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Abstract: In this paper, we consider an initial value problem (IVP) for three dimensional elasticity system in a
transversely isotropic inhomogeneous media. We will rewrite the problem in the form of Fourier images by means of
Fourier transform method. After some arrangements, the problem is reduced to integral equations in the vector form.
Using the properties of the vector integral equation and successive approximations method, an explicit formula for the
solution of the IVP in transversely isotropic inhomogeneous media is constructed, and existence and uniqueness of the
solution is stated. By a computational example, we illustrate the robustness of the method.
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1. Introduction
The study of wave propagation of elastic waves in anisotropic, inhomogeneous media has great interest to
characterize the properties of many important materials in different branches of applied sciences. However,
the number of studies dealing with wave propagation in anisotropic inhomogeneous media is scarce [2, 4–
7, 9, 13–17, 20, 22, 23]. Anisotropic materials are materials whose properties are directionally dependent. A
general anisotropic solid has 21 independent elastic constants. If a material has a symmetry plane, then this
leaves decreasing in the number of independent constants. Orthotropic, transversely isotropic, hexagonal, cubic
materials are anisotropic materials with various numbers of symmetry planes. Transverse isotropic materials
are one of the subset of anisotropic materials. These materials have the same properties in one plane (e.g.,
the xy -plane) and different properties in the direction normal to this plane (e.g., the z -axis). Thus, they are
described by 5 independent elastic constants.

The velocity stress formulation for propagation of elastic seismic waves through 2D heterogeneous trans-
versely isotropic media of arbitrary orientation is considered by Christopher Juhlin in [10]. In the paper, the
equations are recast into a finite difference scheme and solved numerically using operators. Numerical model-
ing of two dimensional, three-component wave propagation in a transversely isotropic medium with arbitrary
orientation using finite element modeling in transversely isotropic media is studied in [25] by Jianlin Zhu and
Jim Dorman. In [24], Yang et al. transform the seismic wave equations in 2D inhomogeneous anisotropic
media into a system of first-order partial differential equations with respect to time t . The space derivatives
are calculated by using an interpolation approximation, while the time derivatives are replaced by a truncated
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Taylor expansion. The method enables wave propagation to be simulated in two dimensions through generally
anisotropic and heterogeneous models. A solution of the problem of seismic waves propagation from a point
source in an inhomogeneous transverse isotropic medium using a method based on a combination of partial
separation of variables and finite-difference method is studied by Martynov and Mikhailenko in [13]. Carcione
et al. used a pseudospectral time-integration technique to solve the equation of motion, where the propagation
is done by a direct expansion of the evolution operator by a Chebycheff polynomial series in [3]. Synthetic
seismograms were computed for P SV wave propagation in transversely isotropic media by Tsingas et al. in [18].
The finite difference method used to model wave propagation in anisotropic inhomogeneous media bounded by
irregular interfaces. The analytical solutions for body-wave velocity in a continuously inhomogeneous trans-
versely isotropic material, in which Young’s moduli, shear modulus, and material density change according to
the generalized power law model with the remaining elastic constants are assumed to be constants are set down
in [21] by Wang et al.

The explicit formula for the solution of IVP of elastic system has not been constructed and visualized
in the case when the elastic modules, initial data and nonhomogeneous terms are arbitrary smooth functions.
In [1], the explicit formula for the solution of initial value problem (IVP) of elastic system in inhomogeneous
orthotropic media is constructed. As a continuation of the study in [1], the IVP for three dimensional elasticity
system in transversely isotropic vertically inhomoeneous media is considered when the elastic modules, initial
data and nonhomogeneous terms are arbitrary smooth functions. An explicit formula for the solution of the
considered IVP using similar analytical approach is obtained. A computational example is given to compare
the exact solution and the solution obtained by the analytical method explained herein.

2. Problem setup

The mathematical model of anisotropic elastic wave propagation is described by

ρ
∂2uj

∂t2
=

3∑
k=1

∂σjk

∂xk
+ fj , j = 1, 2, 3, (2.1)

where x = (x1, x2, x3) ∈ R3 , t > 0 , uj(x, t) are the components of the unknown displacement vector. The
constant ρ > 0 is the density of the medium [6, 7, 17].

According to the Hooke’s law each stress-tensor component σjk is related to all the strain-tensor com-
ponents εlm can be written as

σjk =

3∑
l,m=1

cjklmεlm, (2.2)

where the components of the strain-tensor is defined as follows:

εlm =
1

2

(
∂ul

∂xm
+

∂um

∂xl

)
. (2.3)

{cjklm}3j,k,l,m=1 are the components of a tensor, known as the elasticity tensor. It is a forth-order positive
definite tensor and the components of the tensor satisfy the symmetry conditions cjklm = ckjlm = cjkml [7, 8, 11].
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Invoking the definition of the strain tensor, given in expression (2.3), equation (2.2) can be rewritten as

σjk = cjk11
∂u1

∂x1
+ cjk22

∂u2

∂x2
+ cjk33

∂u3

∂x3

+ cjk12

(
∂u1

∂x2
+

∂u2

∂x1

)
+ cjk13

(
∂u1

∂x3
+

∂u3

∂x1

)
+ cjk23

(
∂u2

∂x3
+

∂u3

∂x2

)
.

