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Abstract: In a recent paper, Yu et al. obtained convergence and stability results of the K∗ iterative method for quasi-
strictly contractive mappings [An iteration process for a general class of contractive-like operators: Convergence, stability
and polynomiography. AIMS Mathematics 2021; 6 (7): 6699-6714.]. To guarantee these convergence and stability results,
the authors imposed some strong conditions on parametric control sequences which are used in the K∗ iterative method.
The aim of the presented work is twofold: (a) to recapture the aforementioned results without any restrictions imposed
on the mentioned parametric control sequences (b) to complete the work of Yu et al. by adding a result regarding the
data dependency of the fixed points of quasi-strictly contractive mappings. We also furnish some illustrative examples
to support our results. Our work can be considered an important refinement and complement of the work of Yu et al.

Key words: Iterative methods, fixed points, convergence, stability, data dependency, quasi-strictly contractive map-
pings

1. Preliminaries and background

The fixed point iteration approach plays an important role in finding the solution of many problems which
are not always solved with analytical methods in various fields of science. The fixed point iteration algorithms
studies start with the Picard iteration [41]. The Picard iteration algorithm can often be used to approximate
the fixed points of contraction mappings, whereas Krasnoselskii [32], Mann [35], and Ishikawa [27] iteration
algorithms are used to approximate the fixed points of nonexpansive/noncontractive mappings. These iteration
algorithms have been studied by many researchers on different subjects. Afterward, many iteration algorithms
were defined and their qualifier features such as convergence, stability, data dependency, and convergence rate
have been extensively studied (see [12–14, 19, 21, 25, 26, 33, 48]). For the convenience of the reader, we recall
below some of the commonly used iteration algorithms and the relationships among them.

Let N be a real normed space, ∅ ̸= S ⊂ N a convex and closed set, T : S → S a mapping and
FT = {x∗ : x∗ = Tx∗} be the set of fixed points of T .

∗Correspondence: celikrukenn@gmail.com
2010 AMS Mathematics Subject Classification: Primary 47H10, 54H25; Secondary 47J25.

This work is licensed under a Creative Commons Attribution 4.0 International License.
2819

https://orcid.org/0000-0002-1995-4408
https://orcid.org/0000-0003-3061-5770


ÇELİK and ŞİMŞEK/Turk J Math

In 2000, Noor [36] introduced a Noor iteration algorithm as follows:
n1
0 ∈ S,

n1
k+1 =

(
1− µ1

k

)
n1
k + µ1

kTn
2
k,

n2
k =

(
1− µ2

k

)
n1
k + µ2

kTn
3
k,

n3
k =

(
1− µ3

k

)
n1
k + µ3

kTn
1
k, for all k ∈ N,

(1.1)

where
{
µi
k

}∞
k=0

⊆ [0, 1] for i = 1, 2, 3 are real sequences. If (i) µ3
k = 0 for all k ∈ N , (ii) µ2

k = µ3
k = 0 for all

k ∈ N , (iii) µ2
k = µ3

k = 0 and µ1
k = µ1 for all k ∈ N , (iv) µ1

k = 1 and µ2
k = µ3

k = 0 for all k ∈ N , and (v)
µ1
k = 1 and µ3

k = 0 for all k ∈ N , then (1.1) reduces to the Ishikawa, Mann, Krasnoselskii, Picard and normal-S
[46] iteration algorithms, respectively.

The following is known as S-iteration algorithm [1]: s10 ∈ S,
s1k+1 = (1− µ1

k)Ts
1
k + µ1

kTs
2
k,

s2k = (1− µ2
k)s

1
k + µ2

kTs
1
k, for all k ∈ N,

(1.2)

where
{
µi
k

}∞
k=0

⊆ [0, 1] for i = 1, 2 are real sequences. If (i) µ1
k = 1 , µ2

k = 0 for all k ∈ N and (ii) µ1
k = 1 for all

k ∈ N , then (1.2) reduces to the Picard and normal-S iteration algorithms, respectively, but it is independent
from Krasnoselskii, Mann, Ishikawa and Noor iteration algorithms.

