Turkish Journal of Mathematics

тӥвітак
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: $2761-2765$
© TÜBİTAK
doi:10.55730/1300-0098.3300

A note on the transfinite diameter of Bernstein sets

Özcan YAZICI* ${ }^{*}$
Department of Mathematics, Middle East Technical University, Ankara, Turkey

| Received: 08.02.2022 | Accepted/Published Online: 03.07.2022 | • Final Version: 05.09 .2022 |
| :--- | :--- | :--- | :--- | :--- |

Abstract: A compact set $K \subset \mathbb{C}^{n}$ is called Bernstein set if, for some constant $M>0$, the following inequality

$$
\left\|D^{\alpha} P\right\|_{K} \leq M^{|\alpha|}(\operatorname{deg} P)^{|\alpha|}\|P\|_{K}
$$

is satisfied for every multiindex $\alpha \in \mathbb{N}^{n}$ and for every polynomial P. We provide here a lower bound for the transfinite diameter of Bernstein sets by using generalized extremal Leja points.

Key words: Transfinite diameter, Bernstein and Markov sets, Pluripolar sets, Leja points

1. Introduction

Bernstein inequality for the closed unit disc Δ in \mathbb{C} states that

$$
\left\|P^{\prime}\right\|_{\Delta} \leq \operatorname{deg} P\|P\|_{\Delta}
$$

for every polynomial P where $\|\cdot\|_{\Delta}$ is the supremum norm on Δ. A compact set $K \subset \mathbb{C}^{n}$ is called Bernstein set if there exists a constant $M>0$ such that

$$
\begin{equation*}
\left\|D^{\alpha} P\right\|_{K} \leq M^{|\alpha|}(\operatorname{deg} P)^{|\alpha|}\|P\|_{K} \tag{1.1}
\end{equation*}
$$

for every multiindex $\alpha \in \mathbb{N}^{n}$ and for every polynomial P. Siciak in [5] showed that Bernstein sets are not pluripolar, that is, they are not contained in an infinity locus of a plurisubharmonic function. It is known that a compact set K is pluripolar if and only if its transfinite diameter $d(K)=0$ (see [6]). The transfinite diameter $d(K)$ of a compact set $K \subset \mathbb{C}^{n}$ will be defined in Section 2.

A compact set $K \subset \mathbb{C}^{n}$ is called a Markov set if it satisfies the Markov inequality:

$$
\left\|D^{\alpha} P\right\|_{K} \leq M^{|\alpha|}(\operatorname{deg} P)^{r|\alpha|}\|P\|_{K}
$$

for some $M>0, r>0$, for every multiindex $\alpha \in \mathbb{N}^{n}$ and for every polynomial P. We note that every Bernstein set is a Markov set with $r=1$. In dimension one, Białas-Cież [1] proved that Markov sets are not pluripolar. When $n \geq 2$, nonpluripolarity of Markov sets in \mathbb{C}^{n} is an open problem. Thus finding a lower bound for the transfinite diameter for Markov sets is an interesting and hard problem. As an approach to this

[^0]problem, Białas-Cież and Jedrzejowski in [2] found a lower bound for the transfinite diameter of Bernstein sets. Namely, they showed that
$$
d(K) \geq \frac{1}{M 2^{n-1}}
$$
for any Bernstein set $K \subset \mathbb{C}^{n}$. Their proof uses the deep result of Zaharjuta [6] which computes the transfinite diameter $d(K)$ of a compact set in \mathbb{C}^{n} with directional Chebyshev constants. In this paper, we give a simpler proof for a similar lower bound for the transfinite diameter $d(K)$ of any Bernstein set $K \subset \mathbb{C}^{n}$. Our main result is the following.

Theorem 1.1 Let $K \subset \mathbb{C}^{n}$ be a Bernstein set. Then

$$
d(K) \geq \frac{1}{e n M}
$$

Our proof uses idea of [4] related to generalized extremal Leja points.

