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1. Introduction
It is our purpose to classify completely the structure of a finite group in which any two cyclic p -subgroups of
equal order are conjugate whenever p is a prime dividing the order of that group. Such a group is called a
(P)-group; sometimes we will say it satisfies the (P)-property. In the introduction of [15] subclasses of the class
of (P)-groups have been dealt with. In [15] itself, the structure of the finite groups G , in which any two abelian
subgroups of equal order are conjugate, has been settled.

A few remarks on notations and conventions are in order. The subgroup F∗(X) of a finite group X ,
being equal to F(X)E(X) , stands for the so-called generalized Fitting subgroup of X ; here F(X) is the Fitting
subgroup of X and E(X) is the subgroup of X generated by the quasisimple subnormal subgroups of X . The
symbol Cn denotes a cyclic group of order n ; Q will be the quaternion group of order 8 . Additional notation
will be standard and self-explanatory; see [8, 16, 17, 17a, 17b]. All the groups appearing in this article will be
finite.

It has been shown in ([14], (2.8) Theorem) that a group X containing different minimal normal subgroups
M and N that are nontrivial is a (P)-group if and only if the factor groups X/M and X/N are (P)-groups
satisfying (|M |, |N |) = 1 . This observation will be used repeatedly in this article.

Now let us define a list N of groups as follows.

N :=
∪

{M11; M23; J1; PSL(2, 2
m) (m ≥ 3); Sz(22t+1) (t ≥ 1);

PSL(2, pn) and SL(2, pn) p odd prime, n ≥ 1, n odd, pn ≥ 7}
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In working through the article, one will encounter the following statements with proofs.

α Each group from the list N is a (P)-group.

β Let L/K be a nonabelian chief section of a (P)-group G . Then L/K is either isomorphic to a simple
group from the list N , or else L/K is isomorphic to the (P)-group A5 (∼= PSL(2, 4) and ∼= PSL(2, 5));
In addition, the groups G/L and K are solvable.

γ As in β , assume p is an odd prime dividing |L/K| . Then p does not divide the product |G/L||K| .

One of the main results of the research as obtained in this article, is the following, to be called A .

A Let G be a nonsolvable (P)-group not admitting a chief factor isomorphic to A5 .
Then there exists N �G with N ∈ N , satisfying G = NR , R a solvable (P)-group with {1} ≤ R < G ,
[[R,R], N ] = 1 , (|N |, |R|) = 1 . If p divides |R| and Sp is a noncyclic Sylow p -subgroup of R , then Sp is
an elementary abelian normal Sylow p -subgroup of R . Let S be ΠiSpi where pi||R| with Spi ∈ Sylpi

(R)

is noncyclic. In case S ̸= {1} , then R = SU with 1 ≤ U < R and 1 = (|U |, |S|) , U being a metacyclic
(P)-group with (|[U,U ]| , |U/[U,U ]|) = 1 . And if S = {1} , then R is a (possibly trivial) metacyclic
(P)-group satisfying (|R/[R,R]| , |[R,R]|) = 1 .

One also has

B Conversely, if a group G is not solvable and it happens that G satisfies all of the further conditions in
the statements of A , then G is a (P)-group.

We have also shown that the following nice structure property C holds.

C Assume G is a nonsolvable (P)-group admitting one of the sporadic simple groups M11 , M23 , J1 as a chief
section (view A). Then there exists N � G with N ∈ {M11,M23, J1} satisfying G ∼= N × R , the direct
product of the (P)-subgroups N and R of G with (|N |, |R|) = 1 . Conversely, if M ∈ {M11,M23, J1} and
U is a solvable (P)-group with (|M |, |U |) = 1 , then the direct product of M and U is a (P)-group.

Next assume that Y is a (P)-group admitting a chief factor isomorphic to A5 . Then the full classification
of those groups Y has been obtained in Section 7. Let us look at such a group Y in which Y contains
possibly one minimal normal subgroup; call that subgroup M . Let us also assume that the order of
M ̸= 1 is odd. Then the structure of that group Y is embodied in one of the next three types:

1) A semidirect product Y ∼= M ⋊ D with M ∼= Cp × Cp with p ∈ {11, 19, 29, 59} , D ∼= SL(2, 5) and
D ∼= G/(Cp × Cp) ↪→ GL(2, p) ;

2) A semidirect product Y ∼= M⋊E with M ∼= C29×C29 and D ∼= SL(2, 5)×C7 with E ∼= G/(C29×C29) ↪→
GL(2, 29) ;

3) A semidirect product Y ∼= M⋊U with M ∼= C59×C59 and U ∼= SL(2, 5)×C29 with U ∼= G/(C59×C59) ↪→
GL(2, 59) .

It will turn out (see Theorem 5.7) that for odd prime p , a noncyclic Sylow p -subgroup of the Fitting subgroup
F(X) of a (P)-group X is a (in fact, the) normal Sylow p -subgroup of X . Conversely, any noncyclic Sylow
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p -subgroup of a (P)-group Y with p odd and Y not admitting any PSL(2, pm) with m ≥ 2 , as chief factor,
happens to be situated in F(Y ) whenever p is a prime at least equal to 5 ; in the cases p = 2 and p = 3 there
exist counterexamples.

Finally, notice that, essentially, the structure of any solvable (P)-group has been determined and exposed
in [14], with one exception. Namely, if a solvable (P)-group admits a Suzuki 2 -group S as a noncyclic Sylow
2 -subgroup, it has been de facto shown that S �G ; see Section 3 below.

2. Preliminaries
We start with a few preparatory observations. The class of (P)-groups is not closed under taking subgroups, or
taking extensions. Namely, as an example, the alternating group A4 on 4 symbols is a (P)-group, whereas the
unique subgroup of order 4 is noncyclic abelian but not a (P)-group. On the other hand, the property (P) is
inherited by the homomorphic images of any (P)-group; (see [14], (2.2) Theorem). The next lemma (see [14],
(2.1) Lemma and (2.8) Theorem) and theorems are also of importance for our purposes.

Lemma 2.1 If G = AB , A ⊴ G , B ⊴ G and A ∩B ≤ Z(G) , then G is a (P)-group if and only if A and B

are (P)-groups with (|A/(A ∩B)|, |B/(A ∩B)|) = 1 .

Theorem 2.2 Let N be a normal nonabelian simple subgroup of a group G . Assume CG(N) = {1} . Then
G can be isomorphically embedded into Aut(N) in such a way that G is isomorphic to a group G̃ satisfying
Inn(N) ≤ G̃ ≤ Aut(N) where Inn(N) ∼= N .

Proof Due to CG(N) = {1} , any map τg (g ∈ G), defined by τg(n) = gng−1 , whenever n ∈ N , is an
automorphism of N . The set G̃ (say), consisting of all those maps, is endowed with a group structure via
τg1g2(n) = (g1g2)n(g1g2)

−1 = g1(g2ng
−1
2 )g−1

1 = τg1(τg2(n)) . Hence, G̃ ≤ Aut(N) . The group N is nonabelian
simple. Therefore, N ∼= Inn(N) , |N | = | Inn(N)| , and notice that τn1 = τn2 for elements n1, n2 ∈ N yield here
the equality of n1 and n2 . Thus, {τs : s ∈ N} is nothing else but Inn(N) itself. This completes the proof of
the theorem. 2

Theorem 2.3 Let G be a (P)-group. Suppose L/K is a chief factor of G with L ⊴ G and K ⊴ G . Then
either G is solvable or L/K is a nonabelian simple group and both K and G/L are solvable.

Proof We may assume that the maximal solvable normal subgroup O∞(G) of G is smaller than G . Put
S := U/O∞(G) with U ̸= O∞(G) being a minimal normal subgroup of G(= G/O∞(G)) , so S is a direct
product of isomorphic nonabelian simple groups Si (i ∈ {1, · · · , t} , say). By the Feit-Thompson theorem, any
such Si contains an involution with i ∈ {1, · · · , t} . Assume t ≥ 2 . Consider the involution i1 = x1 · · ·xt−1

and the involution i2 = x1x2 · · ·xt . Then |CS(i1)| ̸= |CS(i2)| , whence the centralizers of x1 and x2 in S

are of different order. This, however, contradicts the (P)-group property of G . Thus, one must have t = 1 ,
i.e. S is nonabelian simple. Therefore, if CG(S) ̸=

{
1
}
, then CG(S) would contain a nontrivial nonabelian

characteristic subgroup C with C > O∞(G) , so C/G ; whence C∩S =
{
1
}
. Now C has to contain involutions

by the Feit–Thompson theorem, a contradiction to the (P)-group property of G/O∞(G) as involutions in C

have to be conjugate to those in S , so they must belong to S ⊴ G . Thus, it holds that CG(S) =
{
1
}
. Thus, it
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follows G is isomorphic to a subgroup of the automorphism group of S . By the truth of Schreier’s conjecture
due to the CFSG, it, therefore, holds that there exists a unique simple normal subgroup K of Aut(S) satisfying
Aut(S)/K being solvable, namely K = Inn(S) . Hence, G/S is solvable. The Jordan-Hölder theorem now
yields the full truth of the theorem. 2

Theorem 2.4 Let G be a group for which F∗(G) = F(G)E(G) with E(G) ̸= 1 . Then G is not a (P)-group
unless E(G)/Z(E(G)) is a nonabelian simple group.

Proof Suppose G is a (P)-group. By ([2], 11 (31.7)), E(G) is the central product of its components
Ci , (i = 1, · · · , t) where a component is defined as being any subnormal quasisimple subgroup of G . The
group G/Z(E(G)) , being a (P)-group, does admit a normal subgroup N isomorphic to E(G)/Z(E(G)) with
N ∼= Πt

i=1Si where the Si are nonabelian simple groups. Just analogously to the proof of Theorem (2.3), it
holds that for t ≥ 2 , G/N (whence G too) is not a (P)-group. The theorem has been proved. 2

The next theorem due to Yamaki will be applied several times.

Theorem 2.5 (Yamaki [19], Lemma 2, paraphrased) Let G be a group satisfying Inn(M) ≤ G ≤ Aut(M) ,
where M is a nonabelian simple group. Suppose that the set of involutions of M constitute at least two conjugacy
classes of M . Then for any such couple {M,G} , G does contain at least two conjugacy classes of involutions.

In the sequel of this paper, it is needed whether or not Aut(S) splits over S , where S is some specified
nonabelian simple group. As such we use results from the papers of Lucchini et al., and of Pandya; see
respectively [12] and [13].

3. Solvable (P)-groups containing nonabelian 2-subgroups

In [14], the nonabelian Sylow 2 -subgroups of a (P)-group G not yet fully treated there, were the Suzuki 2 -
groups different from the quaternion group Q of order 8 . Here we will do so. In this section, it will currently
be used that G and all its factor groups are supposed to be solvable (P)-groups, due to ([14], (2.2) Theorem).

Theorem 3.1 Let G be a solvable (P)-group and assume that S ∈ Syl2(G) is a Suzuki 2-group not isomorphic
to the quaternion group of order 8 . Then S is a normal subgroup of G .

Proof The proof will be given in a series of steps. Assume G is a counterexample of minimal order, to the
theorem.

1) Suppose |F(G)| is divisible by an odd prime, say p .

1)α) Assume that there exist two minimal normal subgroups N1 and N2 of G each being of odd prime power
order. Hence, G is isomorphic to a subgroup of the direct product G/N1 ×G/N2 . Since G is a minimal
counterexample to the Theorem, each of the (P)-groups G/N1 and G/N2 possesses a normal Sylow
2 -subgroup isomorphic to S whence G too, a contradiction to the choice of G .

1)β ) Suppose F(G) ∼= Sp × S2 , where S2 ̸= {1} is a 2 -subgroup of S and where Sp is a p -subgroup of F(G)

with Sp ̸= {1} , p odd prime. The group S is a Suzuki 2 -group, whence both G/Φ(S) and Φ(S) ̸= {1}
are elementary abelian. Next use that G and G/S2 are solvable (P)-groups. Thus, S2 < F(G) is in fact
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equal to S or to Φ(S) , as G permutes transitively the “elements” in the set of the cyclic subgroups of
order 4 (the same argument applies for all the involutions of G). In case S2 = S , then we are done;
indeed, S = S2 is then characteristic in F(G) , whence normal in G , a contradiction to the choice of G ,
so S2 = Φ(S) remains here to be investigated. Hence, the solvable (P)-group G/S2 possesses a normal
elementary abelian but noncyclic Sylow 2 -subgroup due to ([14] (4.4) Theorem) resulting in the fact that
G itself possesses a normal Sylow 2 -subgroup, a contradiction to the choice of G .

1)β )a) Assume F(G) is a p -group with p ̸= 2 and assume Φ(F(G)) ̸= {1} . As the group G/Φ(F(G)) possesses
now a normal Suzuki 2 -subgroup not isomorphic to Q by induction, it follows that
[SΦ(F(G))/Φ(F(G)),F(G)/Φ(F(G))] = {1} . Hence, by ([8] III, 3.18 Satz), [S,F(G)] = 1 holds. This is a
contradiction to CG(F(G)) ≤ F(G) where the inclusion sign is fulfilled as G is solvable; see ([8] III 4.2.b
Satz). We have found a contradiction.

1)β )b) Thus, let us assume that F(G) is a p -group with p ̸= 2 and Φ(F(G)) = {1} . The group F(G) cannot
be cyclic of order p . [Otherwise G/F(G) ↪→ Aut(F(G)) ∼= Cp−1 and also CG(F(G)) = F(G) yielding
a contradiction to the cyclicity of SF(G)/F(G) ], so F(G) is elementary abelian but not cyclic. The
“elements” of the set of cyclic subgroups of order p are transitively permuted under conjugation by the
elements of G . Hence, by ([14], (4.2) Lemma) any normal abelian subgroup of G/CG(F(G))(= G/F(G))

is cyclic. As the Theorem holds for the (P)-group G/F(G) , it follows that SF(G)/F(G) / G/F(G) ,
whereas there has to exist a cyclic minimal normal subgroup C of the (P)-group G/F(G) contained in the
elementary abelian 2 -subgroup Φ((S/F(G))/F(G)) of the Suzuki 2 -group SF(G)/F(G) . Hence, |C| = 2 ,
leading to S ∼= SF(G)/F(G) ∼= Q as G/F(G) is a (P)-group. A contradiction as S is not isomorphic to
Q by assumption.

2) There remains to investigate the situation in which F(G) is a nontrivial 2 -group. As G is a p -group,
one gets F(G) contains all elements of G of order 2 . Notice that F(G) does not contain elements of
order 4 . [Otherwise, as G is a (P)-group satisfying Exp(S) = 4 , one gets F(G) = S , a contradiction as
G is a minimal counterexample to the Theorem]. Hence, F(G) is an elementary abelian 2 -group. Thus,
as F(G) ≤ Ω1(S) = Φ(S) by the structure of S , one has F(G) = Φ(S) and |S/Φ(S)| ≥ 4 . The group
S/Φ(S) ∈ Syl2(G/F(G)) is an elementary abelian 2 -group but not cyclic. Hence, S/F(G) is a normal
subgroup of the (P)-group G/Φ(S)(= G/F(G)) , due to ([14] (4.4) Theorem), so S /G , a contradiction to
our assumption on the structure of G .

This concludes the proof. 2

Corollary 3.2 Let G be a solvable (P)-group. Suppose G contains a Suzuki 2-group S ̸∼= Q with S ∈ Syl2(G) .
Then S ⊴ G and the (P)-group G/F(G) is of odd order and cyclic or metacyclic as well.

Proof The fact that G has a normal Sylow 2 -subgroup does follow from Theorem 3.1. The structure of
G/F(G) , i.e. G/F(G) being cyclic or metacyclic, has been shown to be true in ([14] (4.5) Corollary). 2

Remark 3.3 As a consequence of the classification of the nonsolvable (P)-groups as done later in this article,
one is able to observe that no Suzuki 2-group S with S ̸∼= Q , appears as a normal 2-subgroup of some nonsolvable
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(P)-group. In addition, notice that for p ̸= 2 , any noncyclic p-subgroup of a solvable (P)-group G has the
property that it appears as an elementary abelian subgroup of F(G) ; see Sezer’s theorem resulting in Theorem
(4.4) in [14]. As to some analogous statement for nonsolvable (P)-groups, see the introduction and in particular
Corollary 5.8 and Theorem 5.7.

4. Sporadic simple groups as sections of (P)-groups

In this section, the full structure of (P)-groups will be determined in which such a group admits a chief factor
isomorphic to a sporadic simple group.
We start with the following lemma.

Lemma 4.1 Let G be a group satisfying Inn(M) ≤ G ≤ Aut(M) where M is a sporadic simple group. Then
G is not a (P)-group unless M ∼= M11 , M ∼= M23 or M ∼= J1 .

Proof It is well known that |Aut(M)/Inn(M)| ≤ 2 and that Aut(M) = Inn(M)⟨τ⟩ where τ is the identity
element of Aut(M) or τ can be chosen as to be of order 2 in Aut(M) . We distinguish two cases: 1)
Aut(M) = M ; 2) |Aut(M)/M | = 2 .

Re 1) The groups M24 , J4 , Co1 , Co2 , Co3 , F1 , F2 , F23 , and Ru each contains at least two conjugacy classes
of involutions, whence such a group is not a (P)-group. The group Ly contains at least two elements of
order 3 whose centralizers in Ly are of different orders. Hence, Ly is not a (P)-group. The group F3

contains at least two elements of order 4 whose centralizers in F3 are of different orders. Hence, F3 is not
a (P)-group. The remaining groups M11 , M23 , and J1 in this rubric 1), are indeed (P)-groups. There is
much more to be said in the next Theorem 4.2 about the groups M11 , M23 , and J1 .

Re 2) Any group S ∈
{
M12, J2,F22,F

′
24,H-S,He,Suz,F5

}
has at least two conjugacy classes of involutions.

Hence, such a group is not a (P)-group itself. Notice that such an Aut(S) is not a (P)-group due to the
fact that there exists involutions in Aut(S) outside S . The group J3 contains at least two elements of
order 3 whose centralizers in J3 are of different orders, whence J3 is not a (P)-group and Aut(J3) is not
a (P)-group as Aut(J3) contains involutions outside J3 . The remaining groups M22 , McL , O’N-S in this
rubric 2) each share the property that there are elements of order 4 in such a group, whose centralizers in
that chosen group are of different orders. Hence, each of M22 , McL , O’N-S is not a (P)-group. Recall that
Aut(M22) splits over M22 ; likewise does Aut(McL) over McL and Aut( O’N-S) over O’N-S. Thus, in
the groups Aut(M22) , Aut(McL) and Aut( O’N-S) , there exist involutions outside the respective normal
subgroups M23 , McL , and O’N-S. Thus, each of the groups Aut(M22) , Aut(McL) , and Aut( O’N-S) is
not a (P)-group.

The theorem has been proved. 2

The following perhaps surprising theorem gives the classification of (P)-groups in which one of the sporadic
groups M11 , M23 , and J1 is involved as a chief factor.

Theorem 4.2 Suppose G is a group admitting at least one of the groups M11 , M23 , or J1 as a chief factor.
Then the following are equivalent.

