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Abstract: In this study, standard and non-standard finite-difference methods are proposed for numerical solutions
of the time-spatial fractional generalized Newell-Whitehead-Segel equations describing the dynamical behavior near the
bifurcation point of the Rayleigh-Benard convection of binary fluid mixtures. The numerical solutions have been found for
high values of p which shows the degree of nonlinear terms in the equations. The stability and convergence conditions of
the obtained difference schemes are determined for each value of p . Errors of methods for various values of p are given in
tables. The compatibility of exact solutions and numerical solutions and the effectiveness of the methods are interpreted
with the help of tables and graphics. It can be said that not only standard and non-standard finite-difference methods
are feasible and effective methods to solve the given equation numerically but also useful in terms of computational cost
and memory.

Key words: Generalized Newell-Whitehead-Segel equation (GNWS), Standard Finite-Difference method (SFDM), Non-
Standard Finite-Difference method (NSFDM), CFL conditions

1. Introduction
One of the reaction-diffusion equations associated with various physical phenomena such as biology, geology,
physics, ecology, and chemistry is the Newell-Whitehead-Segel (NWS) equations. The Newell-Whitehead-Segel
equation has an important role in nonlinear systems used to describe the appearance of the stripe patterns
such as on Zebra’s skin, in human fingerprints, and in the visual cortex in two-dimensional systems. It is
also the equation that models the spatial and time-dependent change in substance concentration. Recently,
many researchers have been interested in both analytical and numerical solutions of nonlinear fractional NWS
equations. The time-spatial fractional generalized Newell-Whitehead-Segel (NWS) equation is defined as

∂αu

∂tα
= k

∂γu

∂xγ
+ cu− dup, u(x, t0) = ξ(x), u(a, t) = ζ(t), u(b, t) = Ω(t) (1.1)

where 0 < α ≤ 1 , 1 < γ ≤ 2 , c, d, k ∈ R+ , 2 ≤ p ∈ N , t0 ≤ t ≤ T , a ≤ x ≤ b . [22].
There are many studies on numerical solutions of the NWS equation in the literature. Patade and

Bhalekar [17] used the new iteration method to solve the NWS equation numerically. Latif et al. [12] used
the semi-analytical iterative method to numerically solve the NWS equation. Devi and Jakhar [7] solved the
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NWS equation with the homotopy perturbation algorithm using the Elzaki transform. Saravanan and Magesh
[20] compared the reduced differential transform method with the Adomian decomposition method for the
numerical solution of the NWS equation. Pue-on [19] used Laplace Adomian Decomposition method to solve
the NWS equation numerically. Zellal and Belghaba [21] used the homotopy perturbation transform method to
numerically solve the NWS equation. Also, numerical solutions of the fractional NWS equations are studied in
the literature. Alderremy et al. [1] used the modified reduced differential transform method to numerically solve
the fractional NWS equation. Odibat and Momani [16] used Adomian decomposition method and variational
iteration methods to solve the fractional NWS equation numerically. Also, standard and non-standard finite-
difference methods were used in many fields. Ali et al. [2] used finite-difference method to numerically solve for
the HIV-1 infection of CD4+ T-cells conformable fractional mathematical model. Alkhazzan et al. [3] examined
a class of nonlinear fractional differential equations with singularity. Anguelov et al. [4] solved Hamilton–Jacobi
equations via the nonstandard finite-difference method. Gu et al. [10] used fast implicit difference schemes
for time-space fractional diffusion equations with the integral fractional Laplacian. Inan et al. [11] used the
explicit exponential finite-difference method for mathematical biology models. Li and Zeng [13] studied how to
construct finite-difference schemes for fractional differential equations.

There were different numerical or semi-analytic methods to solve the fractional NWS equations. In these
studies, researchers illustrated their methods using p = 2, 3, 4 in Equation 1.1 to show the effectiveness of their
methods. Also, standard and non-standard finite-difference methods were used to solve the time-fractional NWS
equations with p = 2, 3, 4 in [5].

In this study, the NWS equation has been generalized by adding both the time-fractional derivative and
the spatial-fractional derivative in all aspects. Standard and non-standard finite-difference schemes are obtained
for the time-spatial fractional generalized NWS equation and the conditions for consistency, convergence, and
stability are found for each scheme and for the general value of p . In addition, different time-spatial fractional
generalized NWS equation types with high values of p are examined, numerical solutions are compared with
the exact solutions and error analysis is utilized. In the non-standard finite-difference schemes, time and spatial
step size in the classical sense and different denominator functions are used and compared with the standard
finite-difference values. Error-values for p = 5, 7, 10 are supported with the help of tables and graphics. Also,
the effects of changing spatial-fractional derivative (γ ) and time-fractional derivative (α) on the solution are
discussed and showed by graphically.