2. Preliminaries

Let $\mathbb{N}=\{0,1,2, \ldots\}$ be the set of natural numbers and $\alpha(j)=\left(\alpha_{1}(j), \ldots, \alpha_{n}(j)\right)$ be a multiindex in \mathbb{N}^{n} with the length $|\alpha(j)|=\alpha_{1}(j)+\cdots+\alpha_{n}(j)$. We denote by $e_{j}(z)=z^{\alpha(j)}=z_{1}^{\alpha_{1}(j)} \ldots z_{n}^{\alpha_{n}(j)}$ all the monomials in \mathbb{C}^{n} ordered by increasing degrees, that is, $|\alpha(j)| \leq|\alpha(k)|$ if $j \leq k$ and monomials of a fixed degree are ordered lexicographically. Let h_{s} be the number of monomials of degree s and m_{s} be the number of monomials of degree at most s. It is easy to check that

$$
h_{s}=\binom{s+n-1}{s}, m_{s}=\binom{s+n}{n} .
$$

Let K be a compact set in \mathbb{C}^{n} and w_{1}, \ldots, w_{k} be points in K. Vandermonde determinant is defined by

$$
V\left(w_{1}, \ldots, w_{k}\right):=\operatorname{det}\left[e_{i}\left(w_{j}\right)\right]_{i, j=1, \ldots k}
$$

Note that $V\left(w_{1}, \ldots, w_{m_{s}}\right)$ is a polynomial of degree

$$
l_{m_{s}}=\sum_{i=1}^{m_{s}} \operatorname{deg}\left(e_{i}\right)=\sum_{i=0}^{s} i \cdot h_{i}=n\binom{s+n}{n+1} .
$$

A system $\left\{\zeta_{1}, \ldots \zeta_{k}\right\}$ of k points in K is called a set of Fekete points of order k if

$$
\left|V\left(\zeta_{1}, \ldots \zeta_{k}\right)\right|=\sup _{\left\{w_{1}, \ldots, w_{k}\right\} \subset K}\left|V\left(w_{1}, \ldots, w_{k}\right)\right| .
$$

Using Fekete points we define

$$
d_{s}(K):=V_{s}^{\frac{1}{l_{s}}}
$$

where $V_{s}=V_{s}(K):=\left|V\left(\zeta_{1}, \ldots, \zeta_{s}\right)\right|$ and $l_{s}=\sum_{i=1}^{s} \operatorname{deg}\left(e_{i}\right)$. Existence of the limit

$$
d(K):=\lim _{s \rightarrow \infty} d_{s}(K)
$$

was shown by Fekete [3] in dimension $n=1$ and by Zaharjuta [6] for $n \geq 2$. The limit $d(K)$ is called the transfinite diameter of K. We should note that the set of Fekete points of order i is not necessarily a subset of the set of Fekete points of order j when $i \leq j$. In [4], Jedrzejowski generalized extremal Leja points to the case of compact sets in \mathbb{C}^{n} with $n \geq 2$ and proved that the transfinite diameter can be computed by means of them. For Leja points (in multidimensional case as well as in the complex plane) $i^{\text {th }}$ order extremal set is a subset of $j^{\text {th }}$ order extremal set when $i \leq j$. The construction is inductive. Let a_{1} be an arbitrary point of K and $W_{1}=1$. Given a set of points $\left\{a_{1}, \ldots, a_{k-1}\right\}$ in K the polynomial $P_{k}(z)$ is defined by

$$
P_{k}(z):=V\left(a_{1}, \ldots, a_{k-1}, z\right)=\operatorname{det}\left[\begin{array}{cccc}
1 & \ldots & 1 & 1 \\
e_{2}\left(a_{1}\right) & \ldots & e_{2}\left(a_{k-1}\right) & e_{2}(z) \\
\vdots & \vdots & \vdots & \vdots \\
e_{k}\left(a_{1}\right) & \ldots & e_{k}\left(a_{k-1}\right) & e_{k}(z)
\end{array}\right]
$$

Then a_{k} is chosen so that

$$
\begin{equation*}
W_{k}:=\left|P_{k}\left(a_{k}\right)\right|=\sup _{z \in K}\left|P_{k}(z)\right| \tag{2.1}
\end{equation*}
$$

Then it follows from [4] that

$$
\lim _{k \rightarrow \infty} W_{k}^{\frac{1}{l_{k}}}=d(K)
$$

3. Proof of the main result

We will need the following generalization of Stirling formula in the proof of the main theorem.
Lemma 3.1 There exists a k_{0} such that if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}$ and $|\alpha| \geq k_{0}$, then

$$
\alpha!>\frac{\sqrt{2 \pi}|\alpha|^{|\alpha|+1 / 2}(e n)^{-|\alpha|}}{2}
$$

where $\alpha!=\alpha_{1}!\ldots \alpha_{n}!$ and $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$.
Proof \quad Since for any $k \in \mathbb{N}$,

$$
n^{k}=\sum_{\alpha \in \mathbb{N}^{n},|\alpha|=k} \frac{k!}{\alpha!}
$$

we have $|\alpha|!\leq \alpha!n^{|\alpha|}$ for any $\alpha \in \mathbb{N}^{n}$. Applying Stirling formula to $|\alpha|!$, we obtain that