1) G is a (P)-group;
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2) G = UV ; U ⊴ G ; V ⊴ G ; (|U |, |V |) = 1 ; U is isomorphic to one of the groups M11 , M23 , J1 ; V being
a solvable (P)-group of odd order.

Proof 2) → 1) : Each of M11 , M23 , and J1 is a (P)-group. As for M11 and M23 , one might consult the
ATLAS ([6], pages 18 and 71). Regarding J1 , observe that it is even true that any two abelian subgroups of
equal order of J1 are conjugate in J1 ; see ([15], Proof of Theorem 4.5) The truth of the proof is a consequence
of Lemma 2.1.

1) → 2) : Let us work with an alleged (P)-group G under the assumption that G is a counterexample of
minimal order to the step 1) → 2) of the Theorem.

Remember that the generalized Fitting group F∗(G) is equal to E(G)F(G) , where F(G) stands, as usual,
for the Fitting subgroup G and where E(G) is defined as being the subgroup of G generated by its subnormal
quasisimple subgroups. Notice, F∗(G) ̸= {1} .

We distinguish two cases: 1) E(G) ̸= {1} ; 2) E(G) = {1} .

Re 1) Assume E(G) ̸= {1} . Due to Theorem 2.3 and the Jordan-Hölder theorem one has E(G)/Z(G) ∼= S , where
S is one of the simple groups M11 , M23 , or J1 . It is known that each of M11 , M23 , J1 has a trivial
Schur multiplier, see ([11], page 284). Therefore, [E(G),E(G)]∩Z(E(G)) , being isomorphic to a subgroup
of the Schur multiplier of S , is trivial, see ([11], 2.1.7 Theorem). Hence, as E(G) = [E(G),E(G)] , E(G)

is simple. Put K = E(G) . Hence, K ∼= M11 or K ∼= M23 or K ∼= J1 . It is also known that Aut(K) ∼= K

for any of the three choices for K ; view ATLAS [6]. Thus, each of those K is a complete group yielding
G = KCG(K) by ([5], exercise 10, page 96). Since each of these K is nonabelian simple, we conclude that
G = K × CG(K) . Moreover, CG(K) ∼= G/K , whence CG(K) is a (P)-group too. Furthermore, notice
that all involutions of the (P)-group G belong to the subgroup K . Thus, by the Feit–Thompson theorem,
CG(K) is solvable of odd order, possibly trivial. Notice also that (|K|, |CG(K)|) = 1 has to hold due
to Lemma 2.1 as indeed G , K and CG(K) happen to be (P)-groups here. Therefore, we have found a
contradiction to the choice of G as being a minimal counterexample to the truth of the step 1) → 2) .

Re 2) Suppose E(G) = {1} , so F∗(G) = F(G) holds now. Hence, the important implication

CG(F(G)) = CG(F∗(G)) ≤ F∗(G) = F(G)

happens to be the case; as to the salient ≤ sign property, it is to be found in ([10], X.13-12).

We distinguish two cases: a) F(G) is cyclic; b) F(G) is noncyclic.

Re 2)a) Assume F(G) is cyclic; notice F(G) = F∗(G) ̸= {1} . It holds that G/F(G) , being equal to G/CG(F(G))

now, is a subgroup of the abelian group Aut(F(G)) . Hence, G is solvable; indeed we know that F(G) is
nilpotent, whence solvable, so G is not an alleged counterexample.

Re 2)b) Assume F(G) is not cyclic. We distinguish two cases: 1) F(G) = SpL with {1} ̸= Sp ∈ Sylp(G) for some
prime p and {1} ̸= L ⊴ F(G) ; 2) F(G) being a noncyclic p -group for some prime p .

Re 2)b)1) Here F(G) = SpL with Sp ∩ L = {1} and [Sp, L] = {1} , Sp ∈ Sylp(F(G)) , L ̸= {1} is assumed. Thus,
p ∤ |L| , while L � G holds here. As G is a counterexample to the step 1) → 2) of minimal order of
the theorem, we get that the nonsolvable (P)-group G/L is of the form SR with [S,R] = {1} , where

2772



VAN DER WAALL and SEZER/Turk J Math

S is isomorphic to one of the groups M11 , M23 , J1 and where R happens to be a solvable (P)-group
satisfying (|S|, |R|) = 1 . Likewise G/Sp = SR2 with (|S|, |R2|) = 1 . It follows that the maximal normal
solvable subgroup O∞(G) of G satisfies G/O∞(G) ∼= S with (|G/O∞(G)|, |O∞(G)|) = 1 . Hence, by

the Schur-Zassenhaus Theorem, there exists S ≤ G with S ∼= S . Consider the group F(G)S . Notice

F(G)S ⊴ G . [Indeed, G/F(G) is a nonsolvable (P)-group satisfying G/F(G) = F(G)S/F(G)×R3 where

R3 ≤ G/F(G) with (|S|, |R3|) = 1 by induction in respect to the assertion of the step 1) → 2) of the

theorem; because G is a minimal counterexample] There exist some 1 ̸= s ∈ S and 1 ̸= σ ∈ Sp . Thus,
(sL)(σL)(sL)−1 ∈ (σL)(G/L) , i.e. sσs−1 ∈ σL . Also sσs−1 ∈ Sp , as Sp ⊴ G . Thus, sσs−1 ∈ Sp ◦ σL
holds. Since [Sp, L] = {1} , and p ∤ |L| , it yields that sσs−1 = σ is fulfilled. Analogously, one finds
for l ∈ L that sls−1 ∈ L ∩ Sp . As no prime divisor of |L| divides |Sp| , one gets sls−1 = l due to

[Sp, L] = {1} . Hence, s ∈ CG(SpL) = CG(F(G)) ≤ F(G) in this rubric Re2)b)1) . Since (|S|, |F(G)|) = 1 ,
one gets so, that s = 1 must hold, a contradiction to s ̸= 1 .

Re 2)b)2) Assume F∗(G) = F(G) , where F(G) is a noncyclic p -subgroup of G for some prime p . We split up once
more: α) The Frattini group Φ(F(G)) of F(G) is not trivial; β) Φ(F(G)) = {1} .

Re 2)b)2)α) Suppose that in Re2)b)2) Φ(F(G)) ̸= {1} holds. Since G is a counterexample of minimal order to the
assertion of the 1) → 2) -part of the Theorem and so G/Φ(F(G)) is a nonsolvable (P)-group, it holds
that G/Φ(G) ∼= S × V with S ∼= M11 or S ∼= M23 or S ∼= J1 satisfying (|S|, |V |) = 1 ; notice indeed
F(G)/Φ(F(G)) ̸= {1} . Hence, there exists 1 ̸= s ∈ G \ F(G) with p ∤ |s| centralizing F(G)/Φ(G) Thus, s
acts trivially by conjugation on the whole of F(G) by a theorem of Burnside; see ([8],III. 18.b Satz). We
have got here a contradiction to the fact that CG(F(G)) ≤ F(G) .

Re 2)b)2)β ) Suppose F∗(G) = F(G) is a noncyclic elementary abelian p-group. We have CG(F(G)) = F(G) ̸= {1}
in this rubric. Suppose |F(G)| = pn for some specific n ∈ N . We have n ≥ 2 . [Indeed n = 1 leads to
F(G) being cyclic, which is not true here.] Therefore, G/F(G) , being equal to G/CG(F(G)) , acts like a
subgroup of GL(n, p) on the additive subgroup of (Fn

p )
+ of the field Fn

p with #Fn
p = pn . The groups G

and G/F(G) are (P)-groups. Therefore, the group G ≤ GL(n, p) , being isomorphic to G/F(G) , does act
transitively on the set consisting of the lines of the n -dimensional vector space over Fp . Look at the group

Ĝ , being defined as Ĝ = GZ with Z the center of GL(n, p) . Notice G ⊴ Ĝ . Then Ĝ acts transitively
on the set of the elements of (Fn

p )
+ \ {0} . Now, due to the Jordan–Hölder theorem and the fact that the

(P)-group G admits precisely one nonabelian chief factor C in each chief series, we deduce from Lemma
2.1 that C is a simple group satisfying C ∼= M11 or C ∼= M23 or C ∼= J1 . The corresponding nonabelian
simple chief factor structure is also available for the group Ĝ . Therefore, we are allowed to invoke the
results of a crucial theorem due to Hering, see ([10], XII 7.5 Remark). As such, the group Ĝ should be an
example derived from nine particular group structures. On the other hand, by induction it appears that
none of those nine group structures admits any of the groups M11 , M23 , and J1 as a chief factor. Hence,
an eventual structure as considered in Re2)b)2)β) does not occur.

In conclusion, all contingencies have been accounted for. No counterexample to the assertion in the
1) → 2) direction of the Theorem does exist.
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The theorem has been proved.

2

We will encounter the contents of Hering’s classification, mentioned above in the proof of Theorem 4.1
several times later on in our article. As such, we will use the terminology “Hering’s theorem”, as occurring in
([10], XII 7.5 Remark).

5. Nonsporadic nonabelian chief factors of (P)-groups

In this section, the structure of a nonabelian chief factor, if any, of a (P)-group will be determined. In any
nonsolvable (P)-group G , there exists K �G and L�G with L > K and L/K nonabelian simple with G/L

solvable and K solvable by Theorem 2.2 in conjunction with the Jordan–Hölder theorem; furthermore, the
groups G/K and G/L are then (P)-groups too. These considerations lead to the determination of the possible
structures of L/K (and more), described in Theorems 5.1, 5.2, 5.3, and 5.4 and in Corollary 5.6 (and yet more
specifically in Sections 6 and 7).

Theorem 5.1 Let G be a (P)-group. Suppose G contains a nonabelian minimal normal subgroup M . Then
M is simple. In addition, M happens to be a group from one of the four following lists of groups.

a) M11 , M23 , J1 ;

b) PSL(2, q) with q = pn , p odd prime, n odd, q ̸= 3 ;

c) PSL(2, 2a) with a ≥ 2 ;

d) Sz(22a+1) with a ≥ 1 .

Each of the groups from a) , b) , c) , and d) is a (P)-group itself.

Proof The fact that M is simple has been shown in Theorem 2.2. In order to show the truth of the
second assertion, we may assume w.l.o.g. that CG(M) = {1} . [Indeed, apply induction on the (P)-group
G/CG(M) in combination with the Jordan–Hölder theorem]. Thus, we can regard M as being equal to its
own inner automorphism group satisfying M ≤ G ≤ Aut(M) with M � Aut(M) . Now we are able to apply
Yamaki’s Theorem mentioned in Section 2. [Indeed, the nonabelian simple group M contains an involution
by the Feit-Thompson theorem, and as G is a (P)-group and M is normal in G , all the involutions belong to
M ]. Hence, leaving aside the (P)-groups M ∈ {M11,M23, J1} , we are allowed to focus our attention to those
simple groups of Lie type and those simple alternating groups in which each of them contains precisely one
conjugacy class of involutions. As such, by the CFSG, consider the list of the following thirteen classes of groups.

1) PSL(2, q) , q odd, q > 3 ;

2) PSL(3, q) , q odd;

3) PSL(4, q) , q ≡ 5 mod 8 ;

4) PSU(3, q) , q odd;
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5) PSU(4, q) , q ≡ 3 mod 8 ;

6) 3 D4(q) , q odd;

7) G2(q) , q odd;

8) 2G2(q) , q = 32t+1 , t ≥ 1 ;

9) PSL(2, 2a) , a ≥ 2 ;

10) PSL(3, 2b) , b ≥ 1 ;

11) PSU(3, 2c) , c ≥ 2 ;

12) Sz(22t+1) = 2B2(2
2t+1) , t ≥ 1 ;

13) the alternating groups A5 , A6 , and A7 .

We handle each class in the following sequence one after another, as follows.

13) 2) 3) 4) 5) 6) 7) 8) 10) 11) 1) 9) 12)

Re 13) Here only the group A5 remains to be treated, due to arguments in the sequel [Notice that A5
∼=

PSL(2, 4) ∼= PSL(2, 5) ]. The group A5 has the property that any two subgroups of equal order are
conjugate in A5 ; see ([17a], Introduction).

Next, suppose that there would exist a (P)-group G admitting a normal subgroup S isomorphic to the
alternating group on seven symbols, A7 . We are allowed to identify A7 with Inn(G) due to the fact that
not only G/CG(S) can be regarded as a (P)-subgroup of Aut(S) but also that w.l.o.g. we may assume
CG(S) = {1} . Next, note that Aut(S) ∼= S7 , the symmetric group on seven symbols. The group S7 does
split over A7 , i.e. S7 does contain involutions outside A7 . Of course, A7 contains involutions, so S7 is
not a (P)-group. The group A7 does contain elements of order 3, such as (123) and (123)(456) , whose
centralizers in A7 are of distinct orders. Thus, A7 itself is not a (P)-group. Thus, G is not a (P)-group
either.
Next, we consider a group G satisfying M ∼= A6 and M � G . Consider G/CG(M) . That group is
isomorphic to a subgroup of Aut(M) . Here we have a notorious well-known situation. We are allowed to
identify M with Inn(M) due to the fact that we will show that G/CG(M) is not a (P)-group thereby
yielding that G is not a (P)-group too. We have Aut(M)/M ∼= C2 × C2 . Thus, there are three maximal
subgroups T1 , T2 , and T3 of Aut(M) , each containing M as a normal subgroup. The structure of the
groups Ti , i = 1, 2, 3 is as follows

α) T1
∼= S6 , the symmetric group on six symbols. The group T1 splits over M , so T1 is not a (P)-group as

there are involutions inside and outside M in T1 . Hence, the full group Aut(M) is not a (P)-group.

β ) T2
∼= PGL(2, 9) . The group T2 is, therefore, a split extension over M , so T2 is not a (P)-group, as there

are involutions T2 inside and outside M .
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γ ) T3
∼= M10 , the Mathieu group on ten symbols. The group T3 does not split over M , so that we have to

do some extra work. Denote by S(2) a Sylow 2 -subgroup of T3 . Hence, S(2) is semidihedral of order 16 .
Any Sylow 2-subgroup S of A6 (or M ) is isomorphic to a dihedral group of order 8 . Notice S(2)∩M ∼= S

due to M �T3 . Next observe that the nontrivial right coset of S(2)∩M in S(2) consists of four elements
of order 8 and four elements of order 4 . Hence, T3 contains (at least) two cyclic groups of order 4 of
which one is a subgroup of the normal subgroup M of T3 and the other one is contained in T3 but not
in M . Thus, T3 is not a (P)-group as these two cyclic groups of order 4 are not conjugate in T3 .

Observe that the group A6 is not a (P)-group itself as the two subgroups ⟨(123)⟩ and ⟨(123)(456)⟩ are
not conjugate in A6 itself.
This settles the case 13).

Re 2) 3) 4) 5) 6) 7) 8) In each of these alleged possibilities of M , it is known that there exist cyclic groups of
order p (in 8): p = 3) which are not conjugate to each other in Aut(M) . Hence, none of those M does
occur as normal subgroup of some (P)-group.

Re 10) In any of the groups PSL(3, 2b) with b ≥ 1 , it holds that for a prime d dividing 2b − 1 with d ̸= 3 ,
there exist cyclic subgroups of order d which are not conjugate in Aut(PSL(3, 2b)) ; see the arguments
analogous to those in ([18] proof of Theorem 11), so let us look at the diophantine equation
2b−1 = 3u for (b, u) ∈ Z≥0×Z≥0 . Only (b, u) ∈ {(2, 1), (1, 0)} do remain as solutions, see Lemmas D and
E in [18]. The group PSL(3, 2) is isomorphic to PSL(2, 7) which is a (P)-group. The automorphism group
of PSL(3, 4) splits over Inn(PSL(3, 4)) , see [13]. The group Out(PSL(3, 4)) is isomorphic to C2 × S3 ,
whence of order 12 , see ([6], pages 23-25). Therefore, an alleged (P)-group with M �G ≤ Aut(PSL(3, 4))

and M ∼= PSL(3, 4) might only be equal to M itself [Indeed, such a G with G > M contains elements of
order 2 and order 3 outside M whereas M does contain elements of these orders too, a contradiction to
the (P)-group property of G ]. On the other hand, PSL(3, 4) does contain at least two conjugacy classes
of subgroups of order 3 in PSL(3, 4) implying though that PSL(3, 4) itself is not a (P)-group. All this
settles the case 10).

Re 11) Our notation is such that PSU(3, 2c) is isomorphic to a subgroup of PSL(3, 22c) . It is well known for c = 2

and each of c ≥ 4 , there exists a prime tc dividing 22c−1 satisfying tc ∤ 2i−1 for each i ∈ {1, · · · , 2c− 1} .
Fix such a tc . Then there exist cyclic groups of order tc which are not conjugate in Aut(PSU(3, 2c)) ;
see the arguments analogous to those inside the proof of Theorem 7 in [18]. Finally, the group PSU(3, 8)

does contain elements x and y , each of order 3 , whose centralizers in PSU(3, 8) are of different orders,
see [[6], pages 64-66]. As such, ⟨x⟩ and ⟨y⟩ are not conjugate in Aut(PSU(3, 8)) : This settles the case
11).

Re 1) Here we will look at the groups PSL(2, pn) where p is an odd prime and n ≥ 1 . We distinguish two cases:
a) n even; b) n odd

Re 1)a) Let n be even. Then Out(PSL(2, pn)) ∼= C2×Cn holds. Let ϕ be the unique field automorphism of order 2
of the field Fq , where q = pn (n even) and consider the inclusion map PSL(2, pn)⟨ϕ⟩ ↪→ Aut(PSL(2, pn)) .
Let σ be a 2 -element of Aut(PSL(2, pn)) such that σ2 ∈ PSL(2, q) and PGL(2, q) ∼= PSL(2, q)⟨σ⟩ . Any
maximal subgroup of Aut(PSL(2, q)) containing Inn(PSL(2, q)) does contain at least one of the groups
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PSL(2, q)⟨σ⟩ , PSL(2, q)⟨σϕ⟩ , PSL(2, q)⟨ϕ⟩ ; label these subgroups as (*), (**), (***), respectively. Let
H1 ≤ Aut(PSL(2, q)) be any group containing(***). The group (***) splits over PSL(2, q) , whence H1

does contain involutions not contained in PSL(2, q) . Hence, H1 is not a (P)-group. Next let us look at a
group H2 containing (**). The group (**) does contain elements of order 4 which are not contained in
the normal subgroup PSL(2, q) of (**), whereas PSL(2, q) does also contain elements of order 4 . Hence,
it cannot be that H2 is a (P)-group. Next let us look at a group H3 containing (*). It is well-known that
PGL(2, q) does split over PSL(2, q) . Therefore, there are involutions in H3 not contained in the normal
subgroup PSL(2, q) of H3 . Thus, H3 is not a (P)-group. As such the whole group Aut(PSL(2, q)) is
not a (P)-group. The group PSL(2, q) itself with q = pn , p odd prime, n even, has the property that it
contains precisely two conjugacy classes of cyclic subgroups of order p , see Dickson ([7], § 249). Thus,
such a group PSL(2, q) is not (P)-group.

