http://journals.tubitak.gov.tr/math/

Turk J Math
(2022) 46: 2545 - 2555
© TÜBİTAK
doi:10.55730/1300-0098.3287

On the 2-class group of some number fields of 2-power degree

Idriss JERRARI* ${ }^{\text {© }}$, Abdelmalek AZIZI ${ }^{\text {(}}$
Department of Mathematics, Faculty of Sciences, Mohammed First University, Oujda, Morocco

$\begin{array}{lllll}\text { Received: } 11.01 .2022 & \text { Accepted/Published Online: } 23.05 .2022 \quad \text { - } & \text { Final Version: } 05.09 .2022\end{array}$

Abstract: Let K be an imaginary cyclic quartic number field whose 2 -class group is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and let K^{*} denote the genus field of K. In this paper, we compute the rank of the 2 -class group of K_{n}^{*} the n-th layer of the cyclotomic \mathbb{Z}_{2}-extension of K^{*}.

Key words: Iwasawa theory, cyclotomic \mathbb{Z}_{2}-extension, cyclic quartic field, 2-class group

1. Introduction

Let k be a number field. A cyclotomic \mathbb{Z}_{2}-extension of k is an extension k_{∞} / k defined by

$$
k=k_{0} \subset k_{1}=k\left(\sqrt{\pi_{2}}\right) \subset \cdots \subset k_{n}=k\left(\sqrt{\pi_{n+1}}\right) \subset \cdots \subset k_{\infty}=\bigcup_{n \geq 0} k_{n}
$$

where $\pi_{2}=2$ and $\pi_{n+1}=2+\sqrt{\pi_{n}}$ for all $n \geq 2$, this sequence of fields is called the cyclotomic Iwasawa tower of k. Note that the Galois group $\operatorname{Gal}\left(k_{\infty} / k\right)$ is isomorphic to \mathbb{Z}_{2}, the additive group of 2 -adic integers, and $\operatorname{Gal}\left(k_{n} / k\right) \simeq \mathbb{Z} / 2^{n} \mathbb{Z}$ (see [16, p. 264]). For each integer n, denote by A_{n} the 2 -part of the class group of k_{n}, the n-th layer of cyclotomic \mathbb{Z}_{2}-extension of k. Let $\lambda, \mu \geq 0$ and ν be the Iwasawa invariants, then the order of A_{n} is $2^{\lambda n+\mu 2^{n}+\nu}$, for n large enough, by Iwasawa's theorem [16, Theorem 13.13, p. 276].

Given a number field K, the computation of the rank of the 2 -class group of K is one of classical and difficult problems in number theory, especially for the fields of higher degree. However, if K is a quadratic extension of a number field k whose class number is odd, the ambiguous class number formula can be used to compute this rank (see [7]). In the literature, there are many works who dealt with this problem, we cite for example [1, 2] using an arithmetic method based on class field theory described in [13].

Let q and ℓ be two primes satisfying the following conditions:

$$
\begin{equation*}
q \equiv 3 \quad(\bmod 8), \ell \equiv 5 \quad(\bmod 8), \text { and }\left(\frac{q}{\ell}\right)=-1 \tag{1.1}
\end{equation*}
$$

Let $K=\mathbb{Q}(\sqrt{-q \varepsilon \sqrt{\ell}})$ be an imaginary cyclic quartic field, where ε denotes the fundamental unit of $\mathbb{Q}(\sqrt{\ell})$. Then the genus field of K is $K^{*}=K(\sqrt{q}, \sqrt{-1})$, thus its n-th layer of the cyclotomic \mathbb{Z}_{2}-extension is
$K_{n}^{*}=K\left(\sqrt{q}, \zeta_{2^{n+2}}\right)$. Brown and Parry [4, Theorem 3, p. 66] showed that the 2 -class group $\mathrm{Cl}_{2}(K)$ of K is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ by using genus theory. In this work, we first determine the structure of the 2 -class group of K_{1}^{*}. Next, we compute the rank of the 2 -class group of K_{n}^{*}, for $n \geq 3$, by using Iwasawa theory. Finally, we deduce all possible cases of the rank, for $n=2$.