2. Preliminaries and notations
In this section, some basic definitions and properties of standard, non-standard discretization and fractional
analysis used in this study are briefly given. In this study, the fractional derivative in the sense of Riemann-
Liouville defined as follows is used. [6]

RL
a Dα

t u(t) =
1

Γ(n− α)

dn

dtn

∫ t

a

(t− s)n−α−1u(s)ds (2.1)

where n− 1 ≤ α < n , n ∈ N , t > a .
The fractional derivative in the sense of Grunwald-Letnikov is defined as follows [18].

GL
a Dα

t f(t) = lim
h→0

N∆t=t−a

∆t−α
N∑
j=0

ωαj (t− j∆t) (2.2)
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Here n − 1 ≤ α < n,∈ N+, t > a and ωαj are named the Grunwald-Letnikov coefficients and satisfy Equation
(2.3).

ωαj = (−1)α
(
α

j

)
. (2.3)

Grunwald-Letnikov approach is

RL
t0 Dα

t u(tk) ≈ GL
t0 Dα

t u(tk) =∆t−α
k∑
j=0

ωαj u(tk−j) (2.4)

where n− 1 ≤ α < n , n ∈ N+ , t > a , ωαj satisfy Equation (2.3) [13, 18].
Since the definitions of Riemann-Liouville and Grunwald-Letnikov are equivalent, the Grunwald-Letnikov

approach is used as a numerical approach in our study.[18]

2.1. Standard discretization
Consider the fractional ordinary differential equation defined as

Dαy(t) = f(t, y(t)), y(t0) = 0, t0 ≤ t ≤ T. (2.5)

where α > 0 and Dα is the Riemann-Liouville fractional derivative operator [15].
For Equation (2.5) the standard finite-difference scheme is written as

∆t−α
N∑
j=0

ωαj y(tk−j) = f(tk, y(tk)), k = 1, 2, 3, . . . (2.6)

where tk = k∆t and ωαj are the Grunwald-Letnikov coefficients.

When the derivative approximations are substituted in Equation (1.1), following standard finite-difference
scheme for time-spatial fractional generalized NWS equation is obtained.

k+1∑
j=0

ωαj u
k−j+1
m =

∆tα

∆xγ

m+1∑
i=0

ωγi u
k
m−i+1 +∆tαukm −∆tα(ukm)p (2.7)

2.2. Non-standard discretization
Non-standard finite-difference rules for ODEs or PDEs were introduced by Mickens [14]. Some basic rules of
non-standard finite-difference for ODEs are given in this subsection. Additionally, similar rules exist for PDEs
too.

In investigating non-standard finite-difference discretization for ODE in form

dy

dt
= f(t, y(t)). (2.8)

The non-standard discrete derivative is
dy

dt
=
yk+1 − yk
φ(∆t, λ)

. (2.9)
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where φ is a function of the step size ∆t , φ has the following given property:

∆t→ 0, φ(∆t, λ) = ∆t+O(∆t2). (2.10)

φ(∆t, λ) denominator functions such as ∆t , sin(λ∆t)λ , eλ∆t−1
λ , 1 − e−∆t are frequently used in non-standard

schemes. In non-standard finite-difference schemes, the nonlinear terms are replaced by non-local representa-
tions. Some examples are given below:

y2 ≈ yk(
yk−1+yk+1

2 ) , y2 ≈ ykyk+1 , y3 ≈ y2kyk+1 , y3 ≈ yk−1ykyk+1 ,

y2 ≈ yk(
yk+1+yk+yk−1

3 ) , y3 ≈ (yk+yk−1

2 )2yk+1.

Where ∆t = T
K , tk = k∆t , k = 0, 1, . . . , K ∈ Z+.

Similarly, non-standard discretization of partial derivatives are given as follow

∂f(x, t)

∂x
=
fkm+1 − fkm−1

φ(∆x, µ)
(2.11)

∂2f(x, t)

∂t2
=
fk+1
m + fkm − fk−1

m

ψ(∆t, λ)
(2.12)

Here xm = m∆x , tk = k∆t , f(xm, tk) = fkm , m = 0, 1, . . . , M ∈ Z+ , k = 0, 1, . . . , K ∈ Z+.