Next recall that Out(PSL(2, q)) ∼= C2×Cn , whence that for even n with n = 2αm with α ≥ 1 and m odd,
C2×Cn

∼= C2×C2α ×Cm does hold too. Look at any group H with PSL(2, pn) ≤ H ≤ Aut(PSL(2, pn)) .
It is known that for any subgroup U of C2 × C2α × Cm the equality U = (U ∩ (C2 × C2α))× (U ∩ Cm)

holds as m is odd. Hence, we see that for groups H with 2 | |H/PSL(2, q)| , H belongs to one of the
groups of the types H1 , H2 , and H3 we dealt with above, so we are allowed, at least, to confine ourselves
to groups H with |H/PSL(2, q)| being odd. We know already that PSL(2, pn) , with p an odd prime, n
even, contains precisely two conjugacy classes of cyclic subgroups of order p ; let us call these classes C1

and C2 . Let us assume for the moment that H is a (P)-group. Then C1 ∪ C2 would be the unique full
conjugacy class in H of cyclic subgroups of order p . Let C ∈ C1 be such a group. We get then, according
to Dickson’s § 249 in [7], #(groups in C1 ∪ C2) =

|H : NH(C)| = |H : PSL(2, q)NH(C)| · |PSL(2, q)NH(C) : NH(C)| . Now 2 ∤ |H : PSL(2, q)NH(C)| , as the
last number divides the odd integer
|H : PSL(2, q)| .
We have |PSL(2, q)NH(C) : NH(C)| = |PSL(2, q) : NH(C) ∩ PSL(2, q)| = |PSL(2, q) : NPSL(2,q)(C)| =

# {conjugacy class of C in PSL(2, q)} = p2n−1
2(p−1) by § 247 in [7]. Let C be a group of order p contained

in the class C2 . Also by § 247 in [7], p2n−1
2(p−1) = #

{
conjugacy class of C in PSL(2, q)

}
. Hence,

|H : NH(C)| = # {groups in C1 ∪ C2} = p2n−1
p−1 =

2 · |PSL(2, q) : NPSL(2,q)(C)| = 2 · p2n−1
2(p−1) = 2 · |PSL(2, q)NH(C) : NH(C)| =

|H : PSL(2, q)NH(C)| · |PSL(2, q)NH(C) : NH(C)| =
|H : PSL(2, q)NH(C)| · |PSL(2, q) : NPSL(2,q)(C)| , a contradiction to

2 ∤ |H : PSL(2, q)NH(C)| earlier established. Hence, all this settles the case 1)a).

Re 1)b) Look at PSL(2, pn) , p odd and n an odd integer. Then it is known, as n is an odd, that the union of
the cyclic p -subgroups of that group constitutes precisely one full conjugacy class of order p ; see ([7],
§249). Any Sylow p -subgroup of PSL(2, pn) is elementary abelian. Any other Sylow r -subgroup of
PSL(2, pn) here, is cyclic for odd primes r ̸= p . Hence, any two cyclic subgroups of equal r -power order
are conjugate in PSL(2, pn) . It is a fact that in PSL(2, pn) all involutions do fall into one conjugacy class
of involutions. The Sylow 2 -subgroups of PSL(2, pn) are dihedral. Hence, all cyclic 2 -groups of order
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2a for some prescribed integer a ≥ 2 , are conjugate to each other in PSL(2, pn) . Notice that the Sylow
2 -subgroups of PSL(2, pn) are conjugate to each other in PSL(2, pn) and each such Sylow 2 -subgroup (of
order 2a ) contains exactly one cyclic subgroup of any prescribed 2 -power order at least equal to 4 . In
conclusion, any group PSL(2, pn) , p odd prime, n odd, is a (P)-group itself [As a lagniappe, notice that
PSL(2, 3) is a solvable (P)-group of order 12; it is isomorphic to the alternating group A4 ].

Hence, case 1)b) has been settled.

Re 9) Consider the group PSL(2, 2a) with a ≥ 2 . All involutions in PSL(2, 2a) do fall in one conjugacy class
of involutions of PSL(2, 2a) . The Sylow 2 -subgroups of PSL(2, 2a) are elementary abelian. All other
Sylow r -subgroups with r odd prime, are cyclic; see ([8], 8.10 Satz). Hence, any two cyclic subgroups of
equal r -power order in PSL(2, 2a) are conjugate to each other. Thus, any such PSL(2, 2a) is a (P)-group.
[Notice PSL(2, 2) ∼= S3 , the solvable symmetric group on three symbols, which is a (P)-group].

This settles case 9).

Re 10) Here we treat the groups Sz(22t+1) ; or, in different notation, 2B2(2
2t+1) , with t ≥ 1 . All Sylow r -

subgroups of Sz(22t+1) are cyclic where r is an odd prime; see ([10], XI. 3.7.c Remark). Any such group
Sz(22t+1) has all its involutions conjugate. There exist in Sz(22t+1) precisely two conjugacy classes of
elements of order 4 . Hence, Sz(22t+1) contains precisely one conjugacy class of cyclic subgroups of order
4 . Thus, we conclude that the groups Sz(22t+1) t ≥ 1 are (P)-groups themselves.

This settles the case 10).

The proof of the theorem is complete. 2

In the next theorem, we present a kind of a converse situation, as follows.

Theorem 5.2 Let G be a group with N �G , where N is one of the following groups.

a) N ∼= PSL(2, pn) , p odd prime number, n odd integer, pn ̸= 3 ;

b) N ∼= PSL(2, 2a) , a ≥ 2 ;

c) N ∼= Sz(22c+1) , c ≥ 1 .

Let K be a subgroup of G with NCG(N) ≤ K ≤ G .
Then K is a (P)-group if and only if

1) (|K/NCG(N)|, |NCG(N)/CG(N)|) = 1 ; and

2) K/NCG(N) is a cyclic group whose order divides n in case a), a in case b , 2c+ 1 in case c); and

3) (|N |, |CG(N)|) = 1 ; and

4) K/N is a (P)-group.

2778



VAN DER WAALL and SEZER/Turk J Math

Proof
Aut(N)

K̃

Inn(N) ∼= N

{1}

The group NCG(N)/CG(N) is a normal nonabelian simple subgroup of K/CG(N) ,
as N∩CG(N) = {1} due to the simplicity of N . Notice that NCG(N)/CG(N) ∼= N
now. Hence, K/CG(N) can be isomorphically embedded in Aut(N) in such a way
that K̃ ∼= K/CG(N) , where K̃ ≤ Aut(N) ; see the proof of Theorem 2.2. Hence,
K̃/ Inn(N) ∼= K/NCG(N) holds.

(⇒:) Suppose K is a (P)-group. Then K/N is a (P)-group; thus, 4) has been proved. Also, as K is a
(P)-group with normal subgroups N and CG(N) satisfying N ∩ CG(N) = {1} , it follows from (2.1) Lemma
that all elements of order ta (a ≥ 1 odd) for a given prime t contained in NCG(N) must be contained in
precisely one of the groups N or CG(N) . Hence, 3) is fulfilled. Next, consider the (P)-group K/CG(N) for
each of the groups NCG(N)/CG(N) ∼= PSL(2, pn) (p odd prime, n ≥ 1 odd); NCG(N)/CG(N) ∼= PSL(2, 2a)

(a ≥ 2); NCG(N)/CG(N) ∼= Sz(22t+1) (t ≥ 1). Note that in these cases, Out(PSL(2, pn)) is cyclic of order 2n

and that Aut(PSL(2, pn)) splits over Out(PSL(2, pn)) if n is odd; that Out(PSL(2, 2a)) is cyclic of order a and
that Aut(PSL(2, 2a)) splits over Inn(PSL(2, 2a)) ; and finally that Out(Sz(22c+1)) is cyclic of order 2c+1 and
that Aut(Sz(22c+1)) splits over Inn(Sz(22c+1)) . These properties pave the way to the assertions as described
in 1) and 2). Namely, the order of the (P)-group K/NCG(N) with N ∼= PSL(2, pn) (p odd prime, n ≥ 1 odd)
divides |Out(PSL(2, pn))| , but also NCG(N)⟨α⟩ = K holds with ⟨α⟩N/N ∩NCG(N)/N = 1 , where α induces
a field automorphism of PSL(2, pn) (n odd) of order n . Hence, as K/NCG(N) is a (P)-group, |⟨α⟩| has to
satisfy |⟨α⟩| | n and (|⟨α⟩|, |PSL(2, pn)|) = 1 by the splitting property of Aut(PSL(2, pn)) over Inn(PSL(2, pn))

for n odd. Similar argument holds for the two cases PSL(2, 2a) (a ≥ 2) and Sz(22c+1) (c ≥ 1). In passing, the
fact that K is supposed to be a (P)-group, plays a role in the assertion “(|⟨α⟩|, |N |) = 1” mentioned above.
The proof of the direction (⇒) is complete.

CG(N)N

NCG(N)

K

G

{1}

cyclic

(⇐ :) Conversely, suppose the four conditions 1), 2), 3), and 4) are in vogue for
a group G . Given is now that K/N is a (P)-group. Thus, it is enough to show
that K/CG(N) is a (P)-group, see ([14], (2.8) Theorem), as (|N |, |CG(N)|) = 1
has been assumed. Any group in the classes a), b), and c) is a (P)-group;
see Theorem 5.1. Notice that here (|K/N |, |N |) = 1 holds by 1), 3) and the
simplicity of N . The group G/CG(N) is cyclic for all the N from a), b) and c);
see also the overview in the beginning of the proof of the ⇒ -part of the Theorem.

Therefore, by the Schur-Zassenhauss Theorem, there exists U ≤ K with U isomorphic to K/N satisfying U ≥
CG(N) and with K/NCG(N) being cyclic, it follows that K/CG(N) being of order |NCG(N)/N | · |U/CG(N)| ,
is a (P)-group, as the given N ’s are (P)-groups and as all cyclic subgroups of K/CG(N) of order |U | are
conjugate to each other. Notice the full strength of the Schur-Zassenhaus Theorem here. [As to on the details
here, view the proof of the next Corollary 5.3].

The proof of the ⇐ -part is complete.
The proof of the theorem has been done. 2

Corollary 5.3 Suppose G is a group containing one of the groups N mentioned in the hypothesis of Theorem
5.2 as a normal (nonabelian simple) group. Then G is a (P)-group if and only if G = NR where R ≤ G is a
solvable (P)-group whose order is relatively prime to the order of N .
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Proof (⇒ :) Let G be a (P)-group. In the proof of Theorem 5.2 (with G in the role of K there), we have
got that in this situation, |N | is relatively prime to |CG(N)| whence |N | is relatively prime to |NCG(N)/N | .
In addition, |G/NCG(N)| turned out to be relatively prime to |NCG(N)/CG(N)| , whence to |N | (remember
N ∩CG(N) = {1}). It follows that |G/N | is relatively prime to |N | . Thus, by the Schur-Zassenhaus Theorem
there exists R ≤ G with G = NR and R ∩N = {1} . Notice that R is a (P)-group itself, as the group G/N ,
which is being isomorphic to R , is a (P)-group. Any complement of N in G is solvable by the Feit–Thompson
theorem as 2 | |N | , whence 2 ∤ |G/N | .

(⇐ :) Conversely, let G = NR with N �G , R ≤ G , R∩N = {1} and N as assumed in the assumptions
of Theorem 5.2. Hence, N is a (P)-group itself, as we know now. Suppose R ≤ G is a (P)-group itself satisfying
(|N |, |R|) = 1 . Thus, R is solvable by the Feit–Thompson theorem. Let Cpa and Cpa be the cyclic subgroups
of G of equal order pa , where p is a prime and a ≥ 1 . If p | |N | we are done, as Cpa and Cpa are contained in
the Sylow p -subgroups of G , Sp and Sp (say), but notice that none of Sp , Sp are normal in N when p | |N | .
Indeed, there exists n ∈ N with (Cpa)n = Cpa , i.e. Cpa and Cpa are conjugate in N , whence they are conjugate

in G . Next assume p ∤ |N | and p | |G| . Hence, p | |R| . Now Cpa ≤ S̃p ∈ Sylp(G) and C̃pa ≤ ˜Sp ∈ Sylp(G)

for certain Sylow p -subgroups Sp and S̃p of order pa . There exists a Sylow p -subgroup Sp say of R which
is also a Sylow p -subgroup of G . As the groups Sp , S̃p , and Sp are conjugate to each other in G , one finds

(Cpa)g ∈ S̃g
p = Sp for a suitable g ∈ G and (C̃pa)h ∈ Sh

p = Sp for a suitable h ∈ G . Thus, (Cpa)g and (C̃pa)h

are cyclic groups both contained in Sp with Sp ≤ R and with |(Cpa)g| = |(C̃pa)h| = |Cpa | = |C̃pa | = pa . Since R

is a (P)-group by assumption, there exists t ∈ R with ((Cpa)g)t = (C̃pa)h . It follows that (((Cpa)g)t)h
−1

= C̃pa ,

whence Cpa and C̃pa do satisfy (Cpa)gth
−1

= C̃pa . Therefore, G is a (P)-group. 2

The structure of the groups appearing in Theorem 5.2 and Corollary 5.3 can be refined, due to the
classification of the solvable (P)-groups as described in ([14], (4.4) Theorem), as follows.

Theorem 5.4 Let G be a group as discussed in Theorem 5.2 and Corollary 5.3. Then it holds that
G is a (P)-group if and only if
G = NR in which the (P)-group R equals SU satisfying G = (N × S)⋊ U , where N × S �G , [N,S] = {1} ,
S � R , (|N |, |S|) = 1 , S being the (possible empty) direct product of elementary abelian noncyclic Sylow pi -
subgroups of R for primes pi (i = 1, · · · , t), whereas U is a metacyclic subgroup of R whose order is relatively
prime to |N × S| . In addition, [N, [R,R]] = {1} holds, U acts, possibly nonfaithfully, on N by means of
a (possibly trivial) field automorphism; U/[U,U ] and [U,U ] are cyclic and of orders relatively prime to each
other.

Proof View the contents and the proofs of Theorem 5.2, Theorem 5.3 and ([14], (4.4) Theorem). 2

In the rest of this paper, it is of importance to take advantage of the Schur multiplier M(S) , where

1) S ∈
{
M11;M23; J1; PSL(2, 2

a)(a ≥ 3); Sz(22t+1)(t ≥ 2)
}
,

2) S ∼= Sz(8) ,

3) S ∈ {PSL(2, pm)(p odd prime,m odd, pm ≥ 5)} .
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It is a fact (see [11], 2.1.7 Theorem) that in case 1) any S has a trivial Schur multiplier, that in case 2)
M(Sz(8)) ∼= C2 × C2 , and that in case 3) the Schur multiplier of S is isomorphic to C2 . Notice PSL(2, 4) ∼=
PSL(2, 5) ∼= A5 .

As such, one gets the following theorem.

Theorem 5.5 Let S be a nonabelian group isomorphic to a chief factor of a (P)-group G . Suppose also that
S has trivial Schur multiplier. Then G = NR , where N � G , N ∼= S , N is a (P)-group, R is a (P)-group,
R ≤ G , (|N |, |R|) = 1 . [The more detailed structure of such a (P)-group G is analogous to the one described
in Theorems 4.2 and 5.4].

Proof The theorem holds in each of the cases S , where S stands for each one of the groups M11 , M23 , and
J1 ; see Theorem 4.2 and its proof. Thus, those cases have already been dealt with.

In Theorem 2.3, it has been shown that any nonsolvable (P)-group G satisfies an arbitrary series of the
form G ≥ L > K ≥ {1} , where L�G and G/L solvable, K �G and L/K simple and nonabelian. Let M be
a minimal normal subgroup of G contained in K [the case K = M = {1} is dealt with in Theorem 5.1]. Thus,
assume indeed that M ̸= {1} . Since G/M is a (P)-group, by induction via the Jordan–Hölder theorem, we
may assume that the theorem holds for G/M . In other words, we may assume K = M ̸= {1} . We distinguish
two cases: α) K = ζ(L) , β) K ̸= ζ(L) .

Re α) Assume K = ζ(L) . Here we have L = L′ζ(L) as L/ζ(L) = (L/ζ(L))′ = L′ζ(L)/ζ(L) . Due to a theorem
of Schur ([11], 2.1.7 Theorem), L′ ∩ ζ(L) is isomorphic to a subgroup of the Schur multiplier of L/ζ(L) .
By assumption here, that multiplier is trivial, so L′ ∩ ζ(L) = {1} , i.e. L is the direct product of L′

and ζ(L) . Next, note that L′ � G and ζ(L) � G , whence G/L′ and G/ζ(L) are both (P)-groups,
G is a (P)-group. Hence, it follows that (|L′|, |ζ(L)|) = 1 by the (P)-property of G . Observe that
L′ ∼= L′/(L′ ∩ ζ(L)) ∼= L′ζ(L)/ζ(L) = (L/ζ(L))′ , so that L′ is a simple nonabelian minimal normal
subgroup of G , isomorphic to L/K . Hence, the statement of the theorem holds with L′ playing the role
of N .

Re β ) Assume K ̸= ζ(L) . Consider G/CG(K) . Notice that CG(K) ≥ K , as K is an elementary abelian
p -group for some suitable prime number p ; here the possibility K ∼= Cp is not excluded too. If G/CG(K)

happens to be solvable, then we are back in case α) . [Indeed, by induction there exists a chief section L̃/K

of G with L̃ ≤ CG(K) and note that L̃/K ∼= L/K by Theorem 2.3.] Thus, we assume that the (P)-group
G/CG(K) is not solvable, and by induction it contains a normal simple nonabelian subgroup isomorphic
to S , so K is elementary abelian but not cyclic of prime power order. Suppose K = Cp ×Cp × · · · ×Cp ,
n ≥ 2 times. Since G is a (P)-group, the group G/CG(K) , regarded as a subgroup of Aut(K) , acts like
a subgroup G (say) of GL(n, p) on the vector space Fn

p , thereby permuting transitively the lines of Fn
p

as G is a (P)-group. Let us look at the group Gζ(GL(n, p)) and call hat the latter group G . The group

G permutes transitively the elements of order p of Fn
p , and is isomorphic to such a group transitively

permuting the nontrivial elements of K . One has now arrived in a situation where Hering’s theorem may
be applied. A necessary remark here is that none of the groups PSL(2, 2a) (a ≥ 3) is isomorphic to some
PSL(2, pm) for an odd prime p and m ≥ 1 ; see Artin’s result in ([1], Theorem 2, page 466). It follows
from the list in Hering’s theorem that, in order to investigate (P)-groups admitting a chief factor of the
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shape SL(2, 2a) (a ≥ 3) and Sz(22t+1) (t ≥ 2), only the first two cases of the nine possibilities must be
investigated further. That is, here one has p = 2 and also SL(2, 2a) (a ≥ 3) might occur perhaps as a
possibility for an isomorphic simple normal subgroup S/F(G) of the group G = G/F(G) , where G is a
(P)-group too. It is allowed now here, to assume that CG(K) = K by induction; the argumentation is left
to the reader. Thus, as G is a (P)-group, |G : NG(Cp)| = |F(G) \ {1} | = 22a − 1 ; see Hering’s theorem,
where C2 is a subgroup of F(G) of order 2 .