The following iteration algorithms are called SP [42] and CR [8] iteration algorithms, respectively:
p10 ∈ S,

p1k+1 =
(
1− µ1

k

)
p2k + µ1

kTp
2
k,

p2k =
(
1− µ2

k

)
p3k + µ2

kTp
3
k,

p3k =
(
1− µ3

k

)
p1k + µ3

kTp
1
k, for all k ∈ N,

(1.3)

and 
c10 ∈ S,

c1k+1 = (1− µ1
k)c

2
k + µ1

kTc
2
k,

c2k = (1− µ2
k)Tc

1
k + µ2

kTc
3
k,

c3k = (1− µ3
k)c

1
k + µ3

kTc
1
k, for all k ∈ N,

(1.4)

where
{
µi
k

}∞
k=0

⊆ [0, 1] for i = 1, 2 are real sequences. If (i) µ1
k = µ3

k = 0 and µ2
k = 1 for all k ∈ N , (ii)

µ1
k = 0 for all k ∈ N , and (iii) µ1

k = 0 and µ2
k = 1 for all k ∈ N , then (1.4) reduces to the Picard, S, and

normal-S iteration algorithms, respectively. If (i) µ3
k = 0 for all k ∈ N , (ii) µ2

k = µ3
k = 0 for all k ∈ N , (iii)

µ2
k = µ3

k = 0 and µ1
k = µ1 for all k ∈ N , (iv) µ1

k = 1 and µ2
k = µ3

k = 0 for all k ∈ N , and (v) µ1
k = 1 and

µ3
k = 0 for all k ∈ N , then (1.3) reduces to the Thianwan [47], Mann, Krasnoselskii, Picard, and normal-S

iteration algorithms, respectively. Furthermore, if µ1
k = 1 for all k ∈ N in (1.3), then we obtain the following

iteration algorithm: 
p10 ∈ S,

p1k+1 = Tp2k,
p2k =

(
1− µ2

k

)
p3k + µ2

kTp
3
k,

p3k =
(
1− µ3

k

)
p1k + µ3

kTp
1
k, for all k ∈ N,

(1.5)

where
{
µi
k

}∞
k=0

⊆ [0, 1] for i = 1, 2 are real sequences. This algorithm was introduced in [31]. We will
hereinafter call it the SP∗ iteration algorithm.
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Almost all of the iterations which are mentioned above can be used to solve an operator equation, which is
generated by a particular contractive type mapping. In such a case, the following concepts of convergence rate
and stability emerge as two very important criteria that allow us to decide which iteration algorithm is the most
appropriate to solve the operator equation in question.

Definition 1.1 (see [7]) Let
{
Θ

(1)
n

}∞

n=0
,
{
Θ

(2)
n

}∞

n=0
be two sequences such that limn→∞ Θ

(1)
n = Θ1 and

limn→∞ Θ
(2)
n = Θ2 . If

lim
n→∞

∥∥∥Θ(1)
n −Θ1

∥∥∥∥∥∥Θ(2)
n −Θ2

∥∥∥ = 0,

then it is said that
{
Θ

(1)
n

}∞

n=0
converges faster than

{
Θ

(2)
n

}∞

n=0
.

Definition 1.2 (see [3]) Let
{
Θ

(1)
n

}∞

n=0
,
{
Θ

(2)
n

}∞

n=0
be two iterative sequences such that limn→∞ Θ

(1)
n =

limn→∞ Θ
(2)
n = Θ∗ . Suppose that the following error estimates∥∥∥Θ(1)

n −Θ∗
∥∥∥ ≤ κ(1)

n and
∥∥∥Θ(2)

n −Θ∗
∥∥∥ ≤ κ(2)

n , for all n ∈ N

are available (and these estimates are the best possible, see [4]) where
{
κ
(1)
n

}∞

n=0
,
{
κ
(2)
n

}∞

n=0
are two sequences of

positive numbers (converging to zero). If
{
κ
(1)
n

}∞

n=0
converges faster than

{
κ
(2)
n

}∞

n=0
(in the sense of Definition

1.1), then it is said that
{
Θ

(1)
n

}∞

n=0
converges to Θ∗ faster than

{
Θ

(2)
n

}∞

n=0
.