∆x and ∆t have the following features

φ(∆x, µ) = ∆x+O(∆x2), ∆x→ 0 (2.13)

ψ(∆t, λ) = ∆t2 +O(∆t4), ∆t→ 0. (2.14)

Nonlocal representations for the terms u, u2 in Equation 1.1 are

ukm = 2ukm − ukm → 2ukm − uk+1
m , (ukm)p → (ukm)p−1uk+1

m , ukm =
ukm+1 + ukm−1

2
. (2.15)

The time-fractional derivative and the spatial-fractional derivative will be represented by the following difference
approximations:

∂αu

∂tα
≈ 1

φ(∆t, λ)α

k+1∑
j=0

ωαj u
k−j+1
m ,

∂γu

∂xγ
≈ 1

ψ(∆x, µ)γ

m+1∑
i=0

ωγi u
k
m−i+1 (2.16)

where φ(∆t, λ), ψ(∆x, µ) are the denominator functions of ∆t and ∆x respectively. λ and µ are
parameters that evaluated equilibrium points of the nonlinear terms in Equation 1.1.

Substituting nonlocal representations 2.15 and derivative approximations 2.16 in Equation 1.1, the NFSD
scheme for the time-spatial fractional generalized NWS equation is obtained as follows.

1

φ(∆t, λ)α

k+1∑
j=0

ωαj u
k−j+1
m =

1

ψ(∆x, µ)γ

m+1∑
i=0

ωγi u
k
m−i+1 + 2ukm − uk+1

m − (ukm)p−1uk+1
m (2.17)
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3. Stability and convergence conditions of SFDM and NSFDM for the time-spatial fractional
generalized Newell-Whitehead-Segel equations

3.1. Stability and convergence conditions of SFDM for the time-spatial fractional generalized
Newell-Whitehead-Segel equations

Remark 3.1 Let ωαj is the Grunwald-Letnikov coefficient as given in 2.3. Then; for 0 < α ≤ 1 , |ωαj | ≤ 1
j

satisfies.

Proof The following inequality can be written for the ωαj = (1− 1+α
j )ωαj−1, ω

α
0 = 1 difference equation.

|ωαj | = |(1− 1 + α

j
)(1− 1 + α

j − 1
)(1− 1 + α

j − 2
) . . . α.1|

= |(j − 1

j
− α

j
)(
j − 2

j − 1
− α

j − 1
)(
j − 3

j − 2
− α

j − 2
) . . . α.1|

≤ |j − 1

j
.
j − 2

j − 1
.
j − 3

j − 2
. . . α.1| = α

j
≤ 1

j

2

Remark 3.2 |ωγi | ≤ 2
i satisfies for 1 < γ ≤ 2 and i = 1, 2, . . . N .

Proof It can be done like proof of Remark 3.1. 2

To obtain stability condition for finite-difference method, firstly Equation (2.7) is edited according to
unknown term. The standard finite-difference scheme (SFD scheme) can be written as:

uk+1
m = (α−γR)ukm+R(ukm+1+

(γ − 1)γ

2
ukm−1)+R

m+1∑
i=3

ωγi u
k
m−i+1−

k+1∑
j=2

ωαj u
k−j+1
m +∆tαukm−∆tα(ukm)p (3.1)

here R = ∆tα

∆xγ . For the positivity of SFD scheme, it is enough condition that (α − γR) ≥ 0 since other terms
in Equation (3.1) are positive.
The SFD scheme is bounded assuming that the R = ∆tα

∆xγ ≤ α
γ and 0 ≤ ukm ≤ 1

4 conditions, so the positivity

condition is = ∆tα

∆xγ ≤ α
γ .

|uk+1
m | ≤ |(α− γR)ukm|+ |R(ukm+1 +

(γ − 1)γ

2
ukm−1)|+ |R

m+1∑
i=3

ωγi u
k
m−i+1|+ |

k+1∑
j=2

ωαj u
k−j+1
m |+ |∆tαukm −∆tα(ukm)p|

≤ (α− γR)

4
+
R

2
+
R

4
.
2

3
+

1

8
+

∆tα

4

≤ 1

4
− γR

4
+

1

4
+

1

12
+

1

8
+

1

4
=

23

24
− γR

4
≤ 1

The SFD scheme for the time-spatial fractional generalized NWS equation under the positivity and
bounded conditions is consistent. When the conditions R = ∆tα