NG(C2)

SNG(C2)

G

S

NS(C2)

S2

F(G)

C2

{1}

Let S2 ∈ Syl2(S) such that C2 ≤ ζ(S2) . Notice that there exists x ∈ S
of order 3 in S not centralizing each involution of the elementary abelian
2 -group F(G) = CG(K) = K ; otherwise, S/F(G) would not be simple.
Suppose a fortiori that [C2, ⟨x, ⟩] = {1} . Even stronger, 22a − 1 divides
|S : S2| . It holds now here that (|S/F(G)|, |G/S|) = 1 , see Theorem
5.4 applied in the (P)-group G/F(G) . Hence, as |G : SNG(C2)| divides
|G : NG(C2)| and also |S : S2| , it follows that |G : SNG(C2)| = 1 :
Therefore, NG(C2) = S2 . Hence, it follows that x does not centralize any
nontrivial element from F(G) .

Therefore, if t ∈ F(G) \ {1} , the set
{
1, t, tx, t(x

2)
}

constitutes a Klein 4 -group which is x -invariant.

There exists a 2 -element b in S outside F(G) with b2 ∈ F(G) such that bF(G) inverts xF(G) under
conjugation in the group (S/F(G))′ , notice S2/F(G) is an elementary abelian 2 -group [In fact, each
2 -element of S outside F(G) has order 4 , as G is a (P)-group]. Now as (b2)b = b2 , ((b2)x)b =

((b2)b)x
−1

= (b2)x
−1

= (b2)(x
2) and ((b2)(x

−1))b = ((b2)b)(x
2)−1

= b2 one observes that the Klein 4-
group ⟨b2, (b2)x⟩ is a normal subgroup of ⟨x, b⟩ . Next, observe that ⟨x, b⟩/⟨b2, (b2)x⟩ is isomorphic to
S3 , the symmetric group on three symbols. As we saw earlier, ⟨b2, (b2)x⟩ is contained in the commutator
subgroup of ⟨x, b⟩ as x permutes the three nontrivial elements of ⟨b2, (b2)x⟩ under conjugation. Hence,
one gets in all 3 = |(⟨x, b⟩/⟨b2, (b2)x⟩)′| = |⟨x, b⟩′/(⟨x, b⟩′ ∩ ⟨b2, (b2)x⟩)| = |⟨x, b⟩′/⟨b2, (b2)x⟩| . It yields
|⟨x, b⟩/⟨x, b⟩′| = 2 with |⟨x, b⟩| = 24 . It is a classical fact that any group of order 24 whose commutator
subgroup has index 2 in that group turns out to be isomorphic to the symmetric group S4 on four
symbols. Thus, ⟨x, b⟩ ∼= S4 . Hence, there exists an involution d in ⟨x, b⟩ with d /∈ ⟨(b2)x, b2⟩ . Since
⟨(b2)x, b2⟩ � ⟨x, b, d⟩ , the group ⟨(b2)x, b2, d⟩ is isomorphic to a dihedral Sylow 2 -subgroup of order 8 of
S4 . Thus, d /∈ F(G) , as F(G) is an elementary abelian 2 -group. Therefore, the possibilities (1) and
(2) in Hering’s theorem do not occur for a (P)-group G here in this theorem. To close with, the case
when |F(G)| is prime, has already been dealt with. In summary, there exists indeed a simple N �G with
N∈∼=

{
M11,M23, J1,SL(2, 2

a)(a ≥ 3); Sz(22t+1)(t ≥ 2)
}
. The further assertions in the theorem are clear

from Theorem 5.2, Corollary 5.3, and Theorem 5.4.

The theorem has been proved. 2

In Theorem 5.5, we dealt with the groups Sz(22t+1) (t ≥ 2) but the group Sz(23) was purposely left out.
Notice, each of all Suzuki simple groups is a (P)-group itself. The Schur multiplier of Sz(23) is isomorphic to
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C2 × C2 ; see ([11], 7.4.2 Theorem). Despite that “anomaly”, the following theorem still holds.

Theorem 5.6 Suppose Sz(23) is isomorphic to a chief factor of a (P)-group G . Then G = NR , where N�G ,
N ∼= Sz(23) , R ≤ G , R is a (possibly trivial) (P)-group satisfying (|N |, |R|) = 1 . The structure of R can be
read off from Theorem 5.2, Corollary 5.3, Theorem 5.4, and Theorem 5.5.

Proof We follow the proof of Theorem 5.5 up to the point where G ≥ L > K ≥ {1} has been reached, where
K is a minimal normal and elementary abelian subgroup of G with L/K a chief factor of G with L/K ∼= Sz(23)

and G/L solvable. Then one splits up the proof into: α) K ̸= ζ(L) and β) K = ζ(L) .

Re α) The arguments like the ones used in Re β) in the proof of Theorem 5.5 yield that one approaches one of
the nine possibilities set out in Hering’s Theorem, or that |K| = p for some prime p . Here, nevertheless,
in none of the nine cases, the group Sz(23) is involved as a possibility for a chief factor of G/CG(K) .
Thus, case α) does not occur unless |K| = p , and this case will be treated in the next case Re β) .

Re β ) Let us assume K = ζ(L) . Hence, we have L = L′ζ(L) , as L/ζ(L) is a nonabelian simple group equal to
its commutator subgroup (L/ζ(L))′ , whence equal to L′ζ(L)/ζ(L) . Due to Schur ([11], 2.1.7 Theorem),
the group L′ ∩ ζ(L) is isomorphic to a subgroup of C2 × C2 , because the Schur multiplier of Sz(23) ,
regarded as isomorphic to L/ζ(L) , is isomorphic to C2 × C2 . The group L′ ∩ ζ(L) , being characteristic
in L , is normal in G . Thus, as G is a (P)-group and K a minimal and elementary abelian subgroup
of G ( |K| could be a prime number), one gets that L′ ∩ ζ(L) = {1} or that L′ ∩ ζ(L) = K . In case
L′∩ζ(L) = {1} , it follows along similar lines as in the proof of α) in Theorem 5.5 that there exists N �G

satisfying N ∼= Sz(23) . The truth of the assertion of the theorem follows directly from it. Thus, let us
proceed with L′ ∩ ζ(L) = K = ζ(L) ̸= {1} . Here two cases must be considered, namely |K| = 2 and
ζ(L) = K ∼= C2 × C2 .

Let us assume |K| = 2 . Now, as G is a (P)-group and not solvable, it follows that a Sylow 2 -subgroup
of G is generalized quaternion; see ([8], III. 8.2.b Satz). It holds that Aut(Sz(23)) is isomorphic to
Inn(Sz(23)) ⋊ ⟨Θ⟩ , a split extension with a field automorphism Θ of order 3 . By induction, the (P)-
group G/K has the property that (|G/L|, |L/K|) = 1 , so any Sylow 2 -subgroup of G is also a Sylow
2 -subgroup of L . Let P ∈ Syl2(L) . The order of Sz(23) is 26 · 5 · 7 · 13 ; see ([6], page 28). According to
([6], page 8), the commutator subgroup of P/K is at least of index 8 in P/K . On the other hand, as P

is here generalized quaternion, either P/K is nonabelian or P/K ∼= C2 × C2 . In both these cases, one
has |(P/K)/(P/K)′| = 4 , contrary to the just mentioned bound 8 | |(P/K)/(P/K)′| .

Hence, |K| ̸= 2 . There remains L′ ∩ ζ(L) = K = ζ(L) ∼= C2 × C2 to be considered.

Therefore, inside such a group L , there exists now a subgroup U of order 28 · 7 normalizing a Sylow
2 -subgroup V (say) of L and containing K . Since G is a (P)-group with K � G , the only involutions
in G are those from K \ {1} . According to ([6]), U is a maximal subgroup of L . As it holds that
NL(V )/CL(V ) embeds in Aut(V ) as a subgroup, it becomes of interest what the structure of Aut(V )

looks like. It is a surprising fact that 7 ∤ |Aut(V )| holds, just by the fact that V contains precisely three
involutions of G ; see ([4], Volume 3, page 394, Exercise 3), using the contents of §82 in ([4]). This implies
that |NL(V ) : CL(V )| is a power of 2 . Hence, CL(V ) contains an element of order 7 , centralizing V .
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This is a contradiction to the actual structure of U as can be read off in ([6], page 8). Therefore, there
exists N �G with N ∼= Sz(23) yielding all the statements of the theorem, as argued in Theorems 5.2 and
Theorems 5.4.

The theorem has been proved. 2

Next, as a useful intermezzo on its own account, let us assume that some (P)-group G does contain a
Sylow p -subgroup of S for some odd prime p , whose intersection with the Fitting subgroup F(G) of G is not
trivial Then, as it will be shown implicitly in the next theorem, it follows that either S is cyclic or else that S

is elementary abelian but not cyclic; in the last case at least, the group S is a normal subgroup of G . Indeed,
if S ∩ F(G) is cyclic and not trivial, F(G) does contain a unique normal subgroup U (say) of order p that
happens to be normal in G too. Thus, as G is a (P)-group, it follows that G contains precisely one subgroup
of order p . Hence, by ([8], III. 8.2 Satz) S itself is cyclic due to p being odd. We are left to prove the following
theorem thereby.

Theorem 5.7 Let G be a (P)-group and assume that for some odd prime p , its Fitting subgroup F(G) contains
a noncyclic p-subgroup. Then the (normal) Sylow p-subgroup S of F(G) is a (in fact the) normal Sylow p-
subgroup of G ; moreover S is elementary abelian.

Proof The proof is given by means of a series of steps.

1) Suppose Op′(F(G)) ̸= {1} . The group G/Op′(F(G)) is a (P)-group, so by induction G/Op′(G) does
contain a normal and elementary abelian but noncyclic Sylow p -subgroup which is SOp′(G)/Op′(G) for
some S ∈ Sylp(G) . Hence, S is elementary abelian and noncyclic. Therefore, as {1} < S ∩ F(G) ≤ S ,

and as G is a (P)-group, S ≤ F(G) does follow, whence
{
S
}
= Sylp(G) happens to be true.

2) Thus, let Op′(F(G)) = {1} , i.e. F(G) is a noncyclic (P)-group. The elementary abelian group
F(G)/Φ(F(G)) is not cyclic; for otherwise F(G) would be a cyclic p -group due to Burnside’s Basis
Theorem ([8], III. 3.15 Satz) which does not happen in this case. The group G/Φ(F(G)) is a (P)-group.
Hence, in case Φ(F(G)) ̸= {1} , F(G/Φ(G)) , being equal to F(G)/Φ(G) by ([8], 4.2. d) Satz), does contain
a noncyclic Sylow p -subgroup, whence by induction G/Φ(F(G)) possesses a normal elementary abelian
Sylow p -subgroup U/Φ(F(G)) (say), so U ≥ F(G) , whence U is a nilpotent and normal p -subgroup of
G yielding U = F(G) ∈ Sylp(G) . Thus, p ∤ |G/F(G)| and so by Shult ([9], VIII. 7.11.a Remarks), F(G)

is homocyclic abelian; here it is used that G is a (P)-group, that G/CG(F(G)) is a (P)-group and that
G/CG(F(G)) ↪→ Aut(F(G)) with {F(G)} = Sylp(G) permutes the cyclic p -subgroups of G transitively
under conjugation. Subsequently it follows from ([9], VIII. 5.8.b Theorem) and ([14] Theorem C), that
F(G) is elementary abelian anyway. Therefore, it is allowed to proceed with the following step.

2)a) Assume F(G) is elementary abelian and noncyclic p -group. We distinguish two cases: α) E(G) ̸= {1} ;
β) E(G) = {1}

2)a)α) Assume E(G) ̸= {1} . Then it follows that the p -group E(G) ∩ F(G) is trivial. [Indeed, E(G) is a
nonabelian simple group here, as we know that E(G)ζ(E(G)) ̸= {1} is simple for a (P)-group G and that
ζ(E(G)) is a nilpotent (possibly trivial) 2 -subgroup of G ; see ([11], 2.1.7 Theorem) and remember that
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the Schur multiplier of such a simple group E(G)/ζ(E(G)) is a (possibly trivial) 2 -group.] The groups
F(G) and E(G) do centralize each other, by ([2], 11 (31.12)). The (P)-group G/E(G) is solvable by
Theorem 2.3, whence by ([14], (4.4) Theorem), G/E(G) contains now a normal Sylow p -subgroup S , as
F(G/E(G)) , containing F(G)E(G)/E(G) as a noncyclic p -group. Hence, in addition, by ([14] Theorem
C), S is elementary abelian. It follows that {F(G)} = Sylp(G) by the (P)-property of G in combination
with the fact that E(G) ∩ F(G) = {1} and [E(G),F(G)] = {1} .

2)a)β ) Let us finally assume that F(G) is elementary abelian noncyclic and that E(G) = {1} . Hence, C(F(G)) =

F(G) . [Indeed, once again this fact stems from the important general theorem ([10], X. 13.12 Theorem)
asserting that CG(F∗(G)) ≤ F∗(G) , F(G) being abelian, it follows that indeed CG(F∗(G)) = F∗(G) as
F∗(G) = F(G) ]. Therefore, one can regard F(G) as being an additive subgroup of the vector space F+

pn

over Fp , so that G/F(G) acts like a subgroup G of GL(n, p) with G ∼= G/F(G) permuting the lines of
F+
pn transitively. Now let us follow the lines of Hering’s theorem. One comes across nine structures of

groups.

The cases 3), 6), 7), and 9) have to do with p = 2 , contrary to the assumption on p being an odd prime.
In case 4), it follows implicitly that there exists a unique element of order 2 in G , due to the fact that
G is a (P)-group such that also Gζ(GL(n, p)) < GL(n, p) contains an extra-special normal subgroup of
order 22t+1 , say. Hence, indeed t = 1 must hold. The structure of G in this case yields the solvability of
G , so that the theorem holds due to ([14], (4.4) Theorem) for the (now solvable) (P)-group G .

In cases 1) and 2) considered together, we see that either G is a solvable (P)-group in which situation we
are done by Sezer’s theorem ([14], (4.4) Theorem) or that G contains a now solvable normal subgroup M

isomorphic to some SL(r, pt) . On the other hand, G is a(P)-group too, so that here r = 2 must hold,
due to Theorem 5.2, Theorem 5.3, and Corollary 5.4. By these very theorems and corollary, p does not
divide |G/M | . Here the question does occur whether G is a (P)-group after all in such a case 1) or 2). It
happens that such a G is not a (P)-group; see the end of the proof of Theorem 6.1, being independent of
this result.

Thus, let us investigate case 5). Here the last term in the derived series of G isomorphic to SL(2, 5) . Let
us first consider the alleged possibility |F(G)| = 34 in this case. Notice that |GL(4, 3)| = 29 · 34 · 5 · 13

and |SL(2, 5)| = 23 · 3 · 5 . It holds by Theorem 5.3 that the (P)-group G satisfies (|G/G
∞|, |G∞|) = 1 .

Hence, it follows that 3 ∤ |G/G
∞| and that |G/G

∞| is odd and 5 ∤ |G/G
∞| . Thus, |G/G

∞| equals 1 or
13 .
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G

F(G)

C

{1}

NG(C)

G∞

23 · 5

22 · 3 · 5

1, 13

2

3

G

34

SL(2, 5)

PSL(2, 5)

Let us focus our attention on some cyclic
subgroup C of order 3 in F(G) . The as-
sumption that G is a (P)-group, yields |G :

NG(C)| = 34−1
2 = 40 = 23 · 5 as there are

40 subgroups of order 3 in F(G) all con-
jugate to each other in the (P)-group, so
|NG(C) : F(G)| equals 3 or 3 · 13 .

On the other hand, any involution of G acting on F(G) by conjugation normalizes one subgroup C̃ of
order 3 in F(G) . By assumption of the (P)-property of G , NG(C) and NG(C̃) must be conjugate to
each other. Next, notice that 2 | |NG(C̃)| but at the same time it was derived that 2 does not divide
|NG(C)| = |NG(C)/F(G)||F(G)| . A contradiction, so case 5) with |F(G)| = 34 , does not occur. There
remains to investigate in case 5): |F(G)| = p2 where now p ∈ {11, 19, 29, 59} . Hence, |GL(2, p)| is equal
to 24 · 3 · 52 · 11 or to 24 · 34 · 5 · 19 or to 25 · 3 · 5 · 72 · 29 or to 24 · 3 · 5 · 292 · 59 , respectively. Let U/F(G)

be the group G
∞ with U ≤ G , and R/F(G) := ζ(U/F(G)) with R � G . Since G/R is a (P)-group, it

follows now from G
∞ ∼= SL(2, 5) that G/R is a direct product of the groups U/R and H/R (say) with

H �G satisfying (|H/R|, |U/R|) = 1 .

G

H

R I

U

F(G)

{1}

2

22 · 3 · 5

Therefore, H/F(G) itself, due to 2 ∤ |H/R| , is also a direct product of
the groups R/F(G) and I/F(G) (say) for some suitable I � G . Notice
I/F(G) ∼= H/R . Now notice that no nontrivial number 11v + 1 does divide
2 · 5 likewise no nontrivial number 29v + 1 divides 22 · 72 and likewise no
nontrivial number 59v+1 divides 2 ·292 . Otherwise said, for any of the four
choices of p , it happens that G/U contains a normal Sylow p -subgroup due
to Sylow’s Theorem.

Hence, a Sylow p -subgroup Sp of G must be normal in G itself, being of order p3 or p2 , since
G/U ∼= H/R ∼= I/F(G) ; remember, G/F(G) is isomorphic to a direct product of I/F(G) and U/F(G) .
Suppose |Sp| = p3 . The group Φ(Sp) is normal in G and it has order p2 or p or 1 . If |Φ(Sp)| = p2

would hold, then Sp would be cyclic, which is not the case. If |Φ(Sp)| = p would hold, then, by the
normality of Φ(Sp) in G , a contradiction to the (P)-property of G would have been obtained, since F(G)

is a minimal normal subgroup of G . If Φ(Sp) = {1} would hold, then Sp would be elementary abelian
a contradiction to the (P)-property of G when looking at the elementary abelian subgroup F(G) of G .
In summary, one must have here, that {F(G)} = Sylp(G) . As it will be shown later, there exist indeed
(P)-groups G satisfying p ∤ |G/F(G)| and |F(G)| = p2 with p being equal to 11 , or 19 , or 29 , or 59 .