Definition 1.3 (see [24]) Let T : S → S be a mapping with a fixed point p , F a function, {Θ∗
n}

∞
n=0 ⊂ S an

arbitrary sequence, and {Θn}∞n=0 be an iterative sequence produced by Θn+1 = F (T,Θn) , n ∈ N for an initial
guess Θ0 ∈ S . Assume that {Θn}∞n=0 converges to p . If limn→∞

∥∥F (T,Θ∗
n)−Θ∗

n+1

∥∥ = 0 ⇔ limn→∞ yn = p ,
then one says that {Θn}∞n=0 is stable w.r.t. T .

Working with an iteration algorithm that has a higher convergence rate is very important to save time in solving
problems that arise in applied and computational research areas. Therefore, many studies have been conducted
on the comparison of convergence rates among iteration algorithms. As a result, a very large literature has
emerged in this context. Rhoades [43] proved that the Ishikawa iteration algorithm converges to the fixed
points of the increasing functions faster than the Mann iteration algorithm and vice versa for the decreasing
functions. Agarwal et al. [1] showed that the Picard and S iteration algorithms have the same convergence
rate when approximating the fixed point of contraction mappings and both are faster than the classical Mann,
Ishikawa, and Noor iteration algorithms for the same class of mappings. Sahu [46] proposed the normal-S
iteration algorithm, which is better (i.e. simpler and faster) than the S iteration algorithm for contraction
mappings. Chugh et al. [8] introduced the CR iteration algorithm and proved that this algorithm is equivalent
to the Picard, Mann, Ishikawa, Noor, SP, and S iteration algorithms for a general class of contractive mappings
and faster than those algorithms for the same class of mappings. It was shown in [30] that the CR iteration
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algorithm is faster than an S∗ [28] iteration algorithm for contraction mappings and a data dependence result for
the fixed point points of contractive-like operators via the CR iteration algorithm was presented in [29]. Other
features, such as stability and data dependency, are important to examine in the study of iteration algorithms.
They also give us important information about how accurately an iteration algorithm performs the required
computations for a particular problem. In the last thirty years or so, a very large literature has emerged on the
stability and data dependency for various iteration algorithms of different classes of contractive mappings, see,
e.g., [5, 6, 9–11, 15–18, 20, 22, 23, 37–40, 44, 45, 50] , and references contained therein.

Inspired by the studies mentioned above, Ullah and Arshad [49] introduced a K∗ iteration algorithm as
follows: 

u1
0 ∈ S

u1
k+1 = Tu2

k,
u2
k = T

((
1− µ1

k

)
u3
k + µ1

kTu
3
k

)
,

u3
k =

(
1− µ2

k

)
u1
k + µ2

kTu
1
k, for all k ∈ N,

(1.6)

where
{
µi
k

}∞
k=0

⊆ [0, 1] for i = 1, 2 are real sequences. It was shown in [49] that the iterative sequence
{
u1
k

}∞
k=0

generated by (1.6) with the control condition
∞∑
k=0

µ1
k = ∞ strongly converges to the unique fixed point of a

contraction mapping T and is T−stable under the same condition. In a very recent paper [51] by Yu et al.,
the iteration algorithm (1.6) was investigated for a general class of mappings called quasistrictly contractive
mappings satisfying the following condition:

∥u∗ − Tu∥ ≤ δ ∥u∗ − u∥ , δ ∈ [0, 1) , u∗ ∈ FT , ∀u ∈ N. (1.7)

More precisely, they proved the following results:

Theorem 1.4 Consider a real normed (N, ∥·∥) and a mapping T : N → N with a fixed point x∗ satisfying
(1.7). Let

{
p1k
}∞
k=0

,
{
u1
k

}∞
k=0

be defined by (1.5) and (1.6), respectively, where
{
µi
k

}∞
k=0

⊆ [0, 1] for i = 1, 2

are real sequences and
∞∑
k=0

µ1
kµ

2
k = ∞ . Then, (i)

{
u1
k

}∞
k=0

converges strongly to x∗ [51, Theorem 3.1], (ii){
u1
k

}∞
k=0

is T−stable [51, Theorem 3.2], (iii) the convergence of
{
u1
k

}∞
k=0

to x∗ is faster than that of
{
p1k
}∞
k=0

[51, Theorem 3.3].