$$
\alpha!\geq \frac{|\alpha|!}{n^{|\alpha|}} \geq \frac{\sqrt{2 \pi}|\alpha|^{|\alpha|+1 / 2}(e n)^{-|\alpha|}}{2}
$$

for all α such that $|\alpha| \geq k_{0}$ for some k_{0}.
Proof [Proof of Theorem 1.1] Let $K \subset \mathbb{C}^{n}$ be a Bernstein set which satisfies inequality (1.1) and the set of order $j-1$ extremal points $\left\{a_{1}, \ldots, a_{j-1}\right\}$ for the transfinite diameter of K be constructed as above. We define the polynomial

$$
P(z):=\frac{V\left(a_{1}, \ldots, a_{j-1}, z\right)}{V\left(a_{1}, \ldots, a_{j-1}\right)}
$$

Then $P(z)$ is of the form

$$
P(z)=e_{j}(z)+\sum_{i=1}^{j-1} c_{i} e_{i}(z)
$$

for some constants c_{i} and hence $D^{\alpha(j)} P=\alpha(j)$!. It follows from (1.1) that

$$
\begin{equation*}
\alpha(j)!\leq M^{|\alpha(j)|}|\alpha(j)|^{|\alpha(j)|} \frac{W_{j}}{W_{j-1}}, \tag{3.1}
\end{equation*}
$$

where W_{j} is defined as in (2.1). Using the inequality (3.1) and Lemma 3.1 we obtain that

$$
\begin{aligned}
W_{j} & \geq \frac{\alpha(j)!W_{j-1}}{M^{|\alpha(j)|}|\alpha(j)|^{\alpha(j) \mid}} \\
& \vdots \\
& \geq \frac{\Pi_{k=k_{0}}^{j} \alpha(k)!W_{k_{0}-1}}{M^{\sum_{k=k_{0}}^{j}|\alpha(k)| \Pi_{k=k_{0}}^{j}|\alpha(k)|^{|\alpha(k)|}}} \\
& \geq \frac{\left(\sqrt{\frac{\pi}{2}}\right)^{j-k_{0}+1}\left(\Pi_{k=k_{0}}^{j}|\alpha(k)|\right)^{\frac{1}{2}} W_{k_{0}-1}}{(\text { enM })^{\sum_{k=k_{0}}^{j}|\alpha(k)|}}>(\text { enM })^{-l_{j}} W_{k_{0}-1},
\end{aligned}
$$

where $l_{j}=\sum_{k=1}^{j}|\alpha(k)|$. Note that

$$
W_{k_{0}-1} \geq \frac{\Pi_{k=2}^{k_{0}-1} \alpha(k)!}{M^{\sum_{k=2}^{k_{0}-1}|\alpha(k)|} \Pi_{k=2}^{k_{0}-1}|\alpha(k)|^{|\alpha(k)|}}>0 .
$$

Hence

$$
W_{j}^{\frac{1}{L_{j}}} \geq(e n M)^{-1}\left(W_{k_{0}-1}\right)^{\frac{1}{t_{j}}},
$$

and

$$
d(K)=\lim _{j \rightarrow \infty} W_{j}^{\frac{1}{l_{j}}} \geq \frac{1}{e n M} .
$$

Acknowledgment

The author is supported by TÜBİTAK 3501 Project No 120F084. I would like to thank the referee for his/her remarks and suggestions which improved the exposition of the paper.

References

[1] Białas-Cież L. Markov Sets in \mathbb{C} are not Polar. Bulletin of the Polish Academy of Sciences Mathematics 1998; 46 (1): 83-89.
[2] Białas-Cież L , Jedrzejowski M. Transfinite diameter of Bernstein Sets in \mathbb{C}^{N}. Journal of Inequalities and Applications 2002; 7 (3): 393-404.
[3] Fekete M. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. (German) Mathematische Zeitschrift 1923; 17 (1): 228-249.
[4] Jedrzejowski M. Transfinite diameter and extremal points for a compact subset of \mathbb{C}^{n}. Universitatis Iagellonicae Acta Mathematica 1992; 29: 65-70.
[5] Siciak J. Wiener's type sufficient conditions in \mathbb{C}^{n}. Universitatis Iagellonicae Acta Mathematica 1997; 35: 47-74.
[6] Zaharjuta VP. Transfinite diameter, Tchebyshev constants and capacity of compact set in \mathbb{C}^{n}. Matematicheskii Sbornik 1975; 96 (138): 374-389.

[^0]: *Correspondence: oyazici@metu.edu.tr
 2010 AMS Mathematics Subject Classification: 32U15, 41A17, 31C15.