Notations

Let k be a number field and n be an integer ≥ 0. The following notations will be used for the rest of this paper:
$\triangleright \mathbb{Q}_{n}=\mathbb{Q}\left(\sqrt{\pi_{n+1}}\right):$ the maximal real subfield of $\mathbb{Q}\left(\zeta_{2^{n+2}}\right) ;$
$\triangleright k_{n}$: the n-th layer of the \mathbb{Z}_{2}-extension of k;
$\triangleright k_{\infty}=\bigcup_{n \geq 0} k_{n} ;$
$\triangleright A_{n}$: the 2-part of the class group of k_{n};
$\triangleright A_{\infty}=\underset{\rightleftarrows}{\lim } A_{n} ;$
$\triangleright \tau$: a topological generator of $\operatorname{Gal}\left(k_{\infty} / k\right)$;
$\triangleright \Lambda=\mathbb{Z}_{2} \llbracket T \rrbracket$ for $T=\tau-1 ;$
$\triangleright \mu(M), \lambda(M)$: the Iwasawa invariants for a Λ-torsion module M;
$\triangleright \mu(k)=\mu\left(A_{\infty}\right) ;$
$\triangleright \lambda(k)=\lambda\left(A_{\infty}\right) ;$
$\triangleright \lambda^{-}(k)=\lambda\left(A_{\infty}^{-}\right)$(the definition of A_{∞}^{-}will be given later);
$\triangleright h(k)$: the class number of k;
$\triangleright h_{2}(k)$: the 2 -class number of k;
$\triangleright \mathcal{O}_{k}$: the ring of integers of k;
$\triangleright E_{k}$: the unit group of k;
$\triangleright W_{k}$: the group of roots of unity contained in k;
$\triangleright w_{k}$: the order of W_{k};
$\triangleright k^{+}$: the maximal real subfield of a CM-field k;
$\triangleright Q_{k}=\left[E_{k}: W_{k} E_{k^{+}}\right]:$the Hasse's unit index of a CM-field k;
$\triangleright N_{L / k}$: the relative norm for an extension L / k;
$\triangleright \mathrm{Cl}_{2}(k)$: the 2-part of the class group of k;
$\triangleright \mathfrak{q}_{k}$: the prime ideal of k above $q ;$
$\triangleright\left(\frac{x}{\mathfrak{p}}\right):$ the quadratic residue symbol for $k ;$
$\triangleright\left(\frac{x, y}{\mathfrak{p}}\right):$ the Hilbert symbol for k;
$\triangleright\left(\frac{a}{p}\right):$ the quadratic residue (Legendre) symbol.

2. Some preliminary results in Iwasawa theory

In this section, we collect some results in Iwasawa theory that will be used in what follows.
Proposition 2.1 ([6], p. 3) Let $n \geq 2$ be a positive integer. Then we have
(1) If p is a prime such that $p \equiv 3(\bmod 8)$, then, p decomposes into the product of 2 prime ideals of $\mathbb{Q}\left(\zeta_{2^{n+2}}\right)$ while it is inert in \mathbb{Q}_{n}.
(2) If p is a prime such that $p \equiv 7(\bmod 16)$, then, p decomposes into the product of 4 prime ideals of $\mathbb{Q}\left(\zeta_{2^{n+2}}\right)$ while it decomposes into the product of 2 prime ideals of \mathbb{Q}_{n}.

Recall that A_{n}^{+}is the group of strongly ambiguous classes with respect to the extension k_{n} / k_{n}^{+}, where k_{n}^{+}is the totally real subfield of k_{n}, and $A_{n}^{-}=A_{n} / A_{n}^{+}$. Let A_{∞}^{-}denote the projective limit of A_{n}^{-}. We have:

Theorem 2.2 ([15], Theorem 2.5, p. 374) Let k be a CM-field containing the fourth roots of unity. Then there is no finite Λ-submodule in A_{∞}^{-}.

Lemma 2.3 ([8], Lemma 3.4) If the extension k_{n} / k_{n}^{+}is unramified and $h\left(k_{n}^{+}\right)$is odd, for all $n \geq 0$. Then $A_{\infty}^{-}=A_{\infty}$.

Theorem 2.4 ([11], Theorem 3, p. 341) Let L/F a finite 2 -extension of abelian CM-fields. Then we have

$$
\begin{equation*}
\lambda^{-}(L)-\delta(L)=\left[L_{\infty}: F_{\infty}\right] \cdot\left(\lambda^{-}(F)-\delta(F)\right)+\sum_{\beta \nmid 2}\left(e_{\beta}-1\right)-\sum_{\beta^{+} \nmid 2}\left(e_{\beta^{+}}-1\right), \tag{2.1}
\end{equation*}
$$

where $\delta(k)$ takes the values 1 or 0 according to whether k_{∞} contains the fourth roots of unity or not, and e_{β} (resp. $e_{\beta^{+}}$) is the ramification index in $L_{\infty} / F_{\infty}\left(\right.$ resp. $\left.L_{\infty}^{+} / F_{\infty}^{+}\right)$of a finite prime β of L_{∞} (resp. β^{+}of $\left.L_{\infty}^{+}\right)$.

Theorem 2.5 ([5], Theorem 3.3, p. 8) Let k_{∞} be a \mathbb{Z}_{2}-extension of a number field k and assume that any prime of k lying above 2 is totally ramified in k_{∞} / k. If $\mu(k)=0$ and A_{∞} is an elementary Λ-module, then $\operatorname{rank}_{2}\left(A_{n}\right)=\lambda(k)$ for all $n \geq \lambda(k)$.