We will reprove the results in (i)-(iii) of Theorem 1.4 in this study by removing the condition
∞∑
k=0

µ1
kµ

2
k = ∞

that was used in the proofs of the corresponding results in [21]. We will also present a result on the data
dependence of the fixed point of the quasi-strictly contractive mappings satisfying (1.7) by using the iteration
algorithm (1.6). Some illustrative numerical examples are also provided to support our results. Our results can
be considered a significant refinement and enhancement over the corresponding results of Ullah and Arshad [49]
and Yu et al. [51].

2. Main results
Theorem 2.1 Let (N, ∥·∥) be a real normed space, T : N → N be a mapping which satisfies (1.7) and has a fixed
point u∗ , and

{
u1
k

}
be an iterative sequence which is produced by (1.6) with real sequences

{
µ1
k

}
,
{
µ2
k

}
⊆ [0, 1] .

Then,
{
u1
k

}
converges strongly to u∗ .
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Proof From (1.6) and (1.7), we have∥∥u3
k − u∗∥∥ =

∥∥(1− µ2
k)u

1
k + µ2

kTu
1
k − u∗∥∥

=
∥∥(1− µ2

k)u
1
k + µ2

ku
∗ − µ2

ku
∗µ2

kTu
1
k − u∗∥∥

=
∥∥(1− µ2

k)(u
1
k − u∗) + µ2

k(Tu
1
k − u∗)

∥∥
≤ (1− µ2

k)
∥∥u1

k − u∗∥∥+ µ2
k

∥∥Tu1
k − u∗∥∥

≤ (1− µ2
k)
∥∥u1

k − u∗∥∥+ δµ2
k

∥∥u1
k − u∗∥∥

≤ (1− µ2
k + δµ2

k)
∥∥u1

k − u∗∥∥ = (1− µ2
k(1− δ))

∥∥u1
k − u∗∥∥ .

Then, ∥∥u2
k − u∗∥∥ =

∥∥T ((1− µ1
k)u

3
k + µ1

kTu
3
k)− u∗∥∥

= δ
∥∥(1− µ1

k)u
3
k + µ1

ku
∗ − µ1

ku
∗ + µ1

kTu
3
k − u∗∥∥

≤ δ
∥∥(1− µ1

k)(u
3
k − u∗) + µ1

k(Tu
3
k − u∗)

∥∥
≤ δ(1− µ1

k)
∥∥u3

k − u∗∥∥+ µ1
k

∥∥Tu3
k − u∗∥∥

≤ δ(1− µ1
k)
∥∥u3

k − u∗∥∥+ δµ1
k

∥∥u3
k − u∗∥∥

= δ[1− µ1
k + δµ1

k]
∥∥u3

k − u∗∥∥
= δ[1− µ1

k(1− δ)][1− µ2
k(1− δ)]

∥∥u1
k − u∗∥∥ .

Now, we have ∥∥u1
k+1 − u∗∥∥ =

∥∥Tu2
k − u∗∥∥ ≤ δ

∥∥u2
k − u∗∥∥

≤ δ2[1− µ1
k(1− δ)][1− µ2

k(1− δ)]
∥∥u1

k − u∗∥∥ .
.

If we apply induction to this inequality, we get

∥∥u1
k+1 − u∗∥∥ ≤ δ2(k+1)

k∏
n=0

[
1− µ1

n (1− δ)
] [
1− µ2

n (1− δ)
] ∥∥u1

0 − u∗∥∥ . (2.1)

Since δ ∈ [0, 1) and 0 ≤ µ1
k, µ

2
k ≤ 1 , ∀k ∈ N , 1− µ1

k (1− δ) < 1 and 1− µ2
k (1− δ) < 1 , ∀k ∈ N . Therefore, we

have ∥∥u1
k+1 − u∗∥∥ ≤ δ2(k+1)

∥∥u1
0 − u∗∥∥ , ∀k ∈ N.