(2.4)

It is convenient and customary to describe the elastic moduli in terms of a 6× 6 matrix according to the
following conventions relating a pair (j, k) of indices j, k = 1, 2, 3 to a single index α, β = 1, · · · , 6 : [7, 12, 19]

(1, 1) ↔ 1, (2, 2) ↔ 2, (3, 3) ↔ 3,

(2, 3), (3, 2) ↔ 4, (1, 3), (3, 1) ↔ 5, (1, 2), (2, 1) ↔ 6.
(2.5)

This correspondence is possible due to the symmetry properties. The additional symmetry property
cjklm = clmjk implies that the matrix

c = (cαβ), where α = (jk) and β = (lm),

is symmetric.
In transversely isotropic media the physical properties are symmetric about an axis that is normal to a

plane of isotropy (xy -plane in the figure). There are three mutually orthogonal planes of reflection symmetry
and axial symmetry with respect to z -axis. Number of independent coefficients is 5 . The elastic moduli c for
the transversely isotropic media can be written as follows [17]:

c =


c11 c12 c13 0 0 0
c12 c11 c13 0 0 0
c13 c13 c33 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 1

2 (c11 − c12)

 .

In this paper, we assume that the components of the elasticity tensor depend on x3 . Substituting (2.4)
into equation (2.1) and using the symmetry properties of elastic moduli, the mathematical model of the elastic
wave propagation in transversely isotropic media can be formulated as follows:

ρ
∂2u1

∂t2
=

∂c44
∂x3

(
∂u1

∂x3
+

∂u3

∂x1

)
+ c11

∂2u1

∂x2
1

+ c12
∂2u2

∂x1∂x2
+ c13

∂2u3

∂x1∂x3

+
1

2
(c11 − c12)

(
∂2u2

∂x1∂x2
+

∂2u1

∂x2
2

)
+ c44

(
∂2u1

∂x2
3

+
∂2u3

∂x1∂x3

)
+ f1(x, t),

(2.6)

ρ
∂2u2

∂t2
=

∂c44
∂x3

(
∂u2

∂x3
+

∂u3

∂x2

)
+

1

2
(c11 − c12)

(
∂2u1

∂x2∂x1
+

∂2u2

∂x2
1

)

+ c12
∂2u1

∂x1∂x2
+ c11

∂2u2

∂x2
2

+ c13
∂2u3

∂x2∂x3
+ c44

(
∂2u2

∂x2
3

+
∂2u3

∂x2∂x3

)
+ f2(x, t),

(2.7)
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ρ
∂2u3

∂t2
=

∂c13
∂x3

∂u1

∂x1
+

∂c13
∂x3

∂u2

∂x2
+

∂c33
∂x3

∂u3

∂x3
+ c44

(
∂2u1

∂x1∂x3
+

∂2u3

∂x2
1

)

+ c44

(
∂2u2

∂x2∂x3
+

∂2u3

∂x2
2

)
+ c13

∂2u1

∂x1∂x3
+ c13

∂2u2

∂x2∂x3
+ c33

∂2u3

∂x2
3

+ f3(x, t).

(2.8)

In the paper, an initial value problem (IVP) for elastic system (2.6)–(2.8) in transversely isotropic
inhomogeneous media with initial conditions

ui(x, 0) = 0 and ∂ui(x, t)

∂t

∣∣∣
t=0

= 0, (2.9)

is considered.
Through the paper, the following assumptions and notations are used: ∆(T ) is a triangular domain

defined as
∆(T ) = {(x3, t) : t ∈ [0, T ], |x3| ≤ a(T − t)}, (2.10)

where T is a given positive number. The elastic constants are twice continuously differentiable functions over
[−aT, aT ] and depend on x3 . Assume that there exist constants ρ0 , α , and β such that ρ(x3) ≥ ρ0 > 0 and
0 < α ≤ c33, c44 ≤ β , where a =

√
β/ρ0 . Further, assume that the functions fi(x, t) , i = 1, 2, 3 have the

respective Fourier transform Fi(ν, x3, t) with respect to x1, x2 , and let their Fourier images belong to the space
C(R2 ×∆(T )) , ν = (ν1, ν2) .

Consider now the following formulation of the Fourier transform

Fx1,x2 [u](ν, x3, t) =

∫ ∞

−∞

∫ ∞

−∞
u(x, t)ei(ν1x1+ν2x2)dx1dx2.