Proposition 2.6 ([16], Proposition 13.22, p. 284) Let k_{∞} be a \mathbb{Z}_{2}-extension of a number field k and assume that there exists only one prime of k lying above 2 and that this prime is totally ramified in k_{∞} / k. Then

$$
2 \nmid h(k) \Longleftrightarrow 2 \nmid h\left(k_{n}\right), \text { for all } n \geq 0
$$

3. The 2-class group of K_{1}^{*}

In all this section, we assume that q and ℓ are two primes satisfying the conditions (1.1). This section is one of the steps of the proof of Theorem 4.2, in which we shall determine the structure of the 2 -class group of $K_{1}^{*}=K\left(\sqrt{q}, \zeta_{8}\right)$ of degree 32 over \mathbb{Q}.

Proposition 3.1 ([2], Proposition 5.1, p. 270) Consider $M=\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{-1})$. Then the class number $h\left(M^{+}\right)$of M^{+}is odd. Moreover, Q_{M} the Hasse's unit index of M equals 2 and $h(M)$ is odd too.

Proposition 3.2 The class number of $F=\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{q})$ is odd.
Proof Put $L=\mathbb{Q}(\sqrt{\varepsilon \sqrt{l}})$. So from Proposition 3.1, the class number of L is odd. Then, by [7, p. 25], the 2 -rank of class group $\mathrm{Cl}(F)$ of F is given by the following formula:

$$
\operatorname{rank}_{2}(\mathrm{Cl}(F))=t-1-e,
$$

where t is the number of primes of L which ramify in F and the integer e is defined by $2^{e}=\left[E_{L}\right.$: $E_{L} \cap N_{F / L}\left(F^{\times}\right)$]. There exists only one prime of L lying above q which ramifies in F (i.e. $t=1$), because $\left(\frac{\varepsilon \sqrt{\ell}}{\mathfrak{q}}\right)=\left(\frac{\ell}{q}\right)=-1$ where \mathfrak{q} is a prime ideal of $\mathbb{Q}(\sqrt{\ell})$ dividing q. Therefore $\operatorname{rank}_{2}(\mathrm{Cl}(F))=-e$ must be equal to 0 . So $h(F)$ is odd.
For the rest of this section, we need the following proposition:

Proposition 3.3 ([12], p. 355) Let K / k be a V_{4}-extension of $C M$-fields; let $K^{\prime}, K^{\prime \prime}$ and K^{+}be its three quadratic subfields. Then

$$
h(K)=\frac{Q_{K}}{Q_{K^{\prime}} Q_{K^{\prime \prime}}} \cdot \frac{w_{K}}{w_{K^{\prime}} w_{K^{\prime \prime}}} \cdot \frac{h\left(K^{\prime}\right) h\left(K^{\prime \prime}\right) h\left(K^{+}\right)}{h(k)^{2}} .
$$

Lemma 3.4 The 2 -class number of $\mathbb{K}=\mathbb{Q}(\sqrt{\ell}, \sqrt{-2 q})$ is equal to 4 .
Proof Consider Figure 1 below:

Figure 1. Subextensions of \mathbb{K} / \mathbb{Q}.

So \mathbb{K} / \mathbb{Q} is a V_{4}-extension of CM-fields, of quadratic subextensions $\mathbb{K}^{\prime}, \mathbb{K}^{\prime \prime}$ and \mathbb{K}^{+}. Then by Proposition 3.3, we have

$$
\begin{aligned}
h_{2}(\mathbb{K}) & =\frac{Q_{\mathbb{K}}}{Q_{\mathbb{K}^{\prime}} \cdot Q_{\mathbb{K}^{\prime \prime}}} \cdot \frac{w_{\mathbb{K}}}{w_{\mathbb{K}^{\prime}} \cdot w_{\mathbb{K}^{\prime \prime}}} \cdot \frac{h_{2}\left(\mathbb{K}^{\prime}\right) \cdot h_{2}\left(\mathbb{K}^{\prime \prime}\right) \cdot h_{2}\left(\mathbb{K}^{+}\right)}{h_{2}(\mathbb{Q})^{2}} \\
& =\frac{1}{1 \cdot 1} \cdot \frac{2}{2 \cdot 2} \cdot \frac{2 \cdot 4 \cdot 1}{1} \\
& =4
\end{aligned}
$$

where $h_{2}\left(\mathbb{K}^{\prime}\right)=2($ cf. Kaplan $[9]), h_{2}\left(\mathbb{K}^{\prime \prime}\right)=4$ and $h_{2}\left(\mathbb{K}^{+}\right)=1$ (cf. Kaplan [10]); and where $Q_{\mathbb{K}}=Q_{\mathbb{K}^{\prime}}=$ $Q_{\mathbb{K}^{\prime \prime}}=1\left(\right.$ using $\left[12\right.$, Theorem 1]), because $\mathbb{K} / \mathbb{K}^{+}, \mathbb{K}^{\prime} / \mathbb{Q}$ and $\mathbb{K}^{\prime \prime} / \mathbb{Q}$ are essentially ramified.