Thus, there remains case 8) to investigate, in which Gζ(GL(6, 3)) ∼=
SL(2, 13) with |F(G)| = 36 . As it happens, all the maximal subgroups of SL(2, 13) are solvable. Now,
if the (P)-group G is solvable itself in case 8) we are immediately done by Sezer’s theorem yielding
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{F(G)} = Syl3(G) . Thus, we may work with the assumption that G = G/F(G) ∼= SL(2, 13) . Let us
assume for the moment that an involution τ of G acts by conjugation on the elementary abelian group
F(G) of order 36 in such a way that τ acts trivially on some specific subgroup C of F(G) of order 3 .
Next notice that all the involutions of G are of the form τf for some f ∈ F(G) , due to G ∼= SL(2, 13) .
Since G is a (P)-group, all subgroups of order 3 are conjugate to each other; they are all contained in

F(G) . Hence, considering C = ⟨c⟩ with c ∈ G , one gets (cg)g
−1τg = (cτ )g = cg , whereas g−1τg = τ f̃ for

a suitable f̃ ∈ F(G) . It yields (cg)τf̃ = ((cg)τ )f̃ = ((cg)τ . Consequently though, τ works trivially on the
whole group F(G) , implying F(G)⟨τ⟩ being nilpotent and normal in G ; a contradiction to the fact that
F(G) is the Fitting subgroup of G . Therefore, τ acts on F(G) by inverting each element of F(G) ; the
same property holds now for any involution of the (P)-group G . Next, observe that there exists a ∈ G

satisfying a6 ∈ F(G) and also satisfying |aF(G)| = 6 . Now, if |a| = 6 would hold, then the order of a2 is
3 , whence a2 ∈ F(G) , a contradiction to the (P)-group property of G yielding {A ≤ G | |A| = 3} ⊆ F(G) ,
so |a| = 18 is forced. Hence, a9 is an involution of G , centralizing the subgroup ⟨a6⟩ ∈ F(G) of order
3 . The assumption G being a (P)-group provides now the conflicting interests ⟨a6⟩ ∈ F(G) and the
involution a9 acting on F(G) by inverting all the elements of F(G) as argued above. Therefore, case 8)
does not occur.

The theorem has been proved. 2

Let us see what happens if a (P)-group G does contain some noncyclic p -subgroup contained in F(G) ,
where p is an odd prime. If so, then it was shown in Theorem 5.7 that G contains an elementary abelian
p -subgroup P satisfying P �G , {P} = Sylp(G) (whence P ≤ F(G)). Look at CG(P ) . One has P ≤ CG(P )

and, as (|CG(P )/P |, |P |) = 1 , it holds that there exists U�G such that U ∼= CG(P )/P . Notice CG(P )/U ∼= P

and that apparently also (|G/CG(P )|, |CG(P )/U |) = 1 holds. Let G := G/U and P = CG(P )/U . Hence,
CG(P ) = P does follow.

G

V

CG(P )

W

PU

{1}

[Indeed, if V/U := CG(P ) with G ≥ V ≥ C(P ) , then there would exist W�G
with W ≥ U , p ∤ |W | and WCG(P ) = V , and W ∩CG(P ) = U all this due to
(|V/CG(P )|, |P |) = 1 . As W � G with p ∤ |W | , one gets that W centralizes
the normal subgroup P of G , yielding though that W coincides U ].

Next, let |P | = pn , where n ≥ 2 holds with P elementary abelian. Again, we are in the situation of

Hering’s theorem when G ≤ GL(n, p) and G ∼= G/P holds. Analyzing the nine possibilities in Hering’s theorem
one gets the following, after splitting up the discussion into G not solvable and G solvable, respectively.

(a) Suppose that G is not solvable. As above, (|G|, p)| = 1 holds here. Hence, out of the nine possible
structures in Hering’s theorem only the cases (4), (5) and (8) have to be investigated in respect to an

eventual (P)-group G and (P)-group G . In case 4) only n = 2 might happen as Gζ(GL(n, p)) ≤ GL(n, p)
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possesses at most one involution in the (P)-group G here, yielding indeed n = 2 with |P | = p2 ∈{
32, 52, 72, 112, 232

}
. On the other hand, in case 4) this situation yields the solvability of G too. Thus,

case 4) does not occur here for a nonsolvable (P)-group G . Let us consider case 5) for a nonsolvable

(P)-group G . Remember again that p ∤ |G| . Hence, in case 5) one gets G/P �R with R ∼= SL(2, 5) and
p2 ∈

{
112, 192, 292, 592

}
. Now, if p2 = 112 , then it will turn out that G/P ∼= SL(2, 5) . Also, if p2 = 192 ,

then G/P ∼= SL(2, 5) too. Moreover, if p2 = 292 , then G/P ∼= SL(2, 5) or G/P ∼= SL(2, 5) × C7 (both
are allowed). Finally, if p2 = 592 , then G/P ∼= SL(2, 5) or G/P ∼= SL(2, 5) × C29 (both are allowed).
At last, we have to consider case 8). One has G/P ↪→

≤ SL(2, 13) here and |P | = 36 . The nonsolvable
group SL(2, 13) has all its maximal subgroups solvable. Hence, in our part (a) under consideration, one
has G/P ∼= SL(2, 13) . Then, however, we are able to dismiss immediately case 8), as G happens to be
a (P)-group; see the end of the proof of Theorem 5.7. [Another feature happening in (a) is that even
(|CG(P )/P |, 30) = 1 holds; see Theorem 6.1 later, being independent from this theorem].

(b) Suppose that G is solvable. Then the structure of G can be read off in Theorem A in [14], to which the
reader is kindly referred.

Next, let us assume that a (P)-group G admits a chief factor isomorphic to PSL(2, 5) and that P � G

is an elementary abelian normal p -subgroup of order p2 ∈
{
112, 192, 292, 592

}
. Then it will turn out that

G/CG(P ) is not solvable, whence that we are back in case (a) just considered above. Namely suppose, on the
contrary that G/CG(P ) is solvable. [Notice also that X ̸= CX(Y ) for any nontrivial (P)-group X with Y �X

being some elementary abelian t -group (t prime)]. Remember |PSL(2, 5)| = 22 · 3 · 5 = 60 . There exists now
a chief factor L/K of G with L/K ∼= PSL(2, 5) and L � G , K � G , P ≤ K < L ≤ CG(P ) . By assumption
G/CG(P ) is not trivial here. Since G/K is a (P)-group, it follows that (60, |G/L|) = (|L/K|, |G/L|) = 1 , due
to Theorem 5.2. Therefore, |G/L| is relatively prime to 15 . Let Cp < G be a cyclic group of order p , where
p ∈ {11, 19, 29, 59} . Then, as G is a (P)-group with CG(P ) ≥ L , one has |G : NG(Cp)| ∈ {12, 20, 30, 60} as
inside G there are precisely p + 1 subgroups of order p , all being contained in P . Notice now that none of
these numbers 12 , 20 , 30 , and 60 are relatively prime to 15 . Hence, on the one hand |G/L| is relatively prime
to 15 satisfying G ≥ NG(Cp) ≥ CG(Cp) ≥ L and on the other hand |G : NG(Cp)| is not relatively prime to 15

so that (by Lagrange), |G/L| is not relatively prime to 15 . This is a contradiction, as required.
The following, perhaps curious, corollary is worth to be mentioned.

Corollary 5.8 Suppose G is a nonsolvable (P)-group containing a noncyclic Sylow p-subgroup S for some
odd prime p ≥ 5 . In addition, assume that for that prime p G does not admit a chief factor isomorphic to
PSL(2, pf ) with f ≥ 2 . Then S �G holds. Moreover, S is elementary abelian.

Proof Assume G is a counterexample of minimal order to the statement of the corollary. We distinguish
three cases: 1) |S ∩ F(G)| ≥ p2 ; 2) |S ∩ F(G)| = p ; 3) |S ∩ F(G)| = 1 .

Re 1) By Theorem 5.7, it holds that S ∩ F(G) � G , that S ∩ F(G) ∈ Sylp(G) whence S ∩ F(G) is elementary
abelian. This contradicts the assumption of G being a counterexample of minimal order to the corollary.
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Re 2) Put S∩F(G) = ⟨c⟩ with c ∈ F(G) being of order p . The p -group S is noncyclic and of odd order. Hence,
by ([8], III. 8.2.a Satz), there exists a d ∈ S with |d| = p satisfying d /∈ ⟨c⟩ . Since G is a (P)-group, it
leads to ⟨c, d⟩ ≤ F(G) , contrary to |S ∩ F(G)| = p .

Re 3) Here one has p ∤ |F(G)| . Again, we distinguish two cases: a) |F(G)| ̸= 1 b) |F(G)| = 1

Re 3) a) Suppose firstly F(G) ̸= {1} and that |F(G)| is divisible by two distinct primes. As F(G) is nilpotent, it
leads to the existence of two nontrivial characteristic subgroups M and U of F(G) satisfying M∩U = {1}
with (|M |, |U |) = 1 . By induction, each of the (P)-groups G/M and G/U does contain a normal Sylow
p -subgroup isomorphic to S . Hence, G , being isomorphic to G/(M∩U) , can be isomorphically embedded
into G/M × G/U , while observing that now G contains a normal Sylow p -subgroup isomorphic to S .
This contradicts the assumption that G is a counterexample to the statement of the corollary. Thus, we
may assume now that F(G) ̸= {1} and that F(G) is a q -group for some prime q ̸= p . We distinguish two
cases: 1) E(G) ̸= {1} and 2) E(G) = {1} .

Re 3a)1) We work here with F(G) being a nontrivial q -group with q ̸= p and E(G) ̸= {1} . Hence, it is known
that E(G)/ζ(E(G)) is simple nonabelian. Put A = E(G)′ ∩ ζ(E(G)) . We know that A is isomorphic
to a subgroup of the Schur multiplier of E(G)/ζ(E(G)) . Hence, the order of A is equal to 4, or to 2 or
to 1, by what has been seen earlier in our article. If |A| would be 4, then this could only happen when
E(G)/ζ(E(G)) is isomorphic to Sz(23) , in which case A would appear be isomorphic to C2 × C2 .

Next, assume that |A| ̸= 1 . That assumption can be dismissed off as follows. The (P)-group G/A , being
of smaller order than the order of G , does contain a normal Sylow p -subgroup SA/A isomorphic to S .
Notice SA�G . We have p ≥ 5 . Hence, as A is either cyclic of order 2 or otherwise elementary abelian of
order 4, it follows that SA does happen to be in both cases a direct product of a characteristic subgroup
isomorphic to S and of a characteristic subgroup isomorphic to A . Hence, the given Sylow p -subgroup
S of G would nevertheless turn out to be normal in G , a contradiction.

Thus, let us continue with A = {1} . Then the simple group E(G)/ζ(E(G)) is isomorphic to (E(G)/ζ(E(G)))′ ∼=
E(G)′/(E(G)′ ∩ ζ(E(G))) ∼= E(G)′ . We then have landed into one of the Theorems 5.1–5.5 from which it
follows that G is not a counterexample to the corollary; notice that under the assumptions p ≥ 5 of this
corollary, all odd such p provide cyclic Sylow subgroups of G in Theorems 4.2 and 5.1–5.5. In particular,
one has to notice that the Sylow p -subgroups of the three groups M11 , M23 , J1 happen all to be cyclic
as soon as p ≥ 5 is assumed! Thus, we are done again. It follows that we may proceed with F(G) ̸= {1}
and E(G) = {1} .

Re 3a)2) Thus, as observed earlier, CG(F(G)) = CG(F(G)E(G)) = CG(F∗(G)) ≤ F∗(G) = E(G)F(G) = F(G) does
follow. Now, if F(G) is cyclic, then G/CG(F(G)) (with CG(F(G)) ≤ F(G)) is abelian, whence G would be
solvable; a contradiction to the assumption of G being nonsolvable. Thus, the Frattini subgroup Φ(F(G))

of F(G) has at least index q2 in the q -group F(G) by Burnside’s Basis Theorem.

Assume Φ(F(G)) ̸= {1} . Since G/Φ(F(G)) is a (P)-group, not a counterexample to the corollary, it follows
that there exists S̃ � G/Φ(F(G)) with S̃ ∼= S . As (q, p) = 1 , SΦ(F(G))/Φ(F(G)) × (F(G)/Φ(F(G))) is
a as normal subgroup of G/Φ(F(G)) . Therefore, S acts trivially on F(G)/Φ(F(G)) by conjugation, i.e.
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S ≤ CG(F(G)) ≤ F(G) by Burnside; see ([8], III, 3.18 Satz). A contradiction, as F(G) is an elementary
abelian q -group with q ̸= p .

Hence, it must be that Φ(F(G)) = {1} , i.e. F(G) is an elementary abelian q -group, so CG(F(G)) = F(G)

holds. By induction, the (P)-group G/F(G) being not a counterexample of minimal order, does contain
a normal Sylow p -subgroup S isomorphic to S , as p ∤ |F(G)| . Thus, there exists a minimal normal
subgroup M of G/F(G) , contained in S̃ , with M ̸= {1} . The group M turns out to be cyclic. This
rather nontrivial fact is brought up in the theory of (P)-groups in Sezer’s article ([14], (4.2) Lemma and
(4.3) Lemma); here F(G) being elementary abelian is also used, in as much as F(G) being a chief factor
of G [The case F �G with 1 < F < F(G) is not possible, as Exp(F(G)) = q and all subgroups of order
q also being pressed into F by the (P)-group property of G .]. Therefore, inside M , there exists a cyclic
group C �G/F(G) of order p . Since G/CG(F(G)) (= G/F(G)) is a (P)-group, the group G/CG(F(G))

does possess precisely one subgroup of order p . Therefore, as p is odd, ([8], III. 8.2.a Satz) tells us that
S itself has to be a cyclic p -subgroup, contrary to the assumption of S being noncyclic. All this settles
case a). We proceed with b) F(G) = {1} .

Re 3) b) There remains to investigate the situation F(G) = {1} . Notice that F∗(Y ) ̸= {1} for any group Y ̸= {1} .
Therefore, E(G) , being here equal to E(G)F(G) , i.e. equal to F∗(G) , is not trivial. Furthermore,
ζ(E(G)) ≤ F(G) = {1} leads to the fact that the (P)-group G does contain a unique normal subgroup
being nonabelian see Theorem 2.3. Next, apply the contents of the statements in Theorems 4.2 and 5.4.
Notice that each Sylow t -subgroup for each prime t at least 5 in the groups appearing in the assumptions
of the corollary in connection to the relevant statements on N in Theorems 4.2, 5.1, and 5.4, is de facto
cyclic. Therefore, no counterexample to the statements of the corollary does exist.

The proof of the corollary is complete. 2

It remains to determine the structure of a nonsolvable (P)-group G admitting a chief factor L/K whose
Schur multiplier M(L/K) is isomorphic to C2 . Indeed, only M(L/K) ∼= C2 with L/K ∼= PSL(2, pm) (p odd
prime, m ≥ 1 , pm ≥ 5) must hold for such a G .

Theorem 5.9 Let G be a (P)-group admitting some L/K as a chief factor L/K ∼= PSL(2, pm) , where p is
an odd prime, m ≥ 1 , pm ≥ 7). Then one of the next two statements does occur.

1) There exists M � G with M ∼= PSL(2, pm) with 2 ∤ |G/M | and 2 ∤ |K| . The structure of such a G is
described in Theorem 5.4.

2) There exists M �G with M ∼= SL(2, pm) , (|M |, |G/M |) = 1 and m odd. In addition, one gets M ⋊ V ,
a semidirect product of M with a solvable (P)-group V such that (|M |, |V |) = 1 where G/ζ(M) has the
structure of the groups occurring in Theorem 5.4.

Proof It will turn out that the assumption 2 | |K| leads to considerations popping up in case 2). In the proof
of each of the statements 1) and 2), we assume that G is a counterexample of minimal order to the respective
statements of the theorem.

Re 1) Here we work under the assumption that 2 does not divide the order of K . Now, do follow the arguments
in the proof of Theorem 5.5, cases Re α and Re β . Thus, analogously to the proof of Re β there, notice
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that now |L′ ∩ ζ(L)| ≤ 2 due to M(L/K) ∼= C2 . As in Re β , (|L′|, |ζ(L)|) = 1 has to hold where K is
a minimal normal, whence elementary abelian, subgroup of G (possibly K ∼= Cp ). Just as in Re β , one
gets L′ � G with L′ ∼= PSL(2, pm) . Next, analogously to Re α , one gets that the (P)-group G/CG(K)

ultimately satisfies CG(K) = K and by induction the existence of U/CG(K)�G/CG(K) with U�G and
U/CG(K) ∼= PSL(2, pm) is guaranteed. Notice that t ∤ |G/CG(K)| holds by Theorem 5.7, when t2 | |K| ,
t odd prime, in conjunction to Theorem 5.7. [The case |K| is an odd prime can be easily dismissed].
Hence, apparently, we do find ourselves in one of the nine structures occurring in Hering’s theorem. Now
due to (|G/CG(K)|, |K|) = (|G/K|, |K|) = 1 , CG(K) = K and 2 ∤ |K| with |K| = tu (u ≥ 2 , t odd
prime), Hering’s theorem tells us that
a) the cases 3), 6), 7), and 9) do not occur for G as t ̸= 2 ;
b) the cases 1), 2), 8) do not occur for G as t ∤ |G/K| ;
c) the case 4) does not occur as G is not a solvable (P)-group;
d) the case 5) does not occur as it is assumed in the assumption of the theorem that pm = 5 will not be
considered.
Therefore, by induction, assertion 1) of the theorem has been verified.

Re 2) It has to be shown by induction that there has to exist a normal subgroup M of G satisfying M ∼=
SL(2, pm) with 2 ∤ |G/M | , if 2 | |K| is given. The proof will be given in a series of steps. It holds by
Theorem 5.4 that for any factor group G/T of G/R with R�G and T/R�G/R (T �G) with T/R ∼=
PSL(2, pm) , G/R is a (P)-group with |G/T | = |(G/R)/(T/R)| ≡ 1 mod 2 and (|G/T |, |T/R|) = 1 . This
property will be used throughout rest of the proof of the theorem. In particular, one has then 2 | |R| ;
this fact will be used frequently too.

Re 2)1) Suppose M � G is a minimal normal subgroup of G contained in K , satisfying 2 ∤ |M | . Then either
M ∼= Ct for some odd prime t or else M is a noncyclic elementary abelian t -subgroup of G . In the last
case, {M} = Sylt(G) as shown in Theorem 5.7, a property also to be used in what follows.

Re 2) 1) a) Suppose M ∼= Ct . Then G/CG(M) ↪→ Ct−1 . Hence, w.l.o.g., by induction and Jordan–Hölder’s theorem,
we may assume that L/K ∼= PSL(2, pm) is a chief factor of G satisfying |K/M | = 2 (due to 2 | |K/M |

and |G/L| odd). Hence, K ∼= C2 × Ct , whence there exists a normal subgroup C̃ ≤ K of order 2 of G .
The (P)-group G/C̃ now does satisfy Theorem 5.4. Thus, there exists K̃ � G with K̃ ≥ C̃ such that
K̃/C̃ ∼= PSL(2, pm) . Since G is a (P)-group, it follows that G now possesses a unique involution, yielding
K̃ ∼= SL(2, pm) . In this case, the theorem has been proved.

