\mathbb{Q}(\sqrt{\ell})}(-1)}{\mathfrak{q}_{\mathbb{Q}(\sqrt{\ell})}}\right) \ = \ 1.$$

Since $q \equiv 3 \pmod{8}$, by Proposition 2.1, we have q splits into 2 primes of $\mathbb{Q}(\zeta_{16})$ and it is inert in $\mathbb{Q}_2 = \mathbb{Q}(\sqrt{\pi_3})$, then q splits into the product of 8 primes in $F_2 = \mathbb{Q}(\sqrt{\varepsilon\sqrt{\ell}}, \zeta_{16})$ because it splits into 4 primes in $F_2^+ = \mathbb{Q}(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{\pi_3})$. Thus q splits into 8 primes in $F_n = \mathbb{Q}(\sqrt{\varepsilon\sqrt{\ell}}, \zeta_{2^{n+2}})$ while it decomposes into 4 primes in $F_n^+ = \mathbb{Q}(\sqrt{\varepsilon\sqrt{\ell}}, \sqrt{\pi_{n+1}})$, for all $n \geq 2$. Note that $[L_\infty : F_\infty] = [L_\infty^+ : F_\infty^+] = 2$ and $e_\beta = e_{\beta^+} = 2$, then by Theorem 2.4, we have

$$\lambda^{-}(L) - 1 = 2 \cdot (0 - 1) + 8 - 4,$$

thus

$$\lambda^{-}(L) = 3.$$

By Corollary 3.9, we have the class number of L_n^+ is odd, this means that $\lambda(L^+) = 0$, therefore $\lambda^+(L) = \lambda(L^+) = 0$. Then,

$$\lambda(L) = \lambda^+(L) + \lambda^-(L) = 3.$$

Since the extension L_n/L_n^+ is unramified and $h(L_n^+)$ is odd, for all $n \ge 0$, then by Lemma 2.3, $A_{\infty}^- = A_{\infty}$. By Theorem 2.2 there is no finite Λ -submodule in A_{∞}^- , hence A_{∞} is a Λ -module without finite part. So,

$$A_{\infty} \simeq \mathbb{Z}_2^3.$$

Theorem 4.2 The structure of A_n is given by:

$$A_{n} \simeq \begin{cases} 0 & \text{for } n = 0, \\ \mathbb{Z}/4\mathbb{Z} & \text{for } n = 1, \\ \mathbb{Z}/2^{a}\mathbb{Z} \times \mathbb{Z}/2^{b}\mathbb{Z} & \text{or } \mathbb{Z}/2^{a}\mathbb{Z} \times \mathbb{Z}/2^{b}\mathbb{Z} \times \mathbb{Z}/2^{c}\mathbb{Z} & \text{for } n = 2, \\ \mathbb{Z}/2^{a_{n}}\mathbb{Z} \times \mathbb{Z}/2^{b_{n}}\mathbb{Z} \times \mathbb{Z}/2^{c_{n}}\mathbb{Z} & \text{for all } n \geq 3, \end{cases}$$

where $\{a, b, c, a_n, b_n, c_n\} \subset \mathbb{N}^*$.

Proof Keep the notations we have introduced in the previous proof. By Theorem 4.1, we have

$$A_{\infty} \simeq \mathbb{Z}_2^{\lambda(L)} \simeq \bigoplus_j \Lambda/(g_j(T)),$$

where each g_j is distinguished and $\sum_j \deg g_j = \lambda(L)$, this shows that A_{∞} is an elementary Λ -module. Moreover, we have L/\mathbb{Q} is an abelian extension, i.e. $\mu(L) = 0$. Then, by Theorem 2.5,

$$\operatorname{rank}_2(A_n) = 3$$
, for all $n \ge 3$,

this implies that

$$A_n \simeq \mathbb{Z}/2^{a_n}\mathbb{Z} \times \mathbb{Z}/2^{b_n}\mathbb{Z} \times \mathbb{Z}/2^{c_n}\mathbb{Z}, \text{ for all } n \ge 3.$$

Since the 2-class group of K_1^* is cyclic of order 4 by Proposition 3.11, then

$$A_1 \simeq \mathbb{Z}/4\mathbb{Z}$$

So we conclude all possible structures of A_2 which are:

$$A_2 \simeq \mathbb{Z}/2^a \mathbb{Z} \times \mathbb{Z}/2^b \mathbb{Z}$$
 or $A_2 \simeq \mathbb{Z}/2^a \mathbb{Z} \times \mathbb{Z}/2^b \mathbb{Z} \times \mathbb{Z}/2^c \mathbb{Z}$