Lemma 3.5 The 2 -class number of $\mathbb{L}=\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{-2 q})$ is equal to 8 .
Proof Here, consider Figure 2 below:

Figure 2. Subextensions of \mathbb{L} / k.
So \mathbb{L} / k is a V_{4}-extension of CM-fields, of quadratic subextensions $\mathbb{L}^{\prime}, \mathbb{L}^{\prime \prime}$ and \mathbb{L}^{+}. Then by Proposition 3.3, we have

$$
\begin{aligned}
h_{2}(\mathbb{L}) & =\frac{Q_{\mathbb{L}}}{Q_{\mathbb{L}^{\prime}} \cdot Q_{\mathbb{L}^{\prime \prime}}} \cdot \frac{w_{\mathbb{L}}}{w_{\mathbb{L}^{\prime}} \cdot w_{\mathbb{L}^{\prime \prime}}} \cdot \frac{h_{2}\left(\mathbb{L}^{\prime}\right) \cdot h_{2}\left(\mathbb{L}^{\prime \prime}\right) \cdot h_{2}\left(\mathbb{L}^{+}\right)}{h_{2}(k)^{2}} \\
& =\frac{1}{1 \cdot 1} \cdot \frac{2}{2 \cdot 2} \cdot \frac{4 \cdot 4 \cdot 1}{1} \\
& =8
\end{aligned}
$$

where $h_{2}\left(\mathbb{L}^{\prime}\right)=4\left(\right.$ cf. Brown and Parry [4]), $h_{2}\left(\mathbb{L}^{\prime \prime}\right)=4$ (by Lemma 3.4) and $h_{2}\left(\mathbb{L}^{+}\right)=1$ (by Proposition 3.1); and where $Q_{\mathbb{L}}=Q_{\mathbb{L}^{\prime}}=Q_{\mathbb{L}^{\prime \prime}}=1$ (using [12, Theorem 1]), because $\mathbb{L} / \mathbb{L}^{+}, \mathbb{L}^{\prime} / k$ and $\mathbb{L}^{\prime \prime} / k$ are essentially ramified.

Lemma 3.6 The 2 -class number of $\mathbb{F}=\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{-q}, \sqrt{2})$ is equal to 8 .
Proof Now, consider Figure 3 below:

Figure 3. Subextensions of \mathbb{F} / L.

So \mathbb{F} / L is a V_{4}-extension of CM-fields, of quadratic subextensions $\mathbb{F}^{\prime}, \mathbb{F}^{\prime \prime}$ and \mathbb{F}^{+}. Then by Proposition 3.3, we have

$$
\begin{aligned}
h_{2}(\mathbb{F}) & =\frac{Q_{\mathbb{F}}}{Q_{\mathbb{F}^{\prime}} \cdot Q_{\mathbb{F}^{\prime \prime}}} \cdot \frac{w_{\mathbb{F}}}{w_{\mathbb{F}^{\prime}} \cdot w_{\mathbb{F}^{\prime \prime}}} \cdot \frac{h_{2}\left(\mathbb{F}^{\prime}\right) \cdot h_{2}\left(\mathbb{F}^{\prime \prime}\right) \cdot h_{2}\left(\mathbb{F}^{+}\right)}{h_{2}(L)^{2}} \\
& =\frac{1}{1 \cdot 1} \cdot \frac{w_{\mathbb{F}}}{w_{\mathbb{F}^{\prime}} \cdot 2} \cdot \frac{2 \cdot 8 \cdot 1}{1} \\
& =8
\end{aligned}
$$

where $h_{2}\left(\mathbb{F}^{\prime}\right)=2\left(\right.$ cf. $\left[3\right.$, Theorem 5.19]), $h_{2}\left(\mathbb{F}^{\prime \prime}\right)=8$ (by Lemma 3.5) and $h_{2}\left(\mathbb{F}^{+}\right)=1$ (cf. [8, Proposition $4.2]$); and where $Q_{\mathbb{F}}=Q_{\mathbb{F}^{\prime}}=Q_{\mathbb{F}^{\prime \prime}}=1$ (using [12, Theorem 1$]$), because $\mathbb{F} / \mathbb{F}^{+}, \mathbb{F}^{\prime} / L$ and $\mathbb{F}^{\prime \prime} / L$ are essentially ramified. Moreover, $w_{\mathbb{F}}=w_{\mathbb{F}^{\prime}}$ and $w_{\mathbb{F}^{\prime \prime}}=2$.