Applying the Fourier transform with respect to x1, x2 to the equations of motion (2.6)–(2.8) yields

ρ
∂2U1

∂t2
=

∂c44
∂x3

(
∂U1

∂x3
+ iν1U3

)
− ν21c11U1 − ν1ν2c12U2 + iν1c13

∂U3

∂x3

+
1

2
(c11 − c12)

(
−ν1ν2U2 − ν22U1

)
+ c44

(
∂U1

∂x2
3

+ iν1
∂U3

∂x3

)
+ F1 (ν, x3, t) ,

(2.11)

ρ
∂2U2

∂t2
=

∂c44
∂x3

(
∂U2

∂x3
+ iν2U3

)
+

1

2
(c11 − c12)

(
−ν1ν2U1 − ν21U2

)
− c12ν1ν2U1 − c11ν

2
2U2 + iν2c13

∂U3

∂x3
+ c44

(
∂2U2

∂x2
3

+ iν2
∂U3

∂x3

)
+ F2 (ν, x3, t) ,

(2.12)

ρ
∂2U3

∂t2
= iν1

∂c13
∂x3

U1 + iν2
∂c13
∂x3

U2 +
∂c33
∂x3

∂U3

∂x3
+ c44

(
iν1

∂U1

∂x3
− ν21U3

)

+ c44

(
iν2

∂U2

∂x3
− ν22U3

)
+ ic13

(
ν1

∂U1

∂x3
+ ν2

∂U2

∂x3

)
+ c33

∂2U3

∂x2
3

+ F3 (ν, x3, t) ,

(2.13)

where Fx1,x2
[u] = U(ν, x3, t) and Fx1,x2

[f ] = F (ν, x3, t) .
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3. Reduction of IVP to a vector integral equation

In this section, we consider the following transform:

yj = τj(x3); τj(x3) =

∫ x3

0

cj(ξ)dξ; x3 = τ−1
j (yj)

c21(x3) = c22(x3) =
ρ

c44
, c23(x3) =

ρ

c33
,

and denote

Uj(ν, x3, t)
∣∣∣
x3=τ−1

j (yj)
= Vj(ν, yj , t), j = 1, 2, 3,

Fj (ν, x3, t)
∣∣∣
x3=τ−1

j (yj)
= Ψj (ν, yj , t) , j = 1, 2, 3.

Using the transformation and the notations given above, the IVP (2.11)–(2.13) becomes

∂2V1

∂t2
=

∂2V1

∂y21
−M1 (y1)

∂V1

∂y1
− 1

ρ
(
τ−1
1 (y1)

) {(ν21c11 + ν22c66
)
V1 + ν1ν2 (c12 + c66)V2

}
x3=τ−1

1 (y1)

+
iν1

ρ
(
τ−1
1 (y1)

) {∂c44
∂x3

U3 + (c13 + c44)
∂U3

∂x3

}
x3=τ−1

1 (y1)

+
1

ρ
(
τ−1
1 (y1)

)Ψ1 (ν, y1, t) ,

(3.1)

∂2V2

∂t2
=

∂2V2

∂y21
−M2 (y1)

∂V2

∂y1
− 1

ρ
(
τ−1
1 (y1)

) {(ν21c66 + ν22c11
)
V2 + ν1ν2 (c66 + c12)V1

}
x3=τ−1

1 (y1)

+
iν2

ρ
(
τ−1
1 (y1)

) {∂c44
∂x3

U3 + (c13 + c44)
∂U3

∂x3

}
x3=τ−1

1 (y1)

+
1

ρ
(
τ−1
1 (y1)

)Ψ2 (ν, y1, t) ,

(3.2)

∂2V3

∂t2
=

∂2V3

∂y23
−M3 (y3)

∂V3

∂y3
− 1

ρ
(
τ−1
3 (y3)

) {(ν21 + ν22
)
c44V3 − i

∂c13
∂x3

(ν1U1 + ν2U2)

}
x3=τ−1

3 (y3)

+
i

ρ
(
τ−1
3 (y3)

) {(c13 + c44)

(
ν1

∂U1

∂x3
+

∂U2

∂x3

)}
x3=τ−1

3 (y3)

+
1

ρ
(
x−1
3 (y3)

)Ψ3 (ν, y3, t) ,

(3.3)

where

M1 (y1) = M2 (y1) =
d

dy1
ln
{[

c44
(
τ−1
1 (y1)

)
ρ
(
τ−1
1 (y1)

)]− 1
2

}
,

M3 (y3) =
d

dy3
ln
{[

c33
(
τ−1
3 (y3)

)
ρ
(
τ−1
3 (y3)

)]− 1
2

}
.

We seek a solution of the problem (3.1)–(3.3) in the following form:

Vj(ν, yj , t) = Sj(yj)Wj(ν, yj , t), j = 1, 2, 3,

where the function Sj(yj) defined by

Sj(yj) = exp

(
1

2

∫ yj

0

Mj(ξ)dξ

)
,
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then the following equations can be obtained

∂2W1

∂t2
− ∂2W1

∂y21
= W1

[
M ′

1

2
− 1

4
M2

1

]
− 1

ρ
(
τ−1
1 (y1)

) {(ν21c11 + ν22c66
)
W1 + ν1ν2 (c12 + c66)W2

}
x3=τ−1

1 (y1)

+
iν1

ρ
(
τ−1
1 (y1)

)
S1 (y1)

{
∂c44
∂x3

U3 + (c13 + c44)
∂U3

∂x3

}
x3=τ−1

1 (y1)