If we take the limit of the both side of the above inequality, we obtain limk−→∞
∥∥u1

k+1 − u∗
∥∥ = 0 . 2

Theorem 2.2 Let (N, ∥·∥) be a real normed space, T : N → N be a mapping which satisfies (1.7) and has a fixed
point u∗ , and

{
u1
k

}
be an iterative sequence which is produced by (1.6) with real sequences

{
µ1
k

}
,
{
µ2
k

}
⊆ [0, 1] .

Then,
{
u1
k

}
is T -stable.
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Proof Let {τk} be an arbitrary sequence in N and εk ∈ R+ is in a form

εk = ∥τk+1 − Tςk∥ , ∀k ∈ N, (2.2)

where ςk = T
[(
1− µ1

k

)
γk + µ1

kTγk
]

, γk =
(
1− µ2

k

)
τk + µ2

kTτk , for all k ∈ N and admits limk−→∞ εk = 0 ,
we will demonstrate that limk−→∞ τk = u∗ . Using (1.6), (1.7), (2.2), δ ∈ [0, 1) , and the facts 0 ≤ µ1

k, µ
2
k ≤ 1 ,

1− µ1
k (1− δ) < 1 , 1− µ2

k (1− δ) < 1 , ∀k ∈ N , we get

∥τk+1 − u∗∥ ≤
∥∥τk+1 − u1

k+1

∥∥+ ∥∥u1
k+1 − u∗∥∥

≤ ∥τk+1 − Tςk∥+
∥∥Tςk − Tu2

k

∥∥+ ∥∥u1
k+1 − u∗∥∥

≤ εk + δ
∥∥ςk − u2

k

∥∥+ 2δ
∥∥u2

k − u∗∥∥+ ∥∥u1
k+1 − u∗∥∥

≤ εn + δ
∥∥(1− µ1

k

)
γk + µ1

kTγk −
[(
1− µ1

k

)
u3
k + µ1

kTu
3
k

]∥∥
+2δ

∥∥(1− µ1
k

)
u3
k + µ1

kTu
3
k − u∗∥∥+ 2δ

∥∥u2
k − u∗∥∥+ ∥∥u1

k+1 − u∗∥∥
≤ εn + δ

(
1− µ1

k

) ∥∥γk − u3
k

∥∥+ δµ1
k

∥∥Tγk − Tu3
k

∥∥+ 2δ
(
1− µ1

k

) ∥∥u3
k − u∗∥∥

+2δ2µ1
k

∥∥u3
k − u∗∥∥+ 2δ

∥∥u2
k − u∗∥∥+ ∥∥u1

k+1 − u∗∥∥
≤ εn + δ

(
1− µ1

k

) (
1− µ2

k

) ∥∥τk − u1
k

∥∥+ δ2
(
1− µ1

k

)
µ2
k

∥∥τk − u1
k

∥∥
+2δ2

(
1− µ1

k

)
µ2
k

∥∥u1
k − u∗∥∥+ δ2µ1

k

∥∥γk − u3
k

∥∥+ 2δ2µ1
k

∥∥u3
k − u∗∥∥

+2δ
[
1− µ1

k (1− δ)
] ∥∥u3

k − u∗∥∥+ 2δ
∥∥u2

k − u∗∥∥+ ∥∥u1
k+1 − u∗∥∥

≤ εn + δ
(
1− µ1

k

) (
1− µ2

k

) ∥∥τk − u1
k

∥∥+ δ2
(
1− µ1

k

)
µ2
k

∥∥τk − u1
k

∥∥
+2δ2

(
1− µ1

k

)
µ2
k

∥∥u1
k − u∗∥∥+ δ2µ1

k

(
1− µ2

k

) ∥∥τk − u1
k

∥∥+ δ3µ1
kµ

2
k

∥∥τk − u1
k

∥∥
+2δ3µ1

kµ
2
k

∥∥u1
k − u∗∥∥+ 2δ2µ1

k

∥∥u3
k − u∗∥∥+ 2δ

[
1− µ1

k (1− δ)
] ∥∥u3

k − u∗∥∥
+2δ

∥∥u2
k − u∗∥∥+ ∥∥u1

k+1 − u∗∥∥
≤ εn + δ

[
1− µ1

k (1− δ)
] [

1− µ2
k (1− δ)