Proposition 3.7 Let \mathfrak{q} be the prime ideal of \mathbb{F} above q, then \mathfrak{q} is not principal in \mathbb{F}.
Proof Keep the notations of the previous proof. Assume that \mathfrak{q} is principal in \mathbb{F}, then there exists $\delta \in \mathbb{F}$ such that $\mathfrak{q}=\delta \mathcal{O}_{\mathbb{F}}$, this implies that $\mathfrak{q}^{2}=\delta^{2} \mathcal{O}_{\mathbb{F}}=\pi \mathcal{O}_{\mathbb{F}}$ where $\pi \in \mathbb{F}^{+}$(because $\mathfrak{q}_{\mathbb{F}^{+}}=\pi \mathcal{O}_{\mathbb{F}^{+}}$and $\left.\mathfrak{q}_{\mathbb{F}^{+}} \mathcal{O}_{\mathbb{F}}=\mathfrak{q}^{2}\right)$, therefore there exists ε^{\prime} a unit of \mathbb{F} such that $\delta^{2}=\varepsilon^{\prime} \pi$. Since $Q_{\mathbb{F}}=1$, we have two cases to discuss:
First case: If $\varepsilon^{\prime} \in E_{\mathbb{F}^{+}}$, then $\varepsilon^{\prime} \pi=(a+b \sqrt{-q})^{2}=a^{2}-q b^{2}+2 a b \sqrt{-q}$ with a and b in \mathbb{F}^{+}, thus $a=0$ or $b=0$ because $\varepsilon^{\prime} \pi \in \mathbb{F}^{+}$.
(1) If $a=0$, then $\varepsilon^{\prime} \pi=-q b^{2}$, applying the norm in \mathbb{F}^{+} / L, we get $N_{\mathbb{F}^{+} / L}\left(\varepsilon^{\prime}\right) q=q^{2} N_{\mathbb{F}^{+} / L}(b)^{2}$, this yields that $\beta=q N_{\mathbb{F}^{+} / L}(b)^{2}$ where β denotes $N_{\mathbb{F}^{+} / L}\left(\varepsilon^{\prime}\right)$. We know that $\beta \in E_{L}$, then we have:
(a) If $\beta \in\{-1,1\}$, then $\sqrt{ \pm q} \in L$ which is absurd.
(b) If $\beta=\varepsilon$, then εq is a square in L, this means that there exist $x, y \in \mathbb{Q}(\sqrt{\ell})$ such that $\varepsilon q=$ $(x+y \sqrt{\varepsilon \sqrt{\ell}})^{2}=x^{2}+y^{2} \varepsilon \sqrt{\ell}+2 x y \sqrt{\varepsilon \sqrt{\ell}}$, therefore $x=0$ or $y=0$ because $\varepsilon q \in \mathbb{Q}(\sqrt{\ell})$. If $x=0$, then $q=y^{2} \sqrt{\ell}$, applying the norm in $\mathbb{Q}(\sqrt{\ell}) / \mathbb{Q}$, we get $\sqrt{-\ell} \in \mathbb{Q}$ which is absurd. Similarly, if $y=0$, we find that $\sqrt{-1} \in \mathbb{Q}$ which is absurd.
(c) If $\beta \notin\{-1,1, \varepsilon\}$, by applying the norm in $L / \mathbb{Q}(\sqrt{\ell})$, we get $\sqrt{-1} \in \mathbb{Q}(\sqrt{\ell})$ which is absurd.
(2) If $b=0$, with the same argument as for $a=0$, we find a contradiction.

Second case: If $\varepsilon^{\prime} \in W_{\mathbb{F}}$ and $q=3$, (i.e. $\varepsilon^{\prime}=j$ where j is a root of the polynomial $X^{2}+X+1$), we have $j \pi=\delta^{2}$, applying the norm in $\mathbb{F} / \mathbb{F}^{\prime}$, we find that $j^{2} q=N_{\mathbb{F} / \mathbb{F}^{\prime}}(\delta)^{2}$, this implies that $\sqrt{q} \in \mathbb{F}^{\prime}$ which is absurd.

Proposition 3.8 The class number of $\mathbb{H}^{\alpha}=\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{\alpha}, \sqrt{2})$ is odd, where $\alpha \in\{-1, q\}$.
Proof Put $H^{\alpha}=\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{\alpha})$. We first need to count the number of primes of H^{α} above 2 ramifying in \mathbb{H}^{α}. For this, let 2_{L} be a unique prime ideal of $L=\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}})$ lying above 2 , then 2_{L} remains inert in H^{α}. In fact, we can write $H^{\alpha}=L(\sqrt{\alpha \varepsilon \sqrt{\ell}})$ and we find

$$
\begin{array}{rlc}
\left(\frac{\alpha \varepsilon \sqrt{\ell}}{2_{L}}\right) & =\quad\left(\frac{\alpha \varepsilon \sqrt{\ell}}{2_{\mathbb{Q}(\sqrt{\ell})}}\right) \\
& =\quad\left(\frac{\alpha \varepsilon \sqrt{\ell}, 2}{2_{\mathbb{Q}(\sqrt{\ell})}}\right) \\
& =\left(\frac{\left.N_{\mathbb{Q}(\sqrt{\ell}) / \mathbb{Q}(\alpha \varepsilon \sqrt{\ell}), 2}^{2}\right)}{2}\right) \\
& = & \left(\frac{\alpha^{2} \ell, 2}{2}\right) \\
& = & \left(\frac{\ell, 2}{2}\right) \\
& = & \left(\frac{2}{\ell}\right) \\
& = & -1 .
\end{array}
$$

Moreover, the prime ideal $2_{H^{\alpha}}$ of H^{α} dividing 2_{L} ramifies in \mathbb{H}^{α} which is the first layer of the cyclotomic \mathbb{Z}_{2}-extension of H^{α}, because 2_{L} ramifies in $L(\sqrt{2})$. So we conclude that there exists only one prime of H^{α} lying above 2 which is totally ramified in H_{∞}^{α}. On the other hand, Propositions 3.1 and 3.2 show that $h\left(H^{\alpha}\right)$ is odd, thus $h\left(\mathbb{H}^{\alpha}\right)$ is odd using Proposition 2.6.