∆xγ ≤ α
γ and 0 ≤ ukm ≤ 1

4 are satisfied, CFL

theorems [8, 9] are provided for stability and convergence. In this case, the SFD scheme for the time-spatial
fractional generalized NWS equation is both convergent and stable.
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3.2. Stability and convergence conditions of NSFDM for the time-spatial fractional generalized
Newell-Whitehead-Segel equations

From Equation (2.17), the non-standard finite-difference scheme (NSFD scheme) can be written as

uk+1
m =

R(ukm+1 +
γ(γ−1)

2 ukm−1) + 2φ(∆t, λ)αukm + (α− γR)ukm +R
∑m+1
i=3 ωγi u

k
m−i+1 −

∑k+1
j=2 ω

α
j u

k−j+1
m

1 + φ(∆t, λ)α + φ(∆t, λ)α(ukm)p−1

(3.2)

here R = φ(∆t,λ)α

ψ(∆x,µ)γ .

For the positivity of the NSFD scheme, condition (α− γR) ≥ 0 ⇔ R = φ(∆t,λ)α

ψ(∆x,µ)γ ≤ α
γ must be satisfied.

For simplicity, Equation 3.2 can be written as follows

uk+1
m =

R(ukm+1 +
γ(γ−1)

2 ukm−1) + 2φ(∆t, λ)αukm +A(α, γ)

1 + φ(∆t, λ)α + φ(∆t, λ)α(ukm)p−1
(3.3)

where A(α, γ) = (α− γR)ukm +R
∑m+1
i=3 ωγi u

k
m−i+1 −

∑k+1
j=2 ω

α
j u

k−j+1
m .

Assuming these conditions R = φ(∆t,λ)α

ψ(∆x,µ)γ ≤ α
γ and 0 ≤ ukm ≤ 1

2 ,

R(ukm+1 +
γ(γ − 1)

2
ukm−1) + 2φ(∆t, λ)αukm +A(α, γ) ≤ 1 + φ(∆t, λ)α (3.4)

can be written.
The Inequality 3.4 is proved by the contradiction method as follows.

Since R(ukm+1 +
γ(γ−1)

2 ukm−1) ≤ 1 , it is sufficient to show 2φ(∆t, λ)αukm +A(α, γ) ≤ φ(∆t, λ)α .

Suppose that 2φ(∆t, λ)αukm +A(α, γ) > φ(∆t, λ)α , for ∀α ∈ (0, 1],∀γ ∈ (1, 2] . If α = 1, γ = 2, R = 1
2 is

chosen, A(α, γ) = 0 is found. Then 2φ(∆t, λ)αukm > φ(∆t, λ)α can be written. So, ukm > 1
2 is obtained. This

contradicts the condition 0 ≤ ukm ≤ 1
2 . Thus,

R(ukm+1+
γ(γ − 1)

2
ukm−1)+2φ(∆t, λ)αukm+A(α, γ) ≤ 1+φ(∆t, λ)α ≤ 1+φ(∆t, λ)α+φ(∆t, λ)α(ukm)p−1 (3.5)

can be written. If the Inequality 3.5 is regulated, it is shown that the NSFD scheme is bounded.

uk+1
m =

R(ukm+1 +
γ(γ−1)

2 ukm−1) + 2φ(∆t, λ)αukm +A(α, γ)

1 + φ(∆t, λ)α + φ(∆t, λ)α(ukm)p−1
≤ 1 (3.6)

Consequently, the NSFD scheme for the time-spatial fractional generalized NWS equation under the
positivity and boundedness conditions is consistent. When the conditions R = φ(∆t,λ)α

ψ(∆x,µ)γ ≤ α
γ and 0 ≤ ukm ≤ 1

2

are satisfied, CFL theorems [8, 9] are provided for stability and convergence. In this case, the NSFD scheme
for the time-spatial fractional generalized NWS equation is both convergent and stable.