+
1

S1 (y1) ρ
(
τ−1
1 (y1)

)Ψ1 (ν, y3, t) ,

(3.4)

∂2W2

∂t2
− ∂2W2

∂y21
= W2

[
M ′

1

2
− 1

4
M2

1

]
− 1

ρ
(
τ−1
1 (y1)

) {(ν21c66 + ν22c11
)
W2 + ν1ν2 (c66 + c12)W1

}
x3=τ−1

1 (y1)

+
iν2

S1 (y1) ρ
(
τ−1
1 (y1)

) {∂c44
∂x3

U3 + (c13 + c44)
∂U3

∂x3

}
x3=τ−1

1 (y1)

+
1

S1 (y1) ρ
(
τ−1
1 (y1)

)Ψ2 (ν, y3, t) ,

(3.5)

∂2W3

∂t2
− ∂2W3

∂y23
= W3

[
M ′

3

2
− 1

4
M2

3

]
− 1

ρ
(
τ−1
3 (y3)

) {(ν21 + ν22
)
c44W3

}
x3=τ−1

3 (y3)

+
i

ρ
(
τ−1
3 (y3)

)
S3 (y3)

{
∂c13
∂x3

(ν1U1 + ν2U2) + (c13 + c44)

(
ν1

∂U1

∂x3
+

∂U2

∂x3

)}
x3=τ−1

3 (y3)

+
1

ρ
(
τ−1
3 (y3)

)
S3 (y3)

Ψ3 (ν, y3, t) .

(3.6)

To simplify the equations (3.4)–(3.6), let us define new notations as follows:

qi (yi) =
1

2

∂Mi

∂yi
− 1

4
M2

i , Li (yi) =
1

ρ
(
τ−1
i (yi)

) , Ni (yi) =
1

ρ
(
τ−1
i (yi)

)
Si (yi)

,

Φi (ν, yi, t) = Ni (yi)Ψi(ν, y3, t), Pli(yi) = Cll(x3)
∣∣∣
x3=τ−1

i (yi)
, l = 1, 4, 6,

Qmi(yi) = C1m(x3)
∣∣∣
x3=τ−1

i (yi)
, m = 2, 3.

Using these notations, equations (3.4)–(3.6) can be written as follows:

∂2W1

∂t2
− ∂2W1

∂y21
= q1W1 − L1

[(
ν21P11 + ν22P61

)
W1 + ν1ν2 (Q21 + P61)W2

]
+ iν1N1C̃1

[
Q31

∂U3

∂y1
+

∂

∂y1
(P41U3)

]
+Φ1 (ν, y1, t) ,

(3.7)

∂2W2

∂t2
− ∂2W2

∂y21
= q1W2 − L1

[(
ν21P61 + ν22P11

)
W2 + ν1ν2 (P61 +Q21)W1

]
+ iν2N1C̃1

[
Q31

∂U3

∂y1
+

∂

∂y1
(P41U3)

]
+Φ2 (ν, y1, t) ,

(3.8)
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∂2W3

∂t2
− ∂2W3

∂y23
= q3W3 − L3

[(
ν21 + ν22

)
P43W3

]
+Φ3 (ν, y3, t)

+ iC̃3N3

[
ν1

∂

∂y3
(Q33U1) + ν2

∂

∂y3
(Q33U2) + ν1P43

∂U1

∂y3
+ ν2P43

∂U2

∂y3

]
.

(3.9)

Using d’Alembert’s formula, equations (3.7)–(3.9) together with the initial conditions, (2.9) can be written in
the following form of integral equations:

W1(ν, y1, t) =
1

2

∫ t

0

∫ y1+(t−η)

y1−(t−η)

q1W1 − L1

[(
ν21P11 + ν22P61

)
W1 + ν1ν2 (Q21 + P61)W2

]
− iν1

∂

∂ξ

[
N1C̃1Q31

]
U3 − iν1

∂

∂ξ

[
N1C̃1

]
P41U3 +Φ1(ν, ξ, τ)dξdη

+
1

2

∫ t

0

iν1N1C̃1(Q31 + P41)U3(ν, τ
−1
1 (ξ), η)

∣∣∣y1+(t−τ)

y1−(t−τ)
dη,

(3.10)

W2 (ν, y1, t) =
1

2

∫ t

0

∫ y1+(t−η)

y1−(t−η)

{q1W2 − L1

[(
ν21P61 + ν22P11

)
W2 + ν1ν2 (P61 +Q21)W1

]
− iν2

∂

∂ξ

[
N1C̃1Q31

]
U3 − iν2

∂

∂ξ
[N1c̃1]P41U3 +Φ2(ν, ξ, τ)}dξdη

+
1

2

∫ t

0

iν2N1C̃1 (Q31 + P41)U3

∣∣∣y1+(t−τ)

y1−(t−τ)
dη,

(3.11)

W3 (ν, y3, t) =
1

2

∫ t

0

∫ y3+(t−η)

y3−(t−η)

{q3W3 − L3

[(
ν21 + ν22

)
P43W3

]
+Φ3(ν, ξ, τ)

− iν1
∂

∂ξ

[
C̃3N3

]
Q33U1 − iν2

∂

∂ξ

[
C̃3N3

]
Q33U2

− iν1
∂

∂ξ

[
C̃3N3P43

]
U1 − iν2

∂

∂ξ

[
C̃3N3P43

]
U2}dξdη

+
1

2

∫ t

0

iC̃3N3 (Q33 + P43) (ν1U1 + ν2U2)
∣∣∣y3+(t−τ)

y3−(t−τ)
dη.