Corollary 3.9 The class number of H_{n}^{α} is odd, for all n.
Proposition 3.10 The 2 -class number of $K_{1}^{*}=K\left(\sqrt{q}, \zeta_{8}\right)$ is equal to 4 .
Proof Keep the previous notations. We can write $K_{1}^{*}=\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{q}, \sqrt{-1}, \sqrt{2})$, so we can regard $K_{1}^{*} / \mathbb{F}^{+}$ as a V_{4}-extension of CM-fields, of quadratic subextensions $\mathbb{F}, \mathbb{H}^{-1}$ and \mathbb{H}^{q}. Then by Proposition 3.3 , we have

$$
\begin{aligned}
h_{2}\left(K_{1}^{*}\right) & =\frac{Q_{K_{1}^{*}}}{Q_{\mathbb{F}} \cdot Q_{\mathbb{H}^{-1}}} \cdot \frac{w_{K_{1}^{*}}}{w_{\mathbb{F}} \cdot w_{\mathbb{H}^{-1}}} \cdot \frac{h_{2}\left(\mathbb{H}^{-1}\right) \cdot h_{2}\left(\mathbb{H}^{q}\right) \cdot h_{2}(\mathbb{F})}{h_{2}\left(\mathbb{F}^{+}\right)^{2}} \\
& =\frac{2}{1 \cdot 2} \cdot \frac{w_{K_{1}^{*}}}{2 \cdot w_{K_{1}^{*}}} \cdot \frac{1 \cdot 1 \cdot 8}{1} \\
& =4
\end{aligned}
$$

In fact; we have $Q_{\mathbb{F}}=1$ because $\mathbb{F} / \mathbb{F}^{+}$is essentially ramified, and $Q_{K_{1}^{*}}=Q_{\mathbb{H}^{-1}}=2$ because $K_{1}^{*} / \mathbb{H}^{q}$ and $\mathbb{H}^{-1} / \mathbb{F}^{+}$are not essentially ramified and $h_{2}\left(\mathbb{H}^{q}\right)=h_{2}\left(\mathbb{F}^{+}\right)=1$ (using [12, Theorem 1]). Moreover, $w_{\mathbb{F}} \cdot w_{\mathbb{H}^{-1}}=2 \cdot w_{K_{1}^{*}}$, and we have $h_{2}(\mathbb{F})=8$ (by Lemma 3.6) and $h_{2}\left(\mathbb{H}^{-1}\right)=h_{2}\left(\mathbb{H}^{q}\right)=1$ (by Proposition 3.8).

Proposition 3.11 The 2 -class group of K_{1}^{*} is cyclic of order 4 .
Proof Let \mathcal{Q} be the prime ideal of \mathbb{H}^{-1} above q, then $v_{\mathcal{Q}}(q)=1$. Since $K_{1}^{*}=\mathbb{H}^{-1}(\sqrt{-q})$, so we have

$$
\begin{aligned}
\left(\frac{-q, q}{\mathcal{Q}}\right) & =\left(\frac{-1, q}{\mathcal{Q}}\right) \cdot\left(\frac{q, q}{\mathcal{Q}}\right) \\
& =\left(\frac{-1}{\mathcal{Q}}\right)^{v_{\mathcal{Q}}(q)} \cdot\left(\frac{-1}{\mathcal{Q}}\right) \\
& =\quad\left(\frac{-1}{\mathcal{Q}}\right)^{2} \\
& =\quad 1 .
\end{aligned}
$$

By genus theory, the ideal class of $\mathfrak{q}_{K_{1}^{*}}$ is a square in K_{1}^{*}, hence there exists an ideal I of K_{1}^{*} such that $\mathfrak{q}_{K_{1}^{*}} \sim I^{2}$, then the ideal class $[I]$ is of order 4 . In fact, if $I^{2} \sim 1$ then $\mathfrak{q}_{K_{1}^{*}} \sim 1$, applying the norm in K_{1}^{*} / \mathbb{F}, we get $\mathfrak{q}_{\mathbb{F}} \sim 1$, and this contradicts Proposition 3.7. Finally, we conclude that the 2 -class group of K_{1}^{*} is cyclic of order 4 generated by the ideal class $[I]$.

4. Main results

Let q and ℓ be two primes satisfying the conditions (1.1). Let A_{n} denote the 2 -class group of the n-th layer of the cyclotomic \mathbb{Z}_{2}-extension of the genus field $K^{*}=K(\sqrt{q}, \sqrt{-1})$. The main results of this paper are the following:

Theorem 4.1 The Iwasawa module A_{∞} is isomorphic to \mathbb{Z}_{2}^{3}.
Proof Let H and F denote $\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{-q})$ and $\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{-1})$, respectively; and let L denote K^{*} which coincides with $\mathbb{Q}(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{q}, \sqrt{-1})$. Consider Figure 4 below:

Figure 4. Subextensions of L / F^{+}.