Re 2) 1) b) Suppose M ∼= Ct×Ct×· · ·×Ct of order tn (n ≥ 2). By induction and Jordan–Hölder, the (P)-group G/M

does contain some K̃ �G with K̃/M �G/M satisfying K̃/M ∼= SL(2, pm) with 2 ∤ |(G/M)/(K̃/M)| =

|G/K̃| and (|G/K̃|, |K̃/M |) = 1 . Hence, by the (P)-group property of G , any element τr of G with τ ∈ G

and r ∈ M and (τr)2 ∈ M but τr ̸= 1 , has the property that either each τr centralize M or else that each
τr inverts e ∈ M , e ̸= 1 under conjugation action. In case τ acts trivially on M , then one can reason just
as in case Re 2) 1) a) in order to conclude that the theorem holds. Therefore, one can assume that τ inverts
all elements of M \{1} . Notice that M⟨τ⟩/M = ζ(K̃/M) as all the involutions of the (P)-group G/M are
in fact contained in the group K̃/M , where K̃/M ∼= SL(2, pm) . Hence, all involutions of the (P)-group
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G are contained in M⟨τ⟩ ; notice that the Sylow 2 -subgroups of K̃ (whence also of G as 2 ∤ |G/K̃|) are
generalized quaternion. All these things yield 2 ∤ |CG(M)/M | and (|CG(M)/M |, |M |) = 1 . Hence, either
CG(M) = M or else CG(M) does contain a characteristic subgroup D of CG(M) , whose order being an
odd number greater than 1 , is relatively prime to t , with CG(M) = MD and M ∩D = {1} . In the last
case G is isomorphic to a subgroup of the direct product of the (P)-groups G/D and G/M . Now, if D

contains a minimal normal subgroup N of G , not trivial and cyclic of prime order, then one can argue as
in Re 2)1)a) and conclude that the conclusion of the theorem holds, i.e. G contains a normal subgroup
isomorphic to SL(2, pm) or PSL(2, pm) . Thus, suppose the above group is nilpotent and not cyclic. Then,
by Theorem 5.7, {N} = Sylu(G) for some odd prime u different from t . Next, observe that N ∩M = {1}
and that G/N , G/M and G/NM are (P)-groups each satisfying the first conclusion of the theorem, i.e.
there exists G � B � MN with B/MN ∼= SL(2, pm) ; notice (|G/B|, |B/MN |) = 1 . The group G/N

does also contain a normal subgroup E/N ∼= SL(2, pm) with E �G . Hence, as {MN/N} = Sylt(G) one
gets that B/N is the direct product of the groups E/N and MN/N . Likewise, as {MN/N} = Sylu(G) ,
there exists F �G with F ≥ M such that F/M ∼= SL(2, pm) . Hence, also B/M is the direct product of
F/M and MN/M . Since (|MN |, |B/MN |) = 1 , by the Schur–Zassenhaus theorem, there exists W ≤ G

with W = BMN and W ∩MN = {1} , where W ∼= SL(2, pm) . Now WMN/N centralizes MN/N and
WMN/M centralizes MN/M . Hence, when w ∈ W and n ∈ N one has wM · nM = nM · wM , i.e.
wnw−1n−1 ∈ M , but surely wnw−1n−1 ∈ N holds too as N � G . Thus, wnw−1n−1 ∈ N ∩M = {1} .
Likewise, wmw−1m−1 ∈ N ∩M = {1} for all w ∈ W and m ∈ M . Thus, as (|W |, |MN |) = 1 , it follows
that W is a characteristic subgroup of the inner direct product of the groups W and MN , since W �G .
Herewith the proof of the theorem is concluded when CG(M) ≩ M .

Re 2) 1) c) Therefore, we proceed with the assumption CG(M) = M , M ≇ Ct , M ∼= Ct × Ct × · · · × Ct , |M | = tf ,
f ≥ 2 , t odd prime. As G is a (P)-group, t ∤ |G/M | holds as shown in Theorem 5.7. Once again, let
us bring Hering’s theorem into play yielding nine specific structures. All these cases can be dismissed
off as follows. In cases 1) and 2) one has t | |G/M | or G is solvable, a contradiction; in case 3) t = 2

might only appear as well as in the cases 6), 7), and 9), a contradiction; in case 4) one has either to do
with a solvable (P)-group G or else with tf = 34 but then this is in conflict with L/K ∼= PSL(2, pm)

and 3 | |L/K| | |G/M | and 3 = t ∤ |G/M | ; in case 5) one has a contradiction to the assumption
L/K ∼= PSL(2, pm) with pm ≥ 7 ; finally in case 8) one has t = 3 and G/M ∼= SL(2, 13) , a contradiction
to the property 3 = t ∤ |G/M | . The case Re 2) 1) leads therefore by induction, to the proof of the theorem.

Thus, let us proceed with the possibility that the Fitting subgroup F(K) of K is a (possibly trivial)
2 -group.

Re 2) 2) Suppose that F(K) is a 2 -group. In fact, F(K) ̸= {1} . Remember that, due to Theorem 2.3, K is
solvable and look at the premise of Re 2)1).

Re 2) 2) a) Let us first assume that 2 | |K/F(K)| . Then by induction, there exists inside the (P)-group G/F(K) ,
a chief factor (L̃/F(K))/(K̃/F(K)) with Ľ/F(K) ∼= PSL(2, pm) and with K̃ � G , L̃ � G , K̃ < Ľ ,
satisfying |K̃/F(K)| = 2 and with Ľ/F(K) ∼= SL(2, pm) . It follows that K̃ = F(K̃) , since K̃ is a 2 -
group. It holds that |K̃| is divisible by 4. Consider K̃/Φ(K̃) . If 4 | |K̃/Φ(K̃)| , the elementary abelian

2792



VAN DER WAALL and SEZER/Turk J Math

noncyclic 2 -group K̃/Φ(K̃) must be a chief section of the (P)-group G/Φ(K̃) , as the nontrivial involutions
of K̃/Φ(K̃) are conjugate to each other within G/Φ(K̃) . This, however, contradicts F(K) � G with

G� K̃ = F(K̃)
2
> F(K) ≥ Φ(K̃) . Hence, one gets K̃

2
�Φ(K̃) ̸= {1} , i.e. K̃ is a cyclic 2 -group. Therefore,

|G/CG(K̃)| ≤ 2 , so that CG(K̃)/K̃ is not solvable and a fortiori containing L̃/K̃ , the latter group being
isomorphic to PSL(2, pm) . Thus, K̃ ≤ ζ(L̃) holds. Moreover, L̃/K̃ = (L̃/K̃)′ = L̃′K̃/K̃ ∼= L̃′/L̃′ ∩ K̃ .

By induction, for the (P)-group G/U via the group U � G defined by U :=
{
l ∈ K̃ | l2 = 1

}
, one may

assume |K̃| = 4 for the cyclic 2 -group K̃ [Indeed, K̃ = {1} is impossible as 2 | |K| and 2 ∤ |G/L| and
2 ∤ |G/L̃| ; when |K̃| = 2 , then we are done, as in the (P)-group G , L̃ ≇ PSL(2, pm) × C2 ]. Now, if

L̃′ ∩ K̃ = {1} , then L̃ = L̃′ × K̃ and so L̃′ ∼= PSL(2, pm) with L̃′ � G , a contradiction to 2 ∤ |G/L̃′|

and 2 | |K| . If L̃′ ∩ K̃ ∼= C2 , then L̃′/Ω1(K̃) ∼= PSL(2, pm) and in fact L̃′ ∼= SL(2, pm) does hold here
and we are done again. If L̃′/K̃ , then L̃ = L̃′ and K̃ = Ǩ ∩ L̃ = K̃ ∩ L̃′ ≤ ζ(L̃) ∩ L̃′ . However, as the
Schur multiplier of M(L̃/K̃) is isomorphic to C2 , one finds by ([11], 2.1.7 Theorem) that ζ(L̃) ∩ L̃′ is
isomorphic to a subgroup of M(L̃/K̃) , a contradiction to 4 = |K̃| ≤ |ζ(L̃) ∩ K̃ ′| . Therefore, the case in
which it is supposed that 2 divides |K/F(K)| has been dealt with.

Re 2) 2) b) Let us therefore assume that |K/F(K)| is odd; K = F(K) might happen too here. Remember that we still
do find ourselves in case Re 2) 2) in which F(K) is a 2 -group and that K is solvable and 2 | |K| , whence
F(K) ̸= {1} holds. Now, if K ̸= F(K) , then we may assume by induction on the (P)-group G/F(K) ,
due to 2 | |K| and 2 ∤ |K/F(K)| , that Re 2) 1) is fulfilled, i.e. there exists K̃ � G , L̃ � G , K̃ < L̃

satisfying L̃/K̃ ∼= PSL(2, pm) and K̃ = F(K) . If |K̃| = 2 , then L̃ ∼= SL(2, pm) as G is a (P)-group
and also M(L̃/K̃) ∼= C2 . [Indeed, notice that, if K̃ ∼= C2 , L̃ can only contain generalized quaternion
Sylow 2 -subgroups due to the (P)-group property of G ]. Therefore, in case |K̃| = 2 , we are done again.
Thus, let |K̃| | 2α (α ≥ 2). Now, if K̃ happens to be cyclic, then one is able to establish the truth of
the theorem, just as it was done in case Re 2)2)a). Thus, assume K̃ is not cyclic. Suppose 1 ̸= T is a
minimal normal subgroup of G , where T ≤ K̃ holds. Two cases can happen: α) |K̃/T | is divisible by 2 ;
β ) K̃ = T , i.e. K̃ is an elementary abelian 2 -group.

Re 2) 2) b) α) Suppose 2 | |K̃/T | . Then the theorem holds for the (P)-group G/T , by induction. Thus, without
loss of generality, we may assume L̃/T ∼= SL(2, pm) , whence |K̃/T | = 2 . Since also G/Φ(K̃) is a
(P)-group permuting the involutions of G/Φ(K̃) transitively, and as Exp(K̃/Φ(K)) = 2 one must have

K̃
2
� T = Φ(K̃) ̸= {1} . In other words, K̃ is a cyclic 2 -group of order at least 4 . Now one gets by the

same reasoning as in a part of Re 2)2)a), that this leads to a contradiction to the (P)-property assumption
for a nonsolvable group.

Re 2) 2) b) β ) Suppose K̃ = T is an elementary abelian group of order 2n ≥ 4 . Consider the subgroup inclusions
K̃ ≤ CG(K̃) ∩ L̃ ≤ L̃ . Notice also now that K̃ is a minimal normal (and elementary abelian) 2 -
subgroup of G , as G is a (P)-group. Since L̃/K̃ is simple nonabelian, either K̃ = CG(K̃) ∩ L̃ < L̃ or
K̃ < CG(K̃) ∩ L̃ = L̃ holds. Once again we distinguish two cases a and b .
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Re 2) 2) b) β )a Assume K̃ = CG(K̃)∩ L̃ . Hence, as we know that (|CG(K̃)L̃/L̃|, |L̃/K̃|) = 1 , it holds that |CG(K̃)K̃/K̃|

is odd. Thus, when CG(K̃) ̸= K̃ occurs, then CG(K̃) is the inner direct product of the groups K̃ and
W , say, where 2 ∤ |W | , K̃ being a 2 -group. Hence, W is characteristic in CG(K̃) , so normal of odd
order in G . The proving procedure has now been reduced to the already settled Re 2)2)a) case in which
there exists some chief factor L̂/K̂ ∼= PSL(2, pm) with some K̂ �G , K̂ ≥ W , L̃�G ; such a chief factor
does exist in G by the Jordan–Zassenhaus–Hölder theorem. Thus, assume CG(K̃) ∩ L̃ = K̃ but also
CG(K̃) = K̃ . Then the nine structures from Hering’s Theorem provide the following insights:

The cases 4) 5) and 8) do not occur since in Hering’s theorem it would hold that some Chevalley group
G2(2

m) is normal in our group G/K̃ [and notice too that no PSL(2,Fq) is isomorphic to PSL(2,Fr) ,
q ̸= r ];

The cases 6), 7) and 9) do not occur in our proof, as no A6 , A7 or PSU(3, 9) is isomorphic to any
PSL(2, pm) with p odd prime, m odd, pm ≥ 7 ;

Likewise, the cases (1) and (2) do not occur here for PSL(2, pm) with p odd prime, m odd, pm ≥ 11 ,
and none of those PSL(2, pm) is isomorphic to some SL(2, 2a) .

On the other hand, the isomorphism between the groups PSL(2, 7) and SL(3, 2) must be studied sep-
arately. It is worked out in the next theorem. As such, it turns out that no such (P)-group G exists
containing a normal elementary abelian 2 -group H of order at least 8 and satisfying CG(H) = H with
L�G , H ≤ L , L/H ∼= SL(3, 2) . [As to all these (non)isomorphism properties, view the article of Artin
([1], Theorem 2, page 466)]. All these items do settle the case a .

Re 2) 2) b) β )b Assume CG(K̃) ∩ L̃ = L̃ , i.e. K̃ ≤ ζ(L̃) . Remember that K̃ is a minimal normal (and elementary
abelian) 2 -subgroup of G with |K̃| > 4 . One has L̃′ ∩ K̃ ≤ L̃′ ∩ ζ(L̃) and L̃′ ∩ ζ(L̃) is isomorphic
to a subgroup of the Schur multiplier M(L̃/K̃) of L̃/K̃ whence |L̃′ ∩ ζ(L̃)| ≤ 2 . Since K̃ is a chief
factor of G , it follows that L̃′ ∩ K̃ = {1} , also due to |K̃| > 4 . Thus, as here L̃ is equal to L̃′K̃ (as
L̃/K̃ = (L̃/K̃)′ = L̃′K̃/K̃ ), the property L̃′ ∩ K̃ = {1} yields that no involution of G is contained in
L̃′ (using the (P)-property for G that all involutions of G must be contained in K̃ ) as L̃′ �G . On the
other hand, L̃′ ∼= L̃′/(L̃′ ∩ K̃) ∼= L̃′K̃/K̃ = (L̃/K̃)′ = L̃/Ǩ holds, where L̃/K̃ is isomorphic to some
PSL(2, 2m) , p odd prime, m odd, pm ≥ 7 ; a contradiction to 2 ∤ |L̃′| just obtained. Hence, case b does
not occur.

The theorem has been proved. 2

It was observed in the proof of Theorem 5.9 that one detail had to be filled in, due to the isomorphism
PSL(2, 7) ∼= SL(3, 2) . It runs as follows.

Theorem 5.10 Let us assume that a group G does contain an elementary abelian normal 2-subgroup A whose
order is at least 4 . Suppose that CG(A) = A and that A = CG(A) ≤ K ≤ G does satisfy K/CG(A) ∼=
PSL(2, 7) ∼= SL(3, 2) . Then G is not a (P)-group.

Proof It holds trivially that SL(3, 2) = GL(3, 2) . Suppose that G is a (P)-group; we will get a contradiction,
as follows.
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Put |A| = 2α (α ≥ 2). Thus, it is assumed now that G permutes all the involutions of G transitively
under conjugation action. Hence, all involutions of G are contained in A ; there are 2α − 1 such elements in
G . Hering’s theorem, referred to so often in this article, does reveal that the group G/CG(A) must contain a
normal subgroup isomorphic to SL(k, 2m) where α = km ; notice that in Hering’s theorem only the cases 1)
and 2) might be taken into account on consideration. Since SL(3, 2) is a chief factor of the (P)-group G , it
follows from the Jordan–Hölder–Zassenhaus Theorem when applied to the solvable group G/K and A , that
km = α = 3 , [Here too it is used à la Artin in ([1], Theorem 2, page 466), that no other isomorphisms between
a group from the series SL(−, 2t) and Sp(−, 2t) with the group SL(3, 2) does exist. Hence, indeed, as G is not
solvable, one gets k = 3 and m = 1 ]. The elements in a full set of representatives of nontrivial cosets of A in K ,
do act by conjugation on the group A of order 8 , like the nontrivial elements of the linear group GL(3, 2) do act
transitively on the nonzero vectors of the 3 -dimensional vector space V over the field consisting of two elements.

The following can be regarded as a deus ex machina. Namely, look at the vectors
(

1
1
0

)
,
(

1
0
1

)
, and

(
0
0
1

)
; together

with
(

0
0
0

)
, these constitute an additive Klein-four subgroup Kl of (F3

2)
+ . Notice, a :=

(
0 0 1
1 0 0
0 1 0

)
∈ GL(3, 2) has

multiplicative order 3 . The additive group Kl remains invariant under the linear action of each of the elements

of the subgroup
{
1, a, a2

}
< GL(3, 2) . Look at the element b :=

(
1 0 0
0 0 1
0 1 0

)
∈ SL(3, 2) . Not only bab−1 = a−1

with |b| = 2 but evenly more important, the group Kl remains invariant under the linear action of the group

⟨a, b⟩ , where the elements of Kl \
(

0
0
0

)
are being permuted transitively as direct calculation shows. Thus,

there exist elements a, b ∈ K with |a| = 3 occurring in distinct cosets of A in K , acting inter alia on each
other and on particular elements of c ̸= 1 and d ̸= 1 from A , in a one-one compatible way as the respective

elements a, b ∈ SL(3, 2) among each other and on
(

1
1
0

)
,
(

1
0
1

)
, and

(
0
1
1

)
do. Therefore, we are talking about the

existence of a subgroup ⟨c, d, a, b⟩ ≤ K (whence of G) being isomorphic to a group of order 24 , containing a
normal subgroup ⟨c, d⟩ isomorphic to a Klein-four-group and such that (bA)(aA)(bA)−1 = (aA)−1 . Moreover,
the commutator subgroup ⟨c, d, a, b⟩ equals ⟨c, d, a⟩ , the last group being of order 12 . It is known from the
classification of all the groups of order 24 admitting a commutator subgroup of order 12 that there exists up to
isomorphism only one such group, namely S4 , the symmetric group of four symbols. The group S4 does possess
nine elements of order 2 . Therefore, the group K , and surely G , does possess elements of order 2 outside the
normal subgroup A . Therefore, we have got a contradiction against the possibility that a group G satisfying
the assumptions of the theorem might be a (P)-group.

The theorem has been proved. 2

6. Odd divisors of orders of chief factors of nonsolvable (P)-groups

In this section, a nondivisibility property of odd prime divisors of the order of a nonabelian chief factor of a
(P)-group will be presented in the next theorem. A complete proof will be given on its own account, perhaps
repeating previous ideas of argumentation.

Theorem 6.1 Let G be a nonsolvable (P)-group and let L/K be nonabelian chief factor of G . Then no odd
prime divisor of |L/K| divides the integer |G|/|L/K| .
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Proof It has been shown in Theorem 2.3 that in each chief series of a (P)-group there occurs at most one
nonabelian chief factor and that each such a chief factor is isomorphic to a simple nonabelian group. Thus, for
any choice of a chief series of G , such simple nonabelian chief factor is in fact isomorphic to some particular
simple nonabelian group; see the Jordan–Hölder–Zassenhaus Theorem. Let us presume the existence of a
nonsolvable (P)-group G , being a counterexample of smallest order to the assertion of the theorem. Note that
F∗(X) is nontrivial for any group X and that F∗(X) = E(X)F(X) , where [E(X),F(X)] = 1 ; see ([2], 11
(31.12)) and the introduction to our article. The proof of the theorem will now follow from a series of steps.