4. Applications
In this section, SFD and NSFD methods are applied to obtain numerical solutions of the time-spatial fractional
generalized Newell-Whitehead-Segel equations and compared with using tables when using different denominator
functions. To illustrate, three examples are solved numerically by using both SFD and NSFD methods. Also,
results are compared with using tables.
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4.1. Example 1

If 0 < α ≤ 1, γ = 2, p = 5, ξ(x) = 1

(1+e10+
2
√

3
3

x)
1
2

, ζ(t) = 1

(1+e10−
8
3
t)

1
2

, Ω(t) = 1

(1+e10−
8
3
t+2

√
3

3 )
1
2

is taken in

Equation 1.1, exact solution of the time-fractional generalized NWS equation for α = 1 is

u(x, t) = 1

(1+e10−
8
3
t+2

√
3

3
x)

1
2

. The comparison of solutions of standard and non-standard finite-difference

with the exact solution for p = 5 is shown in Figure 1 taking 0 < x < 1, t = 1 .

(a) standard finite-difference solutions (b) non-standard finite-difference solutions

(c) non-standard finite-difference solutions with denominator function

1

Figure 1. Comparison with the exact solution for p = 5 in Example 1
.

If ψ(∆x) = ∆x, φ1(∆t) = ∆t, φ2(∆t) = 1 − e−∆t,∆x = 1
10 ,∆t =

1
1000 values are taken in SFD scheme

3.1 and NSFD scheme 3.2, the error values for α = 1 are given in the Table 1.
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Table 1. Error values of finite-difference methods for p = 5 in Example 1.

xk |SFD − Exact| |NSFD − Exact|
φ1(∆t),ψ(∆x)

|NSFD − Exact|
φ2(∆t),ψ(∆x)

0 0 0 0
0.1 0.00000072644 0.00000108249 0.00000048044
0.2 0.00000126311 0.00000188265 0.00000083579
0.3 0.00000162254 0.00000241901 0.00000107415
0.4 0.00000181622 0.00000270828 0.00000120283
0.5 0.00000185436 0.00000276563 0.00000122852
0.6 0.00000174617 0.00000260462 0.00000115716
0.7 0.00000149983 0.00000223742 0.00000099415
0.8 0.00000112259 0.00000167481 0.00000074423
0.9 0.00000062080 0.00000092626 0.00000041163
1 0 0 0

4.2. Example 2

If 0 < α ≤ 1, 1 < γ ≤ 2, p = 7, ξ(x) = 1

(1+e
3x
2

+14)
1
3
, ζ(t) = 1

(1+4e
−15
4

t+14)
1
3

,Ω(t) = 1

(1+e
3
2
− 15

4
t+14)

1
3

is taken

in Equation 1.1, exact solution of the time-spatial fractional generalized NWS equation for α = 1, γ = 2 is
u(x, t) = 1

(1+e
3
2
x− 15

4
t+14)

1
3

.

When ψ(∆x) = ∆x, φ1(∆t) = ∆t, φ2(∆t) = e∆t − 1,to satisfy the stability condition ∆x and ∆t are
chosen 1

16 and 1
1000 respectively, the error values for α = 1, γ = 2 are given in the Table 2.

Table 2. Error values of finite-difference methods for p = 7 in Example 2.

xk |SFD − Exact| |NSFD − Exact|
φ1(∆t),ψ(∆x)

|NSFD − Exact|
φ2(∆t),ψ(∆x)

0 0 0 0
0.125 0.00000111477 0.00000151042 0.00000059860
0.25 0.00000186702 0.00000252965 0.00000100255
0.375 0.00000228196 0.00000309183 0.00000122535
0.5 0.00000238205 0.00000322743 0.00000127908
0.625 0.00000218733 0.00000296358 0.00000117451
0.75 0.00000171547 0.00000232426 0.00000092113
0.875 0.00000098189 0.00000133035 0.00000052723
1 0 0 0

The comparison of solutions of standard and non-standard finite-difference with the exact solution for
p = 7 is shown in Figure 2 taking 0 < x < 1, t = 1 .
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(a) standard finite-difference solutions (b) non-standard finite-difference solutions

(c) non-standard finite-difference solutions with denominator function

1

Figure 2. Comparison with the exact solution for p = 7 in Example 2.

4.3. Example 3

If α = 1 ,1 < γ ≤ 2 , p = 10 ,ξ(x) = 1

(1+e
9√
22

x+20
)
2
9

, ζ(t) = 1

(1+e−
117
22

t+20)
2
9

, Ω(t) = 1

(1+e
9√
22

− 117
22

t+20
)
2
9

is taken

in Equation 1.1, exact solution of the spatial-fractional generalized NWS equation for γ = 2 is

u(x, t) = 1

(1+e
9√
22

x− 117
22

t+20
)
2
9

.