By Corollary 3.9, the class number of F_{n} is odd, this implies that $\lambda(F)=0$, therefore $\lambda^{-}(F)=0$. On the other hand, we have q splits into 2 prime ideals of F. In fact, let \mathfrak{q} be the unique prime ideal of F^{+}lying above q, so we have:

$$
\left(\frac{-1}{\mathfrak{q}}\right)=\left(\frac{N_{F+/ \mathbb{Q}(\sqrt{\ell})}(-1)}{\mathfrak{q}_{\mathbb{Q}(\sqrt{\ell})}}\right)=1 .
$$

Since $q \equiv 3(\bmod 8)$, by Proposition 2.1 , we have q splits into 2 primes of $\mathbb{Q}\left(\zeta_{16}\right)$ and it is inert in $\mathbb{Q}_{2}=$ $\mathbb{Q}\left(\sqrt{\pi_{3}}\right)$, then q splits into the product of 8 primes in $F_{2}=\mathbb{Q}\left(\sqrt{\varepsilon \sqrt{\ell}}, \zeta_{16}\right)$ because it splits into 4 primes in $F_{2}^{+}=\mathbb{Q}\left(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{\pi_{3}}\right)$. Thus q splits into 8 primes in $F_{n}=\mathbb{Q}\left(\sqrt{\varepsilon \sqrt{\ell}}, \zeta_{2^{n+2}}\right)$ while it decomposes into 4 primes in $F_{n}^{+}=\mathbb{Q}\left(\sqrt{\varepsilon \sqrt{\ell}}, \sqrt{\pi_{n+1}}\right)$, for all $n \geq 2$. Note that $\left[L_{\infty}: F_{\infty}\right]=\left[L_{\infty}^{+}: F_{\infty}^{+}\right]=2$ and $e_{\beta}=e_{\beta^{+}}=2$, then by Theorem 2.4, we have

$$
\lambda^{-}(L)-1=2 \cdot(0-1)+8-4
$$

thus

$$
\lambda^{-}(L)=3
$$

By Corollary 3.9, we have the class number of L_{n}^{+}is odd, this means that $\lambda\left(L^{+}\right)=0$, therefore $\lambda^{+}(L)=$ $\lambda\left(L^{+}\right)=0$. Then,

$$
\lambda(L)=\lambda^{+}(L)+\lambda^{-}(L)=3
$$

Since the extension L_{n} / L_{n}^{+}is unramified and $h\left(L_{n}^{+}\right)$is odd, for all $n \geq 0$, then by Lemma $2.3, A_{\infty}^{-}=A_{\infty}$. By Theorem 2.2 there is no finite Λ-submodule in A_{∞}^{-}, hence A_{∞} is a Λ-module without finite part. So,

$$
A_{\infty} \simeq \mathbb{Z}_{2}^{3}
$$

Theorem 4.2 The structure of A_{n} is given by:

$$
A_{n} \simeq \begin{cases}0 & \text { for } n=0 \\ \mathbb{Z} / 4 \mathbb{Z} & \text { for } n=1, \\ \mathbb{Z} / 2^{a} \mathbb{Z} \times \mathbb{Z} / 2^{b} \mathbb{Z} & \text { or } \mathbb{Z} / 2^{a} \mathbb{Z} \times \mathbb{Z} / 2^{b} \mathbb{Z} \times \mathbb{Z} / 2^{c} \mathbb{Z} \\ \mathbb{Z} / 2^{a_{n}} \mathbb{Z} \times \mathbb{Z} / 2^{b_{n}} \mathbb{Z} \times \mathbb{Z} / 2^{c_{n}} \mathbb{Z} & \text { for } n=2 \\ \text { for all } n \geq 3\end{cases}
$$

where $\left\{a, b, c, a_{n}, b_{n}, c_{n}\right\} \subset \mathbb{N}^{*}$.
Proof Keep the notations we have introduced in the previous proof. By Theorem 4.1, we have

$$
A_{\infty} \simeq \mathbb{Z}_{2}^{\lambda(L)} \simeq \bigoplus_{j} \Lambda /\left(g_{j}(T)\right)
$$

where each g_{j} is distinguished and $\sum_{j} \operatorname{deg} g_{j}=\lambda(L)$, this shows that A_{∞} is an elementary Λ-module. Moreover, we have L / \mathbb{Q} is an abelian extension, i.e. $\mu(L)=0$. Then, by Theorem 2.5,

$$
\operatorname{rank}_{2}\left(A_{n}\right)=3, \quad \text { for all } n \geq 3
$$

this implies that

$$
A_{n} \simeq \mathbb{Z} / 2^{a_{n}} \mathbb{Z} \times \mathbb{Z} / 2^{b_{n}} \mathbb{Z} \times \mathbb{Z} / 2^{c_{n}} \mathbb{Z}, \quad \text { for all } n \geq 3
$$