(3.12)

Since Vj (ν, yj , t) = Sj (yj)Wj (ν, yj , t) and U (ν, x3, t)
∣∣∣
x3=τ−1

j (yj)
= Vj (ν, yj , t) , then equations (3.10)–(3.12)

take the form

U1(ν, x3, t) =
S1(τ1(x3))

2

∫ t

0

∫ τ1(x3)+(t−η)

τ1(x3)−(t−η)

[
q1(ξ)− L1(ξ)

(
ν21P11(ξ) + ν22P61(ξ)

)] U1(ν, τ
−1
1 (ξ), η)

S1(ξ)

− ν1ν2L1(ξ) (Q21(ξ) + P61(ξ))
U2(ν, τ

−1
1 (ξ), η)

S1(ξ)
− iν1

∂

∂ξ

[
N1(ξ)C̃1(ξ)Q31(ξ)

]
U3(ν, τ

−1
1 (ξ), η)

− iν1
∂

∂ξ

[
N1(ξ)C̃1(ξ)

]
P41(ξ)U3(ν, τ

−1
1 (ξ), η) + Φ1(ν, ξ, η)dξdη

+
iν1S1(τ1(x3))

2

∫ t

0

N1(ξ)C̃1(ξ)(Q31(ξ) + P41(ξ))U3(ν, τ
−1
1 (ξ), η)

∣∣∣τ1(x3)+(t−τ)

τ1(x3)−(t−τ)
dη,

(3.13)

2720



ALTUNKAYNAK/Turk J Math

U2(ν, x3, t) =
S1(τ1(x3))

2

∫ t

0

∫ τ1(x3)+(t−η)

τ1(x3)−(t−η)

[
q1(ξ)− L1(ξ)

(
ν21P61(ξ) + ν22P11(ξ)

)] U2(ν, τ
−1
1 (ξ), η)

S1(ξ)

− ν1ν2L1(ξ) (P61(ξ) +Q21(ξ))
U1(ν, τ

−1
1 (ξ), η)

S1(ξ)
− iν2

∂

∂ξ

[
N1(ξ)C̃1(ξ)Q31(ξ)

]
U3(ν, τ

−1
1 (ξ), η)

− iν2
∂

∂ξ

[
N1(ξ)C̃1(ξ)

]
P41(ξ)U3(ν, τ

−1
1 (ξ), η) + Φ2(ν, ξ, η)dξdη

+
iν2S1(τ1(x3))

2

∫ t

0

N1(ξ)C̃1(ξ) (Q31(ξ) + P41(ξ))U3(ν, τ
−1
1 (ξ), η)

∣∣∣τ1(x3)+(t−τ)

τ1(x3)−(t−τ)
dη,

(3.14)

U3(ν, x3, t) =
S3(τ3(x3))

2

∫ t

0

∫ τ3(x3)+(t−η)

τ3(x3)−(t−η)

[
q3(ξ)− L3(ξ)

(
ν21 + ν22

)
P43(ξ)

] U3(ν, τ
−1
3 (ξ), η)

S3(ξ)

− iν1
∂

∂ξ

[
C̃3(ξ)N3(ξ)

]
Q33(ξ)U1(ν, τ

−1
3 (ξ), η)− iν2

∂

∂ξ

[
C̃3(ξ)N3(ξ)

]
Q33(ξ)U2(ν, τ

−1
3 (ξ), η)

− iν1
∂

∂ξ

[
C̃3(ξ)N3(ξ)P43(ξ)

]
U1(ν, τ

−1
3 (ξ), η)− iν2

∂

∂ξ

[
C̃3(ξ)N3(ξ)P43(ξ)

]
U2(ν, τ

−1
3 (ξ), η)}

+Φ3(ν, ξ, η)dξdη

+
iS3(τ3(x3))

2

∫ t

0

C̃3(ξ)N3(ξ) (Q33(ξ) + P43(ξ))
(
ν1U1(ν, τ

−1
3 (ξ), η) + ν2U2(ν, τ

−1
3 (ξ), η)

) ∣∣∣τ−1
3 +(t−τ)

τ−1
3 −(t−τ)

dη.