The comparison of solutions of standard and non-standard finite-difference with the exact solution for
p = 10 is shown in Figure 3 taking 0 < x < 1, t = 1 .

As denominator functions, ψ1(∆x) = ∆x, ψ2(∆x) = sin(∆x), φ1(∆t) = ∆t, φ2(∆t) = e∆t − 1 are taken,
∆x = 1

20 and ∆t = 1
1000 are chosen in SFD scheme 3.1 and NSFD scheme 3.2. The comparison of the numerical

solutions of example 3 for γ = 2 is shown in Table 3.
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(a) standard finite-difference solutions (b) non-standard finite-difference solutions

(c) non-standard finite-difference solutions with denominator function

1

Figure 3. Comparison with the exact solution for p = 10 in Example 3.

5. Conclusions and recommendations

In this study, the stability and convergence conditions of the finite-difference methods proposed for the time-
spatial fractional generalized NWS equation are determined using CFL theorems. Then, the p = 5, 7, 10 cases
of the given equation are examined to show the solution procedures.

For p = 5 , taking γ = 2 , the exact solution of the time-fractional NWS equation when α = 1 is compared
with the proposed finite-difference solutions, and error values are given in Table 1.

For p = 7 , the exact solution of the time-spatial fractional NWS equation, when α = 1, γ = 2 is compared
with the proposed finite-difference solutions and the error values are given in Table 2.

For p = 10 , taking α = 1 , the exact solution of the spatial-fractional NWS equation, when γ = 2 is
compared with the proposed finite-difference solutions and the error values are given in Table 3.

From the tables, although high values of p are used, it is observed that the maximum errors of SFDM
and NSFDM are around 10−6 .
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Table 3. Error values of finite-difference methods for p = 10 in Example 3.

xk |SFD − Exact| |NSFD − Exact|
φ1(∆t),ψ(∆x)

|NSFD − Exact|
φ2(∆t),ψ(∆x)

0 0 0 0
0.1 0.00000100791 0.00000206326 0.00000098334
0.2 0.00000176374 0.00000361054 0.00000172075
0.3 0.00000227959 0.00000466650 0.00000222404
0.4 0.00000256644 0.00000525374 0.00000250390
0.5 0.00000263470 0.00000539343 0.00000257050
0.6 0.00000249365 0.00000510476 0.00000243290
0.7 0.00000215213 0.00000440561 0.00000209971
0.8 0.00000161794 0.00000331209 0.00000157852
0.9 0.00000089842 0.00000183913 0.00000087653
1 0 0 0

Respectively, Graph 1,2,3 show the comparison of the numerical solutions of the Examples 1, 2, 3 with
the exact solutions. In each case p = 5, 7, 10 , it can be seen from both tables and graphs that the numerical
results for different α and γ values are compatible with the accuracy of the stability and the convergence
conditions obtained. Also, it has been determined that the numerical solutions of the time-fractional NWS
equation are located very close to the exact solution for γ = 2 . In addition, the numerical results for the
spatial-fractional NWS and the time-spatial fractional NWS equation are not located near the exact solution
and show a stable spread. It is seen that the NWS equation is quite compatible with the time-fractional
derivative, but not with the spatial-fractional derivative even if it shows a stable spread. The behaviour of the
solution gives a stable spread when changing the spatial-fractional derivative and is different from the effect of
the time-fractional derivative. Although the p values increased for the time-spatial fractional NWS equation, it
is determined that the numerical solutions obtained a stable and consistent order around the exact solution using
both methods. The standard finite-difference method gives better results when the denominator function is used
in the classical sense in the non-standard finite-difference method. Additionally, it is concluded that the non-
standard finite-difference method gives better quality results when using trigonometric and exponential functions
as denominator functions. Therefore, the non-standard finite-difference method with various denominator
functions is preferable and easy to implement for solving the time-spatial fractional generalized NWS equation.

Consequently, using different denominator functions shows the effectiveness of the proposed NSFD method
for the time-spatial fractional generalized NWS equation. Also, the stability and convergence conditions
obtained for SFDM and NSFDM show that the methods are conditionally stable for the related equation in
general form and it has been determined that the numerical results and conditional stability for the time-spatial
fractional generalized NWS equation overlap with each other. The study can be carried to a more general form
by taking different values for the coefficients of the time-spatial fractional generalized NWS equation.
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