Since the 2-class group of K_{1}^{*} is cyclic of order 4 by Proposition 3.11, then

$$
A_{1} \simeq \mathbb{Z} / 4 \mathbb{Z}
$$

So we conclude all possible structures of A_{2} which are:

$$
A_{2} \simeq \mathbb{Z} / 2^{a} \mathbb{Z} \times \mathbb{Z} / 2^{b} \mathbb{Z} \quad \text { or } \quad A_{2} \simeq \mathbb{Z} / 2^{a} \mathbb{Z} \times \mathbb{Z} / 2^{b} \mathbb{Z} \times \mathbb{Z} / 2^{c} \mathbb{Z}
$$

Finally, we know that the class number of K^{*} is odd by [3, Theorem 5.19], then

$$
A_{0} \simeq 0
$$

The following example was computed using PARI/GP:

Example 4.3 Let $K=\mathbb{Q}(\sqrt{-3 \varepsilon \sqrt{5}})$ where $\varepsilon=\frac{1+\sqrt{5}}{2}$. Since $5 \equiv 5(\bmod 8), 3 \equiv 3(\bmod 8)$ and $\left(\frac{3}{5}\right)=-1$, we have

$$
A_{n} \simeq \begin{cases}0 & \text { for } n=0 \\ \mathbb{Z} / 4 \mathbb{Z} & \text { for } n=1 \\ \mathbb{Z} / 16 \mathbb{Z} \times \mathbb{Z} / 8 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} & \text { for } n=2\end{cases}
$$

Moreover, $A_{\infty} \simeq \mathbb{Z}_{2}^{3}$ where A_{∞} is attached to K^{*}.

References

[1] Azizi A, Jerrari I, Talbi M. On the rank of the 2 -class group of an extension of degree 8 over \mathbb{Q}. Periodica Mathematica Hungarica 2019; 78 (1): 128-134. doi: 10.1007/s10998-018-0269-5
[2] Azizi A, Jerrari I, Zekhnini A, Talbi M. On the second 2-class group $\operatorname{Gal}\left(K_{2}^{(2)} / K\right)$ of some imaginary quartic cyclic number field K. Journal of Number Theory 2017; 177: 562-588. doi: 10.1016/j.jnt.2017.01.027
[3] Azizi A, Talbi M. Groupe de Galois de certains corps de classes. Analele Stiintifice ale Universitatii Ovidius Constanta 2011; 19 (3): 27-50 (in French with an abstract in English).
[4] Brown E, Parry CJ. The 2 -class group of certain biquadratic number fields I. Journal für die reine und angewandte Mathematik 1977; 295: 61-71.
[5] Chems-Eddin MM. The 2-Iwasawa module over certain octic elementary fields. arXiv: 2007.05953
[6] Chems-Eddin MM. The rank of the 2-class group of some fields with large degree. arXiv: 2001.00865
[7] Gras G. Sur les l-classes d'idéaux dans les extensions cycliques relatives de degré premier l. Annales de l'Institut Fourier 1973; 23 (3): 1-48 (in French). doi: 10.5802/aif. 471
[8] Jerrari I, Azizi A. On the structure of the 2-Iwasawa module of some number fields of degree 16. Czechoslovak Mathematical Journal. doi: 10.21136/CMJ.2022.0398-21
[9] Kaplan P. Divisibilité par 8 du nombre des classes des corps quadratiques dont le 2 -groupe des classes est cyclique, et réciprocité biquadratique. Journal of the Mathematical Society of Japan 1973; 25 (4): 596-608 (in French). doi: 10.2969/jmsj/02540596
[10] Kaplan P. Sur le 2 -groupe des classes d'idéaux des corps quadratiques. Journal für die reine und angewandte Mathematik 1976; 283/284: 313-363 (in French). doi: 10.1515/crll.1976.283-284.313
[11] Kida Y. Cyclotomic Z_{2}-extensions of J-fields. Journal of Number Theory 1982; 14 (3): 340-352. doi: 10.1016/0022-314X(82)90069-5
[12] Lemmermeyer F. Ideal class groups of cyclotomic number fields I. Acta Arithmetica 1995; 72 (4): 347-359. doi: 10.4064/aa-72-4-347-359
[13] Lemmermeyer F. On 2-class field towers of some imaginary quadratic number fields. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg 1997; 67 (1): 205-214. doi: 10.1007/BF02940830
[14] Lemmermeyer F. Reciprocity Laws: From Euler to Eisenstein. Springer Monographs in Mathematics. Berlin, Heidelberg, Germany: Springer, 2000.
[15] Müller K. Capitulation in the \mathbb{Z}_{2} extension of CM number fields. Mathematical Proceedings of the Cambridge Philosophical Society 2019; 166 (2): 371-380. doi: $10.1017 /$ S0305004118000026
[16] Washington LC. Graduate Texts in Mathematics: Introduction to Cyclotomic Fields. New York, USA: Springer, 1997.