(3.15)

Using equations (3.13)–(3.15) and the notations

Vj (ν, yj , t) = Sj (yj)Wj (ν, yj , t) ,

U (ν, x3, t)
∣∣∣
x3=τ−1

j (yj)
= Vj (ν, yj , t) ,

the system of integral equations with respect to the unknowns U1, U2, U3 can be written as an operator integral
equation

Θ(ν, x3, t) = G(ν, x3, t) +

∫ t

0

(KΘ)(ν, x3, t)dτ, where Θ = (Θ1, Θ2, Θ3), (3.16)

has components which are unknown functions Θj = Uj , j = 1, 2, 3 and G = (G1, G2, G3) is the known vector
function with components

Gi(ν, x3, t) =
Si(τi(x3))

2

∫ t

0

∫ yi+(t−τ)

yi−(t−τ)

Φi(ν, ξ, τ)dξdτ, i = 1, 2, 3, (3.17)
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and K = (K1,K2,K3) is the vector-operator with components defined as

(K1Θ)(ν, x3, t, τ) =
S1(τ1(x3))

2

∫ τ1(x3)+(t−η)

τ1(x3)−(t−η)

[
q1(ξ)− L1(ξ)

(
ν21P11(ξ) + ν22P61(ξ)

)] Θ1(ν, τ
−1
1 (ξ), η)

S1(ξ)

− ν1ν2L1(ξ) (Q21(ξ) + P61(ξ))
Θ2(ν, τ

−1
1 (ξ), η)

S1(ξ)
− iν1

∂

∂ξ

[
N1(ξ)C̃1(ξ)Q31(ξ)

]
Θ3(ν, τ

−1
1 (ξ), η)

− iν1
∂

∂ξ

[
N1(ξ)C̃1(ξ)

]
P41(ξ)Θ3(ν, τ

−1
1 (ξ), η)dξ

+
iν1S1(τ1(x3))

2
N1(ξ)C̃1(ξ)(Q31(ξ) + P41(ξ))Θ3(ν, τ

−1
1 (ξ), η)

∣∣∣τ1(x3)+(t−τ)

τ1(x3)−(t−τ)
,

(3.18)

(K2Θ)(ν, x3, t, τ) =
S1(τ1(x3))

2

∫ τ1(x3)+(t−η)

τ1(x3)−(t−η)

[
q1(ξ)− L1(ξ)

(
ν21P61(ξ) + ν22P11(ξ)

)] Θ2(ν, τ
−1
1 (ξ), η)

S1(ξ)

− ν1ν2L1(ξ) (P61(ξ) +Q21(ξ))
Θ1(ν, τ

−1
1 (ξ), η)

S1(ξ)
− iν2

∂

∂ξ

[
N1(ξ)C̃1(ξ)Q31(ξ)

]
Θ3(ν, τ

−1
1 (ξ), η)

− iν2
∂

∂ξ

[
N1(ξ)C̃1(ξ)

]
P41(ξ)Θ3(ν, τ

−1
1 (ξ), η)dξ

+
iν2S1(τ1(x3))

2
N1(ξ)C̃1(ξ) (Q31(ξ) + P41(ξ))Θ3Θ3(ν, τ

−1
1 (ξ), η)

∣∣∣τ1(x3)+(t−τ)

τ1(x3)−(t−τ)
,

(3.19)

(K3Θ)(ν, x3, t, τ) =
S3(τ3(x3))

2

∫ τ3(x3)+(t−η)

τ3(x3)−(t−η)

[
q3(ξ)− L3(ξ)

(
ν21 + ν22

)
P43(ξ)

] Θ3(ν, τ
−1
3 (ξ), η)

S3(ξ)

− iν1
∂

∂ξ

[
C̃3(ξ)N3(ξ)

]
Q33(ξ)Θ1(ν, τ

−1
3 (ξ), η)− iν2

∂

∂ξ

[
C̃3(ξ)N3(ξ)

]
Q33(ξ)Θ2(ν, τ

−1
3 (ξ), η)

− iν1
∂

∂ξ

[
C̃3(ξ)N3(ξ)P43(ξ)

]
Θ1(ν, τ

−1
3 (ξ), η)− iν2

∂

∂ξ

[
C̃3(ξ)N3(ξ)P43(ξ)

]
Θ2(ν, τ

−1
3 (ξ), η)}dξ

+
iS3(τ3(x3))

2
C̃3(ξ)N3(ξ) (Q33(ξ) + P43(ξ))

(
ν1Θ1(ν, τ

−1
3 (ξ), η) + ν2Θ2(ν, τ

−1
3 (ξ), η)

) ∣∣∣τ−1
3 +(t−τ)

τ−1
3 −(t−τ)

.

(3.20)

4. Existence of the unique solution of the problem

It is shown that under some notations and assumptions given in previous sections, the system of equations
(2.11)–(2.13) is equivalent to the operator integral equation (3.16). In this section, some properties for this
vector integral equation are given, and a theorem on the existence and uniqueness of a solution is stated.

Proposition 4.1 Let T be a fixed positive number, and let components of G be defined by equation (3.17).
Then under assumptions in Section 2, the components of G that are functions Gi(ν, x3, t) , i = 1, 2, 3 belong to
the space C(R2;∆(T )) .