1) Suppose there exists 1 ̸= Sp ∈ Sylp(F(G)) and 1 ̸= Sq ∈ Sylq(F(G)) for some distinct primes p and q .
Then, as Sp � G , Sq � G and Sp ∩ Sq = {1} it holds that G/Sp , G/Sq and G/(SpSq) are nonsolvable
(P)-groups each of smaller order than |G| . Hence, the theorem holds for those three groups. There exists
here a nonabelian simple chief factor L/K of G with K ≥ SpSq , so for each odd prime t | |L/K| it holds
that t ∤ |G/L||K/Sp| and t ∤ |G/L||K/Sq| . Hence, t ∤ |G/L||K| , contrary to the choice of G . Hence,
F(G) must be a group of prime power order or F(G) = {1} .

2) Suppose F(G) is a nontrivial 2 -group. Then there exists a nonabelian chief factor L/K of G with
K ≥ F(G) . Let p be an arbitrary odd prime dividing |L/K| . The conclusion of the theorem is fulfilled
for the (P)-group G/F(G) with respect to the simple nonabelian group (L/F(G))/(K/F(G)) . Thus, it

follows that p ∤ |G/F(G)|
|(L/F(G))/(K/F(G))| , resulting in p ∤ |G/F(G)|

|L/K| . Hence, as F(G) is a nontrivial 2 -group, we

conclude p ∤ |G|
|L/K| , contrary to the choice of G . We proceed with F(G) = {1} .

3) Suppose F(G) = {1} . Hence, CG(E(G)) = CG(F∗(G)) ≤ F∗(G) = E(G) , where the ≤ -sign has been
shown to be true in ([2],11 (31.13)). Hence, we see from F(G) = {1} that the abelian normal subgroup
CG(E(G)) of G happens to be trivial. As before, it yields that E(G) is the unique nonabelian chief
factor in each chief series of G through E(G) . [Notice E(G) ̸= {1} as F∗(G) ̸= {1} ; moreover, E(G) is
simple here in 3)]. Now, due to Theorems 4.2 and 5.2, 1), no odd prime dividing |E(G)| divides |G/E(G)| ,
contrary to the choice of G . Hence, F(G) must be a nontrivial q -group for some odd prime q , by invoking
also the steps 1) and 2).

4) Suppose F(G) is a nontrivial q -group, q an odd prime, F(G) not being elementary abelian noncyclic. In
this case, there exists C�G satisfying F(G) > C > {1} . The (P)-group G/C does satisfy the conclusion
of the theorem as |G/C| < |G| . Let p be an arbitrary odd prime dividing the order of some (simple)
nonabelian chief factor (L/C)/(K/C) of G/C with L � G and K � G with L > K ≥ C . If p ̸= q ,

then p ∤ |G/C|
|(L/C)/(K/C)| ∈ N implies not only p ∤ |G/C|

|L/K| but also p ∤ |G/C||C|
|L/K| , contrary to the choice of G .

If p = q , then p = q | |G/C|
|L/K| , but this property is impossible as here p = q would not divide |F(G)/C| .

Hence, we must carry on with the next alleged possibility in 5).

5) Suppose F(G) is a nontrivial q -group, q an odd prime, whereas F(G) is elementary abelian or F(G) is
cyclic of order q . We distinguish two cases: a) E(G) ̸= {1} ; b) E(G) = {1} .

5) a) Let the (P)-group G satisfy E(G) ̸= {1} and also the condition in 5). Notice that E(G)∩F(G) ≤ ζ(F∗(G))

holds due to [E(G),F(G)] = 1 . In 4), we saw implicitly that one may assume E(G) ∩ F(G) = {1} or else
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E(G) ∩ F(G) = F(G) . Assume E(G) ≩ F(G) . Then E(G) > F(G) = ζ(E(G)) does follow. Now, we know
from Theorem 2.4 that E(G)/ζ(E(G)) is nonabelian simple. Thus, E(G) = [E(G),E(G)]ζ(E(G)) holds.
As in fact [E(G),E(G)] = E(G) holds, one observes that [E(G),E(G)] ∩ ζ(E(G)) = E(G) ∩ ζ(E(G)) =

ζ(E(G)) = F(G) is contained, as isomorphic copy, in the Schur multiplier of the simple group E(G)/F(G) .
Therefore, by Theorems 4.2 and 4.1 in conjunction with ([11], 2.1.7 Theorem), one gets that F(G) is a
2 -group of order 1 or 2 or 4 ; a contradiction to F(G) being a q -group, q odd prime.

Assume E(G) ∩ F(G) = {1} . Since G is a (P)-group, it yields now also (|E(G)|, |F(G)|) = 1 . As here
E(G) ̸= 1 ̸= F(G) , we are immediately able to conclude, more or less analogously to former lines, that this
assumption leads to a contradiction to the alleged structure of the (P)-group G . Indeed, observe also that
here (|E(G)|, |F(G)|) = 1 due to the (P)-property of G and look at the (P)-groups G/F(G) and G/E(G) ,
each being smaller in order than |G| . Thus, by induction, no odd prime p dividing |E(G)F(G)/F(G)|

divides |G/E(G)| and p does not divide |F(G)| too; whence p ∤ |G|
|E(G)F(G)/F(G)| = |G/E(G)| as E(G) is

here simple, contrary to the choice of G .

5) b) Let the (P)-group G satisfy the condition announced in 5) and assume also that E(G) = {1} . Hence,
as F(G) is a nontrivial abelian subgroup of G , one gets 1 ̸= F(G) ≤ CG(F(G)) = CG(F(G)E(G)) =

CG(F∗(G)) ≤ F∗(G) = E(G)F(G) = F(G) . Hence, G/F(G) ↪→ Aut(F(G)) . In particular, as G is assumed
to be nonsolvable, F(G) cannot be a cyclic group of odd prime order. Therefore, in this rubric b) one
works with a noncyclic but elementary abelian q -group F(G) , with q an odd prime number. The group
G := G/F(G) acts like a subgroup of GL(n, q) , with qn = |F(G)| and n ≥ 2 , on the n -dimensional vector
space V over Fq , by permuting transitively the nonzero vectors. Consider the group Ĝ := GZ ∈ GL(n, q)

with Z being the center of GL(n, q) ; notice |Z| = q − 1 holds. Due to the CFSG and the fact that q is
odd, we see that G satisfies the conclusion of the theorem, unless perhaps when Ĝ is subject to one of
the cases 1),2),4),5), or 8) as listed in Hering’s theorem. We are able to eliminate each of those five cases
as follows.

(α) case 5) in Hering’s theorem.
Here the final term Ĝ∞ of the derived series of Ĝ has to be isomorphic to the group SL(2, 5) ; moreover,
q ∈ {3, 11, 19, 29, 59} can be the only possibilities for such a q . Since |SL(2, 5)| = 120 = 23 · 3 · 5
and as the group G is a counterexample to the theorem (and G = G/F(G) is not) only the prime
q = 3 remains to be investigated. Now put L�G as the group satisfying LF(G)/F(G) ∼= SL(2, 5) . Notice
ζ(LF(G)/F(G)) = F(G)⟨τ⟩/F(G)�G/F(G) with |τ | = 2 and τ ∈ G . Such a τ exists as |F(G)⟨τ⟩| = 2 ·34 .
Suppose τ centralizes some subgroup C ≤ G of order 3 . As G is a (P)-group, C ≤ F(G) holds. Put
C = ⟨c⟩ with c ∈ F(G) . It follows for any g ∈ G that (gτg−1)(gcg−1)(gτg−1)−1 = gcg−1 ∈ F(G) .
Moreover, we just observed that the involution gτg−1 is an element of the coset τF(G) of F(G) in G . Since
G is a (P)-group, all its cyclic subgroups of order 3 are contained in the elementary abelian 3 -group F(G) .
Thus, for some specific f ∈ F(G) , it holds that gτg−1 = τf , whence τ(gcg−1)τ−1 = τ(f(gcg−1)f−1)τ−1 =

(gτg−1)(gcg−1)(gτg−1)−1 = gcg−1 . Therefore, as G is a (P)-group, one observes that in fact τ centralizes
each element of the Fitting Subgroup F(G) of G . A contradiction to CG(F(G)) = F(G) in the case 5) b)
in which we did find ourselves. Hence, τ inverts any arbitrary element of F(G) by conjugation.
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Let σ be any element of G outside F(G) with σ2 ∈ F(G) . Hence, F(G)⟨τ⟩ = F(G)⟨σ⟩ , as G/F(G) is
a (P)-group satisfying F(G)⟨τ⟩ � G . Any element of F(G)⟨τ⟩ outside F(G) is in fact an involution of
F(G)⟨τ⟩ , as for any f ∈ F(G) , τf ·τf = (τfτ−1)f = f−1f = 1 holds, so |σ| = 2 . There exists an element
x ∈ LF \F(G) for which |xF(G)| = 6 , as τF(G) is an involution in G/F(G) lying in ζ(LF(G)/F(G)) and
as there elements in G/F(G) lying in LF(G)/F(G) of order 3 . We get (xF(G))6 = F(G) , whence x18 = 1

holds. Suppose x6 ̸= 1 and x9 ̸= 1 . Then x9 is an involution of G centralizing the element x6 ∈ F(G) of
order 3 ; as we argued above, it does not occur. Suppose x6 ̸= 1 and x9 = 1 . Then the order of xF(G) ,
which is 6 , has to divide 9 = |x| ; an impossibility. Hence, we are left with x6 = 1 . As |xF(G)| = 6

inside G/F(G) , it holds that x2 ̸= 1 and that x3 ̸= 1 . This implies though in the (P)-group G that the
involution x3 ∈ G and the nontrivial element x2 ∈ F(G) do centralize each other. This behavior was
ruled out earlier, however. All this settles case 5) of Hering’s theorem in the negative.

(β ) case 8) in Hering’s Theorem.
As in the last situation, look at Ĝ = GZ ∈ GL(n, q) , which is isomorphic to the nonabelian group
SL(2, 13) with |F(G)| = 36 = 729 . All proper subgroups of SL(2, 13) are solvable, by ([6], page 8). Hence,
G has to be nonsolvable, as Ĝ is. Thus, in fact G ∼= SL(2, 13) and G ∼= Ĝ is a (P)-group. The rest of
the elimination of the rubric is analogous to the one as done in case (α) just done.

(γ ) case 4) in Hering’s theorem.
Here Ĝ = GZ ∈ GL(n, q) with Z = ζ(GL(n, q)) , and E � G where E is an extra-special 2 -group
satisfying CĜ(E) = ζ(E) . Hence, Z ≤ ζ(E) . Then Ĝ = GZ ≤ GΦ(E) ≤

(1)
GΦ(Ĝ) ≤ Ĝ (inclusion (1) is

due to E �G). Thus, Ĝ = GΦ(Ĝ) , i.e. Ĝ = G by ([8], III. 2. Satz), so Ĝ being equal to the (P)-group
G , does contain precisely one element of order 2 , due to |ζ(E)| = 2 and ζ(E)�G . Hence, E , being an
extra-special 2 -group, must be of order 8 , whence E ∼= Q . Now it happens that G/CG(E) ↪→ Aut(E) . It
holds that Aut(Q) ∼= S4 , the symmetric group on four symbols. Thus, it follows that G/CG(E) = G/ζ(E)

is solvable; whence G is solvable and so G is solvable. This contradicts the assumption regarding the
nonsolvability of the (P)-group G .

(δ ) case 1) in Hering’s theorem.
According to case 1), the insolvable group Ĝ = GZ ∈ GL(n, q) satisfies, as G is a (P)-group, SL(a, u)� Ĝ

with qn = ua , a ≥ 2 and |F(G)| = qn . Now, as G � Ĝ , it too holds that SL(a, u) � G ; indeed the
commutator subgroup of Ĝ , being equal to that of G , does contain [SL(a, u),SL(a, u)] which is here
equal to SL(a, u) . It has been shown earlier that, in order that G be a (P)-group, only a = 2 must
hold. Therefore, SL(a, u) = SL(2, qd) for a suitable integer d ≥ 1 . Thus, PSL(2, qd) is isomorphic
to some nonabelian simple chief factor L/K of the (P)-group G , whence of the (P)-group G . In the
nonsolvable (P)-group G , there exists an element τ of order 2 . As SL(2, qd)�̃G/CG(F(G)) = G/F(G) ,
we get that there exists in the (P)-group G/F(G) precisely one element of order 2 , which is τF(G) ,
as |F(G)| is odd. The (P)-group G/F(G) does contain elements of order q , as SL(2, qd) does. Now,
analogously to the procedure followed in the discussion in case 5) it can be made clear that τ acts on
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F(G) by conjugation by inverting each element of F(G) . Thus, there exists an element x ∈ G \ F(G) for
which |xF(G)| = 2q ; whence xF(G) is an element contained in the normal subgroup of the (P)-group G

corresponding to SL(2, qd) , as G is a (P)-group and as [xF(G), τF(G)] = {1} . Anyway one has x2q2 = 1 .

Hence, x2q ∈ F(G) . If |x| = 2q2 , then [xq2 , τ ] = 1 so that τF(G) = xq2F(G) ; whence the involution τ

centralizes the nontrivial element xq ∈ F(G) as F(G) is an elementary abelian q -group. A contradiction
to what we saw above, namely τ has to invert all elements of F(G) . If the order of x equals 2q , then the
involution xq centralizes the element x2 ̸= 1 with x2 ∈ F(G) , an impossibility, as we argued above. The
order of x cannot be 2 , as |xF(G)| = 2q . Also |x| = q2 is impossible as |xF(G)| = 2q . Hence, case 1)
delivers a contradiction to the assumed structure of the (P)-group G .

(ε) case 2) in Hering’s theorem.
One has here |F(G)| = qn satisfying n = km , k an even number and Sp(k, qm) being isomorphic to a
normal subgroup of Ĝ = GZ ∈ GL(n, q) . Hence, as Ĝ is nonsolvable and due to ([1], page 400), it must
be that k = 2 . Hence, we are back in the discussion in one of the cases 1), 5) or 8), we already dealt with.

The proof of the theorem is complete. 2

Remark 6.2 Notice that we could not use the knowledge of Theorem 5.7 into our proof of Theorem 6.1. Namely,
the reader who dealt with the proof of Theorem 5.7, has been made aware that the knowledge of the (independent)
Theorem 6.1 was needed.

7. (P)-groups admitting a chief factor isomorphic to A5

In this section, the classification of the (P)-groups G admitting a chief factor L/K ∼= A5 will be presented.
Currently, the symbol G will stand for such a group.

The classification will be provided in a series of steps. We conclude the section with an overall portman-
teau theorem, in which the results are collected; see Theorem 7.1.

Let us look at F∗(G) = E(G)F(G) . Remember [E(G),F(G)] = {1} . We distinguish two cases: α)
E(G) ̸= {1} ; β ) E(G) = {1} .

α) Assume E(G) ̸= {1} . Hence, E(G)/ζ(E(G)) ∼= PSL(2, 5) ∼= A5 , see Theorem 2.3. Furthermore, the
property E(G)′ = E(G) has to be considered. Hence, ζ(E(G)) = E(G)′ ∩ ζ(E(G)) has order at most 2 ,
due to ([11], 2.1.7 Theorem), as now ζ(E(G)) ↪→ M(PSL(2, 5)) which is of order 2 . We distinguish two
cases: α, 1) |ζ(E(G))| = 1 ; α, 2) |ζ(E(G))| = 2 .

Re α, 1) Assume E(G) = E(G)′ with ζ(E(G)) ∼= C2 and E(G)/ζ(E(G)) ∼= PSL(2, 5) . Therefore, E(G) ∼= SL(2, 5)

by ([10], XII. 8.3 Lemma) and ([8], V.25.7 Satz). Since [E(G),F(G)] = {1} and as G is a (P)-group, G
does contain precisely one involution. We get that all cyclic subgroups of order 4 have to be contained
in the normal subgroup E(G) of G . It holds that G/ζ(E(G)) is a (P)-group, so one gets F(G) =

O2(F(G))×O2′(F(G)) = ζ(E(G))×O2′(F(G)) . Notice that (|O2′(F(G))|, |E(G)|) =
(|(ζ(E(G))×O2′(F(G)))/ζ(E(G))|, |E(G)/ζ(E(G))|) = 1 , as G is a (P)-group and as E(G) ∩ (ζ(E(G))×
O2′(F(G))) = ζ(E(G)) .[Indeed, no prime dividing |(O2′(F(G))×ζ(E(G)))| divides 15 as G is a (P)-group].
Furthermore, G/ζ(E(G)) does now satisfy the promises of Theorem 5.4, i.e. there exists ζ(E(G)) ≤ H ≤ G
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such that H/ζ(E(G)) is a (P)-group satisfying G = E(G)H , H ∩ E(G) = ζ(E(G)) , E(G) being a (P)-
group, and (|H/ζ(E(G))|, |E(G)/ζ(E(G))|) = 1 . Since 2 | |E(G)/ζ(E(G))| and 2 = |ζ(E(G))| , it follows
that H = ζ(E(G))H̃ , where H̃ �G , 2 ∤ |H̃| and with H̃ ∼= H/ζ(E(G)) being a (P)-group. All in all, in
α, 1), G ∼= SL(2, 5)⋊ H̃ , where H̃ is a solvable (P)-group. In fact, it even holds that G is isomorphic to
a direct product of SL(2, 5) and H̃ , due to Re α, 2).

Re α , 2) Assume E(X) = E(X)′ with ζ(E(X)) = {1} , whence E(X) ∼= PSL(2, 5) for some group X . Hence, one
immediately gets from Theorem 5.4 that X is a (P)-group if and only if there exists a (P)-subgroup R of
X satisfying X = E(X)R with (|R|, 120) = 1 . Hence, one also has X = E(X)×R ∼= PSL(2, 5)×R . [As
to a more detailed structure for such a (P)-group X , see Theorem 5.4].

Re β ) At last, let us assume E(G) = {1} where G is a (P)-group admitting a chief factor L/K ∼= PSL(2, 5) ∼= A5 .
As it was observed earlier, CG(F(G)) = CG(E(G)F(G)) = CG(F∗(G)) ≤ F∗(G) = E(G)F(G) = F(G)

holds. By Jordan-Zassenhaus-Hölder in conjunction to Theorem 2.3, we may assume L = O∞(G) , i.e.
the smallest normal subgroup of G whose quotient group with respect to G , is solvable. Thus, K � G

can be found inside G with L > K and with L/K ∼= PSL(2, 5) . By Theorem 2.3, K is solvable. Since
K ̸= {1} in this rubric β ), there exists a nontrivial elementary abelian chief factor K/M of G with
K > M . We distinguish two cases: a) K/M ∼= Cp , p odd prime; b) K/M ∼= C2 × C2 × · · · × C2 with
4 | |K/M | ; c) K/M ∼= Cp × Cp × · · · × Cp with p2 | |K/M | , p an odd prime; d) K/M ∼= C2 .

Re β ,a) Suppose K/M ∼= Cp , p odd prime. Put G = G/M , L = L/M , and K = K/M . Notice G is a (P)-group.
We have G/CG(K) ↪→ Cp−1 so CG(K) ≥ L holds by the solvability of G/O∞(G) = G/L . Thus, L

centralizes K . Now p ∤ 15 , due to Theorem 6.1. Hence, L ∼= PSL(2, 5)× Cp , so there exists U �G with
L ≥ U ≥ K satisfying U/K ∼= PSL(2, 5) and G/U solvable of order p · |G/O∞(G)| = |G/L| . This is a
contradiction to the choice of L as being the group O∞(G) . Conclusion: Case β ,a) does not occur.