Finally, we know that the class number of K^* is odd by [3, Theorem 5.19], then

$$A_0 \simeq 0$$

The following example was computed using PARI/GP:

Example 4.3 Let $K = \mathbb{Q}\left(\sqrt{-3\varepsilon\sqrt{5}}\right)$ where $\varepsilon = \frac{1+\sqrt{5}}{2}$. Since $5 \equiv 5 \pmod{8}$, $3 \equiv 3 \pmod{8}$ and $\left(\frac{3}{5}\right) = -1$, we have

$$A_n \simeq \begin{cases} 0 & \text{for } n = 0, \\ \mathbb{Z}/4\mathbb{Z} & \text{for } n = 1, \\ \mathbb{Z}/16\mathbb{Z} \times \mathbb{Z}/8\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & \text{for } n = 2. \end{cases}$$

Moreover, $A_{\infty} \simeq \mathbb{Z}_2^3$ where A_{∞} is attached to K^* .

References

- Azizi A, Jerrari I, Talbi M. On the rank of the 2-class group of an extension of degree 8 over Q. Periodica Mathematica Hungarica 2019; 78 (1): 128-134. doi: 10.1007/s10998-018-0269-5
- [2] Azizi A, Jerrari I, Zekhnini A, Talbi M. On the second 2-class group Gal(K₂⁽²⁾/K) of some imaginary quartic cyclic number field K. Journal of Number Theory 2017; 177: 562-588. doi: 10.1016/j.jnt.2017.01.027
- [3] Azizi A, Talbi M. Groupe de Galois de certains corps de classes. Analele Stiintifice ale Universitatii Ovidius Constanta 2011; 19 (3): 27-50 (in French with an abstract in English).
- [4] Brown E, Parry CJ. The 2-class group of certain biquadratic number fields I. Journal f
 ür die reine und angewandte Mathematik 1977; 295: 61-71.
- [5] Chems-Eddin MM. The 2-Iwasawa module over certain octic elementary fields. arXiv: 2007.05953
- [6] Chems-Eddin MM. The rank of the 2-class group of some fields with large degree. arXiv: 2001.00865
- [7] Gras G. Sur les *l*-classes d'idéaux dans les extensions cycliques relatives de degré premier *l*. Annales de l'Institut Fourier 1973; 23 (3): 1-48 (in French). doi: 10.5802/aif.471
- [8] Jerrari I, Azizi A. On the structure of the 2-Iwasawa module of some number fields of degree 16. Czechoslovak Mathematical Journal. doi: 10.21136/CMJ.2022.0398-21

JERRARI and AZIZI/Turk J Math

- [9] Kaplan P. Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2-groupe des classes est cyclique, et réciprocité biquadratique. Journal of the Mathematical Society of Japan 1973; 25 (4): 596-608 (in French). doi: 10.2969/jmsj/02540596
- [10] Kaplan P. Sur le 2-groupe des classes d'idéaux des corps quadratiques. Journal für die reine und angewandte Mathematik 1976; 283/284: 313-363 (in French). doi: 10.1515/crll.1976.283-284.313
- [11] Kida Y. Cyclotomic Z₂-extensions of J-fields. Journal of Number Theory 1982; 14 (3): 340-352. doi: 10.1016/0022-314X(82)90069-5
- [12] Lemmermeyer F. Ideal class groups of cyclotomic number fields I. Acta Arithmetica 1995; 72 (4): 347-359. doi: 10.4064/aa-72-4-347-359
- [13] Lemmermeyer F. On 2-class field towers of some imaginary quadratic number fields. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1997; 67 (1): 205-214. doi: 10.1007/BF02940830
- [14] Lemmermeyer F. Reciprocity Laws: From Euler to Eisenstein. Springer Monographs in Mathematics. Berlin, Heidelberg, Germany: Springer, 2000.
- [15] Müller K. Capitulation in the Z₂ extension of CM number fields. Mathematical Proceedings of the Cambridge Philosophical Society 2019; 166 (2): 371-380. doi: 10.1017/S0305004118000026
- [16] Washington LC. Graduate Texts in Mathematics: Introduction to Cyclotomic Fields. New York, USA: Springer, 1997.