Proposition 4.2 Let T be a fixed positive number and under assumptions in Section 2, Θ(ν, x3, t) be a vector
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function with continuous components in R2 ×∆(T ) . Then

∫ t

0

(
KiΘ

)
(ν, x3, t, τ)dτ, i = 1, 2, 3, (4.1)

are continuous in R2 ×∆(T ) and satisfy the following inequalities∣∣∣∣∫ t

0

(
KiΘ

)
(ν, x3, t, τ)dτ

∣∣∣∣ ≤ M
∫ t

0

∥Θ∥(ν, τ)dτ,

where
∥Θ∥(ν, τ) = max

i=1,2,3
max

ξ∈[−c(T−τ),c(T−τ)]
|Θi(ν, ξ, τ)|,

(x3, t) ∈ ∆(T ) , |ν| ≤ Ω for any positive number Ω and a positive number M that depends on c, T,Ω .

Proof Using formulas (3.18)–(3.20), we find out that the expressions given in (4.1) are continuous functions
for ν ∈ R2 , (x3, t) ∈ ∆(T ) . Let Q be defined by

Q = max
j,l,m

max
ξ

{
|qj(ξ)|, |Lj(ξ)|, |Nj(ξ)|, |Sj(ξ)|, |c̃j(ξ)|, |Plj(ξ)|, |R3j(ξ)|, |Qmj(ξ)|,

∂

∂ξ
(c̃j(ξ)Nj(ξ)),

∂

∂ξ
(c̃j(ξ)Nj(ξ)Q31(ξ)),

∂

∂ξ
(c̃j(ξ)Nj(ξ)R32(ξ)),

∂

∂ξ
(c̃j(ξ)Nj(ξ)P43(ξ)),

∂

∂ξ
(c̃j(ξ)Nj(ξ)P53(ξ))

}
j = 1, 2, 3, l = 1, 4, 5, 6, m = 1, 2,

for any (x3, t) ∈ ∆(T ) , τ ∈ [0, t] , ξ ∈ [τj(x3) − (t − τ), τj(x3) + (t − τ)] and since ∥Θ∥(ν, τ) is defined in
Proposition 4.2 by

∥Θ∥(ν, τ) = max
i=1,2,3

max
ξ∈[−c(T−τ),c(T−τ)]

∣∣Θi(ν, ξ, τ)
∣∣,

then we have ∣∣Θi(ν, ξ, τ)
∣∣ ≤ ∥Θ∥(ν, τ)

for all i = 1, 2, 3 , τ ∈ [0, t] and ξ ∈ [−c(T − τ), c(T − τ)] . Then, from formulas (3.18)–(3.20), the following
relations can be obtained:

|(KαΘ)(ν, x3, t, τ)| ≤ Mα(T,Ω)∥Θ∥(ν, τ), α = 1, 2

|(K3Θ)(ν, x3, t, τ)| ≤ M3(T,Ω)∥Θ∥(ν, τ),

where |ν| < Ω and

M1(T,Ω) = M2(T,Ω) = TQ2(1 + 4Ω2Q+QΩ+ Ω) + ΩQ4,

M3(T,Ω) = TQ2(1 + 2QΩ2 + 2QΩ+ 2Ω) + ΩQ4 +ΩQ2,

M = max
i=1,2,3

Mi(T,Ω).

2

2723



ALTUNKAYNAK/Turk J Math

Theorem 4.3 Let T be a fixed positive number; K = (K1,K2,K3) be the vector operator defined by (3.18)–
(3.20). Then for any G = (G1, G2, G3) such that Gj = Gj(ν, x3, t) ∈ C(R2 ×∆(c, T )) , j = 1, 2, 3 there exists
a solution Θ = (Θ1, Θ2, Θ3) of the operator integral equation (3.16) such that Θj = Uj ∈ C(R2 × ∆(T )) ,
j = 1, 2, 3 .

Applying the following successive approximations

Θ(0)(ν, x3, t) = G(ν, x3, t),

Θ(n)(ν, x3, t) =

∫ t

0

(
KΘ(n−1)

)
(ν, x3, t, τ)dτ, n = 1, 2, · · · ,

the solution of the vector integral equation (3.16) can be constructed. Here Θ(n)(ν, x3, t) , n = 0, 1, 2, · · · are
vector functions with continuous components and for each n , ∥Θ(n)∥(ν, x3, t) satisfies the inequality

|Θ(n)
i (ν, x3, t)| ≤ M

∫ t

0

∥Θ(n−1)∥(ν, τ)dτ, (4.2)

where ∥ · ∥(ν, τ) and M are defined in Proposition 4.2. Using the inequality (4.2) it is easy to verify

|Θ(n)
i (ν, x3, t)| ≤

(MT )n

n!
max
|ν|≤Ω

∥G∥(ν, T ), i = 1, 2, 3, n = 0, 1, 2, · · · . (4.3)

From inequality (4.3) and the first Weierstrass theorem, it follows that the series
∑∞

n=0 Θ
(n)
i (ν, x3, t) converge

uniformly to the continuous functions Θi(ν, x3, t) . The functions Θi(ν, x3, t) , i = 1, 2, 3 are the components of
the solution vector function Θ(ν, x3, t) that is a solution of the integral equation (3.11). Using Proposition 4.2,
it can also be shown that the constructed solution of (3.11) is unique.