Re β ,b) Suppose K/M ∼= C2 × · · ·C2 with 4 | |K/M | . The bar convention as defined under Re β ,a) is used here
too. Suppose for the moment that G/CG(K) would be solvable. Here too G is a (P)-group. Here one

has L/K ∼= PSL(2, 5) ∼= PSL(2, 4) ∼= (L/K)′ = L
′
K/K ∼= L

′
/(L

′ ∩K) . However, O∞(G) = L < CG(K)

yielding L = L
′ . Also, ζ(L) = K holds here. Hence, by Schur ([11], theorem 2.1.7), it holds that

|ζ(L)| = |L ∩ ζ(L)| = |L′ ∩ ζ(L)| ≤ |M(L/K)| = |M(SL(2, 5))| = 2 ; a contradiction to 4 | |K| = |ζ(L)| .
Thus, one has that G/CG(K) is not solvable. In addition, CG(K) ∩ L , being a normal subgroup of G ,
can only be equal to L or to K by the simplicity of L/K . Just as argued a few lines ago, one is forced to
assume CG(K) ≩ L . As a matter of fact we will show, below with Ǧ� Ľ > Ǩ ̸= {1} , Ǩ � Ǧ , there does
not exist a (P)-group Ǧ for which Ľ/(CǦ(Ǩ)∩ Ľ) ∼= SL(2, 5) and with Ǩ an elementary abelian 2 -group
but not a chief factor of Ǧ being isomorphic to C2 . Indeed, assume the contrary. By Jordan-Hölder, we
are immediately allowed to assume that F(Ǧ) is a 2 -group. [In fact, factor out by O2′(F(Ǧ)) ̸= 1 , recall
that Ǧ/O2′(F(Ǧ)) is a (P)-group, apply Jordan–Hölder, use induction and use Re α)]. Notice also that
no such Ǧ can be a (P)-group occurring in the class Re α). In other words, E(Ǧ) = {1} holds and so
CǦ(F(Ǧ)) ≤ F(Ǧ) will be the case. Look at F(Ǧ)/Φ(F(Ǧ)) . Since F(Ǧ) is supposed to be noncyclic,
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F(Ǧ)/Φ(F(Ǧ)) is noncyclic (by Burnside’s Basis Theorem), whence also F(Ǧ)/Φ(F(Ǧ)) is an elementary
abelian 2 -group. The 2 -group Φ(F(Ǧ)) is a characteristic subgroup of F(Ǧ) . Hence, by induction, we
may assume Φ(F(Ǧ)) = {1} , i.e. F(Ǧ) itself is an elementary abelian 2 -group, but not cyclic, so that
now CǦ(F(Ǧ)) coincides with F(Ǧ) . By Hering’s theorem, there exists now F(Ǧ) ≤ Ǔ ≤ Ǧ satisfying
Ǔ/F(Ǧ) ∼= SL(2, 4) ∼= A5 . The discussion and details at the end of the proof of Theorem 5.5 do also apply
here. Thus, the outcome is that Ǧ cannot be a (P)-group. Hence, the case β ,b) does not occur.

Re β ,c) Suppose K/M ∼= Cp × Cp × · · · × Cp with p2 | |K/M | and p an odd prime. Since G is a nonsolvable
(P)-group, it is known that (|G/K|, p) = 1 ; see Theorem 5.7. Put G := G/M , L := L/M , K := K/M .
Since L/K ∼= PSL(2, 5) , O∞(G) = L , the Schur multiplier of PSL(2, 5) being of order 2 . All this, when
combined with p ∤ |G/CG(K)| , after consulting Hering’s theorem, provide that case β ,c) does not occur,
i.e. G cannot be a (P)-group in this rubric Re β ,c).

Re β ,d) Therefore, the only possibility for the structure of K/M is K/M ∼= C2 . Thus, as G/M is a (P)-group, it
follows from O∞(G) = L , that L/M ∼= SL(2, 5) with ζ(L/M) = K/M ∼= C2 . Since we are not in case Re
α) 2), one gets M ̸= {1} . Let N �G such that M > N with M/N a chief factor of G . Therefore, four
possibilities of structures have to be considered for M/N . Namely: d)α) M/N ∼= C2 ; d)β ) M/N ∼= Cp ,
p odd prime; d)γ ) M/N ∼= C2 ×C2 × · · · ×C2 with 4 | |M/N | ; d)δ ) M/N ∼= Cp ×Cp × · · · ×Cp with p

odd prime and p2 | |M/N | .

Re β ,d),α) Suppose M/N ∼= C2 . The group G/N is a (P)-group. Thus, G/N happens to contain precisely one
subgroup of order 2 , namely M/N . Hence, any Sylow 2 -subgroup S of L/N , S being of order 16 , must
be generalized quaternion, as S is not cyclic due to S/M ∈ Syl2(L/M) being noncyclic; see ([8] III. 2b
Satz). On the other hand, S/M viewed as a factor group of S/N with ζ(S/N) = M/N is dihedral of
order 8 . Then, however, the last mentioned structure is in conflict with the actual structure of any Sylow
2 -subgroup of SL(2, 5) , namely quaternion of order 8 , where SL(2, 5) ∼= L/M . Hence, case d)α) does
not occur.

Re β ,d),β ) Suppose M/N ∼= Cp , p odd prime. Then CG/N (M/N) ≥ L/N , as O∞(G) = L and (G/N)/CG/N (M/N) ↪→
Aut(Cp) ∼= Cp−1 , a solvable group. Thus, M/N ≤ ζ(L/N) , where also p ∤ |L/M | = 120 due to Theorem
6.1. Hence, M/N is a characteristic and critical subgroup of L/N of order p satisfying p ∤ (L/N)/(M/N) ,
so there would exist T/N �G/N with T �G and T �K and |L/T | = p , yielding the solvability of G/T

by O∞(G) = L , thereby producing at the same time the contradiction T ≥ L . Therefore, the case d)β )
does not happen.

Re β ,d),γ ) Suppose M/N ∼= C2 × C2 · · · × C2 with 4 | |M/N | . Look at the 2 -group K/N , where K > M and
|K/M | = 2 . The group G/N is a (P)-group, thus permuting the nontrivial elements ̸= 1 of M/N

transitively. This forces the Frattini subgroup Φ(K/N) of K/N to be equal either to N/N = {1} or to
M/N . [Indeed, M/N ≩ Φ(K/N) ≩ N/N = {1} leads via the (P)-group (G/N)/Φ(K/N) to the fact that
not only (G/N)/Φ(K/N) is an elementary abelian 2 -group of order at least 4 , whose nontrivial elements

are permuted transitively under conjugation, but also to the structure K
2
> M > Φ > N with Φ�G with

Φ/N := Φ(K/N) and M �G . Both these properties are in conflict with each other in the (P)-group G ].
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If Φ(K/N) = N/N = {1} , then K/N would be an elementary abelian 2 -group whose nontrivial elements
of order 2 are permuted transitively under conjugation in the (P)-group G/N , a contradiction to the
existence of M/N � G/N with M/N ̸= K/N . If Φ(K/N) = M/N , then by Burnside’s Basis Theorem
K/N would be cyclic, yielding |M/N | = 2 , which is not the case. Therefore, the case d)γ ) does not
happen.

Re β ,d),δ ) Assume M/N ∼= Cp ×Cp × · · · ×Cp , p odd prime, p2 | |M/N | . Look at the text just after the ending of
the proof of Theorem 5.7, where we now focus our attention on the (P)-group G̃ := G/N . It was argued
there, by now inserting the assumption O∞(G̃) = L/N , that M/N is elementary abelian of order 112 or
192 or 292 or 592 and satisfies M/N ≰ ζ(G̃) too.

Suppose there exists a cyclic Sylow q -subgroup of G for some odd prime q , satisfying q | |M | with
q ∤ 11 · 19 · 29 · 59 · 3 · 5 . Choose a chief factor V/W in some chief series in G passing through M , as “high
as possible”. Thus, |V/W | = q , and also (G/W )/CG/W (V/W ) is solvable with order dividing q−1 . Since
L/W = O∞(G)/W ≤ CG/W (V/W ) holds now, it follows that V/W is a direct factor of M/W satisfying
q ∤ |M/V | . Hence, there exists D � G with M ≥ D ≥ W and |M/D| = q . This, however, was already
ruled out by case d)β ). Such a structure as described in this paragraph does not exist.

Let us now consider an odd prime t not dividing 15 , for which there exists St ∈ Sylt(G) not being cyclic.
Then St�F(G) , by Corollary 5.8 satisfying PSL(2, 5) ≇ PSL(2, rm) with r odd prime and m ≥ 2 due to
([1], page 466), and by Theorem 2.3 using Jordan–Zassenhaus- -Hölder. Furthermore, such St � F(G) is
in fact elementary abelian. In particular, let us focus our attention on r ∈ {11, 19, 29, 59} =: A for which
Sr exists, and for any such r define F̃ := Π4

i=1(Cpi
× Cpi

)δi with δi ∈ {0, 1} , where pi ∈ A . Notice
F̃ ̸= {1} anyway in this rubric d)δ ), as we saw above. Remember that any odd prime f dividing |K|
satisfies (f, 15) = 1 as 23 · 3 · 5 = |PSL(2, 5)| in conjunction to Theorem 6.1.

Let t be an odd prime dividing |K| . Hence, t ∤ 15 by Theorem 6.1.

Assume for the moment that for some specific such a t , each chief factor C/F of G with M ≥ C > F

being a t -group is cyclic (whence |C/F | = t). Then, using an analogous procedure as described three
paragraphs ago, it turns out that such a structure does not happen, due to the (P)-property of G .

Next assume that for such an odd prime t with t ∤ 15 , t dividing |K| , there exists a noncyclic chief factor
X/B of G with M ≥ X > B of t -power order. Then we saw, due to the (P)-property of G , that G has
t -length 1 for such a t ; note that X/B is elementary abelian.

Therefore, it follows from the nonexistence of the cases d)α) and d)γ ) that M is nilpotent of odd order,
and therefore satisfies M = F̃ , in this rubric d)δ ). [Indeed, for a pi ∈ A , let S := Πpi

Spi
where (if any)

Spi
is noncyclic elementary pi -group, i.e. {Spi

} = Sylpi
(G) . Then, as it was observed above, M/S might

only have cyclic chief factors (ruled out by d)β )) or M/S might have 2 -groups as chief factors (ruled out
by d)α) and d)γ ))].

Next, we are going to analyze what happens if M = F̃ contains S � G where S ∼= C11 × C11 and
{S} = Syl11(G) . Put C = CG(S) ; thus, C � G . One has M ≤ C � G . Since G/M is a (P)-group
containing L/M = O∞(G)/M �G/M with L/M ∼= SL(2, 5) , one observes that G/M does contain only
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one involution t (say), where ⟨t⟩ = K/M . It also holds that C/M ∩ L/M = {1} . Therefore, C/M is of
odd order.

G

LC

KC

C = CG(S)
K

O∞(G) = L

M = F̃

C11 × C11
∼= S

{1}

PSL(2, 5)

PSL(2, 5)

2

2

Look at the diagram as pictured. Since |C/M | is odd,
and the prime factors of |C/M | are relatively prime
to 15 = (odd part of |L/M |), it is appropriate to look
at the direct product LC/M = L/M × C/M . One
has LC/C ∼= SL(2, 5) with ζ(LC/C) = KC/C . Now
G/C embeds as a subgroup in Aut(C) ∼= GL(2, 11) .
The order of GL(2, 11) is (112 − 1)(112 − 11) =
24 · 3 · 52 · 11 .

Since S ≤ C is the Sylow 11 -subgroup of G , it holds that 11 ∤ |G/C| . One has also |LC/C| = 120 =

23 · 3 · 5 . In Theorem 6.1, it is proved implicitly that (|G/L|, 15) = 1 . It means that 5 ∤ |G/LC| ,
whereas 5 | |LC/C| and 5 | |G/C| do hold. It follows that |G/LC| is a divisor of 2 . Let us consider the
structure of G/KC ; notice KC �G and LC �G . The (P)-group G/KC contains LC/KC as a normal
subgroup satisfying 2 ≥ |G/LC| = |(G/KC)/(LC/KC)| . Look at the structure of a Sylow 2 -subgroup
of G/C and of a Sylow 2 -subgroup of LC/C as well. Since G/C is a (P)-group containing a nonabelian
Sylow 2 -subgroup of LC/C with ζ(LC/C)�G/C and |ζ(LC/C)| = 2 , it holds that Syl2(G/C) consists
of generalized quaternion groups, whereas LC/C , being isomorphic to SL(2, 5) , does contain Sylow 2 -
subgroups isomorphic to Q . Such a structure is impossible when 2 = |G/LC| ; see ([8],III.8.2 Satz and
I.14.9(2) Satz). Hence, G = LC .

Precisely, the same phenomenon happens when M = F̃ contains Š := C19 × C19 . Direct calculations on
the orders of |SL(2, 5)| and Aut(C19 × C19) provide that the order of the quotient group G/LC is at
most equal to 2 , whence in fact equal to 1 due to a reasoning analogous to the “C11 × C11 ”-case.

On the other hand, if M = F̃ contains a subgroup S isomorphic to C29 ×C29 (so
{
S
}
= Syl29(G) as we

know), then at first sight one gets the corresponding quotient group G/LC is of order dividing 22 · 72 .
The “quaternion argument” reduces it to |G/LC| | 72 . Here it will turn out that either G = LC or
|G/LC| = 7 can occur in practice. [Indeed, (C29 ×C29)⋊ SL(2, 5) and (C29 ×C29)⋊ (SL(2, 5)×C7) are
both Frobenius groups, even better, in each such group it happens that any two subgroups of equal order
are conjugate within the corresponding over group; see ([3], Theorem 11)]. Notice that the (P)-group
property of G/C yields indeed that, if |G/LC| = 7 , G/C is isomorphic to the group SL(2, 5) × C7 . As
for |G/LC| ̸= 72 , see later.

Finally, if M = F̃ contains a subgroup S isomorphic to C59 × C59 so
{
S
}

= Syl59(G) , then one gets

|G/LC| = 1 or |G/LC| = 29 ultimately. Both might occur. [Indeed, in ([3], Theorem 11) one can find
that there exist Frobenius groups isomorphic to (C59 ×C59)⋊ SL(2, 5) or (C59 ×C59)⋊ (SL(2, 5)×C29) ;
both these groups share the conjugacy property as mentioned just in the analogous “C29 × C29 ”-case].
Notice, however, that at first sight, one does observe that |G/LC| is a divisor of 292 .

[Here we provide the reason, because in the “C29 × C29 ”-case, |G/LC| = 72 is ruled out, and because in
the “C59 × C59 ”-case, |G/LC| = 292 is ruled out. Well let t ∈ {7, 29} in the respective cases.
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Remember that GL(2, 29) possesses indeed noncyclic Sylow 7 -subgroups of order 72 ; see ([8],II.7.2(a)
Satz). Likewise GL(2, 59) possesses noncyclic Sylow 29 -subgroups of order 292 . Therefore, if t2 were
equal to |G/LC| , then a Sylow t -subgroup T of G would be noncyclic. In that case, T ≤ F(G) would

hold by Corollary 5.8. Hence, T acts trivially on S and S respectively by conjugation, an impossibility].

Thus, perhaps there does exist a cyclic Sylow t -subgroup of order t2 in G/LC .

In general, let us focus our attention on F̃ = M ∼= Π4
i=1(Cpi × Cpi)

δi , with p1 = 11 , p2 = 19 , p3 = 29 ,
p4 = 59 and δi ∈ {0, 1} (i = 1, 2, 3 or 4), but not all δi equal to zero. Let Mi�M for which there exists
a quotient group M/Mi isomorphic to Cpi × Cpi ; notice that Mi � G too. There exists an isomorphic
embedding of G into the direct product of the corresponding factor groups G/Mi , see ([8],I.11.9 Satz).
In case G/M1 exists, then G/M1

∼= ((C11 × C11) ⋊ SL(2, 5)) × U1 , where U1 is a solvable (P)-group
satisfying (|U1|, 2 · 3 · 5 · 11) = 1 . In case G/M2 exists, then G/M2

∼= ((C19 × C19) ⋊ SL(2, 5)) × U2 ,
where U2 is a solvable (P)-group satisfying (|U2|, 2 · 3 · 5 · 19) = 1 . In case G/M3 exists, then G/M3

∼=
((C29 × C29) ⋊ SL(2, 5)) × U3 , where U3 is a solvable (P)-group satisfying (|U3|, 2 · 3 · 5 · 29) = 1 , or
else G/M3

∼= ((C29 × C29) ⋊ SL(2, 5)) ⋊ U⟨c⟩ , where |⟨c⟩| = 7α (α ≥ 1) with U � U⟨c⟩ and c7 ∈ U , U
acting trivially on (C29 × C29)⋊ SL(2, 5) , U⟨c⟩ a solvable (P)-group, c acting nontrivially on C29 × C29

and trivially on SL(2, 5) , where the action is conjugation of course; notice (|U⟨c⟩|, 2 · 3 · 5 · 29) = 1 . In
case G/M4 exists, then change everywhere in the “G/M3 ” case 29 into 59 , and 7 into 29 . Hence, the
structure of the β )d)δ )- case has been elucidated, as in the above considerations [F̃ ⋊ SL(2, 5), F̃ ] = F̃

was treated implicitly.

Herewith the classification of the nonsolvable (P)-groups admitting a chief factor isomorphic to A5 has
been completed.

Let us collect the results obtained above into the following portmanteau theorem.

Theorem 7.1 Let G be a group admitting a chief factor isomorphic to A5 , the alternating group on five
symbols. Then the following holds.
The group G is a nonsolvable (P)-group, if and only if one of the next three structures is in vogue.

1) G ∼= SL(2, 5)×H , H being a solvable (P)-group such that (30, |H|) = 1 ;

2) G ∼= PSL(2, 5)×H , H being a solvable (P)-group such that (30, |H|) = 1 ;

3) G = VW , V � G , W ≤ G , (|V |, |W |) = 1 , W a metacyclic (P)-group or W cyclic or W = {1} ;
V = UT , U � G , T � G , (|U |, |T |) = 1 ; T nilpotent noncyclic elementary abelian Sylow t subgroups
whenever t is a prime dividing |T | ;
TW a solvable (P)-group; [[W,W ], U ] = {1} ; U = FS with S < G , F � G , S ∼= SL(2, 5) , U = [U,U ] ,
[Uζ(S), Uζ(S)] = U , F ∼= Π4

j=1(Cpj
× Cpj

)δj where δj ∈ {0, 1} with j ∈ {1, 2, 3, 4} but not with all
δj = 0 ; p1 = 11 , p2 = 19 , p3 = 29 , p4 = 59 . □

Therefore, the classification of all the nonsolvable (P)-groups has been completed too.
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