Since equations (2.11)–(2.13) with zero initial conditions are equivalent to (3.11) and right-hand sides of
equations (2.11)–(2.13) are from the class C(R× [0,∞)) , according to the definition given in [20], this problem
is called a generalized Cauchy problem and the generalized solution may be written by the d’Alembert formula.
Thus, we conclude that Θ(ν, x3, t) is a generalized solution of (2.11)–(2.13).

Hence, the components U(ν, x3, t) of the generalized solution Θ(ν, x3, t) belong to the space C(R2 ×
∆(T )) ∩ C(∆(T );C∞

0 (R2)) and the solution u(x, t) of the IVP (2.6)–(2.9) is the inverse Fourier transform of
U(ν, x3, t) . By means of the real Paley-Wiener theorem, we conclude that the inverse Fourier transform of
U(ν, x3, t) (u(x, t) = F−1

ν [U]) is a unique generalized solution of (2.6)–(2.9) such that the components of the
solution belong to the class

uj(x, t) ∈ C(R2 ×∆(T )) ∩ C(∆(T );PW (R2)).

The following theorem summarizes all the assumptions and results. For further explanation, the readers
are referred to [1].

Theorem 4.4 Let c, T be given positive numbers and ∆(T ) be the triangular domain defined by

∆(T ) = {(x3, t) : t ∈ [0, T ], |x3| ≤ c(T − t)}

2724



ALTUNKAYNAK/Turk J Math

and let the density of the medium ρ(x3) and elastic constants c33(x3), c44(x3) be twice continuously differentiable
functions over [−cT, cT ] . Let Fi(ν, x3, t) , i = 1, 2, 3 be the Fourier transform of the functions fi(x, t) with
respect to x1, x2 that belong to the space C(R2 × ∆(T )) (x3, t) ∈ ∆(T ) for any ν = (ν1, ν2) ∈ R2 . Then a
unique generalized solution u(x, t) of IVP (2.6)–(2.9) exists with components ui(x, t) , i = 1, 2, 3 , which belong
to the space

C(R2 ×∆(T )) ∩ C(∆(T );PW (R2)).

5. Computational example

In this section, we compare the Fourier transform (with respect to x1, x2 ) of the exact and approximate solutions.
The approximate solution is found using the integral equation (3.16). The program of solving integral equation
using succussive approximations is written in Maple.

Let us consider the problem (2.6)–(2.9) with

f1(x, t) = −(x3 + 1)(t− 1)δ(x1)δ(x2), f2(x, t) = f3(x, t) = 0

and

c11 = c12 = c13 = c33 = c44 =
1

2
(x3 + 1)2.

Exact solution of the problem is

ue
1(x, t) = (x3 + 1)(e−t + t− 1)δ(x1)δ(x2), ue

2(x, t) = ue
3(x, t) = 0.

The comparison of the Fourier transform (with respect to x1, x2 ) of the exact solution (uc
1(x, t)) and the

approximate solution (u1(x, t)) are reported in the table below. Table is written with the number of N=10
iterations of our method of successive approximations in calculating the approximate solution.

Figures 1 and 2 show the difference between the Fourier transform (with respect to x1, x2 ) of the exact
and approximate solutions in t and x3 for the computational example. The numerical results obtained by the
proposed method are in good agreement with the exact solution (see, Figures 1 and 2).

Table . Comparison of the solution uc
1(x, t) and the approximate solution u1(x, t) .

t x3 uc
1(x, t) u1(x, t) |uc

1(x, t)− u1(x, t)|
1
2

1
2 0.1597959896 0.1597959893 3× 10−10

1
2

3
2 0.2663266490 0.2663266499 9× 10−10

1 1
2 0.5518191618 0.5518191614 4× 10−10

1 3
2 0.9196986030 0.9196986005 25× 10−10

1
2 2 0.3195919790 0.3195919796 6× 10−10

1 17
10 0.9932744912 0.9932744966 54× 10−10

3
2

17
10 1.9524515170 1.952451440 80× 10−10

2 3 4.541341133 4.541341132 10× 10−10

5
2 3 6.328339994 6.328340012 180× 10−10

3 3 8.199148274 8.199148302 280× 10−10

3 2 6.149361205 6.149361237 320× 10−10

3 5
2 7.174254739 7.174254731 110× 10−10
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Figure 1. The plot of u1(x, t) and uc
1(x, t) for t = 2, 5
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Figure 2. The plot of u1(x, t) and uc
1(x, t) for x3 = 2, 5
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6. Conclusion
In this paper, the initial value problem for elastic system in transversely isotropic vertically inhomogeneous
media is considered. Applying the Fourier transform with respect to variables x1, x2 , the problem is reduced
to integral equations of Volterra type, whose solutions can be obtained by successive approximations. Using
the real Paley-Wiener theorem, the inverse images for the solution of the elastic system can be obtained. Using
operator integral equations, existence and uniqueness theorem for the IVP is stated and proved. Finally, by a
computational example, the robustness of the method is illustrated.
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