]
∥τk − u∗∥

+δ
[
1− µ1

k (1− δ)
] [

1− µ2
k (1− δ)

] ∥∥u1
k − u∗∥∥+ 2δ2

(
1− µ1

k

)
µ2
k

∥∥u1
k − u∗∥∥

+2δ3µ1
kµ

2
k

∥∥u1
k − u∗∥∥+ 2δ2µ1

k

∥∥u3
k − u∗∥∥+ 2δ

[
1− µ1

k (1− δ)
] ∥∥u3

k − u∗∥∥
+2δ

∥∥u2
k − u∗∥∥+ ∥∥u1

k+1 − u∗∥∥
≤ εn + δ

[
1− µ1

k (1− δ)
] [
1− µ2

k (1− δ)
]
∥τk − u∗∥

+δ
[
1− µ1

k (1− δ)
] [
1− µ2

k (1− δ)
] ∥∥u1

k − u∗∥∥+ 2δ2
(
1− µ1

k

)
µ2
k

∥∥u1
k − u∗∥∥

+2δ3µ1
kµ

2
k

∥∥u1
k − u∗∥∥+ 2δ2µ1

k

[
1− µ2

k (1− δ)
] ∥∥u1

k − u∗∥∥
+2δ

[
1− µ1

k (1− δ)
] [
1− µ2

k (1− δ)
] ∥∥u1

k − u∗∥∥
+2δ2

[
1− µ1

k (1− δ)
] [
1− µ2

k (1− δ)
] ∥∥u1

k − u∗∥∥+ ∥∥u1
k+1 − u∗∥∥

≤ δ ∥τk − u∗∥+ 11
∥∥u1

k − u∗∥∥+ ∥∥u1
k+1 − u∗∥∥+ εk, ∀k ∈ N.
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Let us define ρk, σk, α as :

ρk : = 11
∥∥u1

k − u∗∥∥+ ∥∥u1
k+1 − u∗∥∥+ εk ≥ 0

σk : = ∥τk − u∗∥ ≥ 0

α : = δ ∈ [0, 1), ∀k ∈ N.

From Theorem 2.1, we have limk−→∞
∥∥u1

k+1 − u∗
∥∥ = limk−→∞

∥∥u1
k − u∗

∥∥ = 0 and also, for limk−→∞ εk = 0 ,
we find limk−→∞ ρk = 0 . Now, we have satisfied conditions of [34, Lemma on page 302], so limk−→∞ σk =

limk−→∞ ∥τk − u∗∥ = 0 .
Conversely, let limk−→∞ τk = u∗ . We will show that limk−→∞ εk = 0 . Using (1.6), (1.7), (2.2), δ ∈ [0, 1) , and
the facts 0 ≤ µ1

k, µ
2
k ≤ 1 , 1− µ1

k (1− δ) < 1 , 1− µ2
k (1− δ) < 1 , ∀k ∈ N , we obtain

εk = ∥τk+1 − Tςk∥ ≤
∥∥τk+1 − u1

k+1

∥∥+ ∥∥Tu2
k − Tςk

∥∥
≤

∥∥τk+1 − u1
k+1

∥∥+ δ
∥∥u2

k − ςk
∥∥+ 2δ ∥ςk − u∗∥

≤
∥∥τk+1 − u1

k+1

∥∥+ δ
[
1− µ1

k (1− δ)
] ∥∥u3

k − ςk
∥∥

+2δ
[
1− µ1

k (1− δ) + δµ1
k

]
∥γk − u∗∥+ 2δ ∥ςk − u∗∥

≤
∥∥τk+1 − u1

k+1

∥∥+ δ
[
1− µ1

k (1− δ)
] [
1− µ2

k (1− δ)
] ∥∥u1

k − τk
∥∥

+2δ2
[
1− µ1

k (1− δ)
]
µ2
k ∥τk − u∥

+2δ
[
1− µ1

k (1− δ) + δµ1
k

] [
1− µ2

k (1− δ)
]
∥τk − u∗∥

+2δ2
[
1− µ1

k (1− δ)
] [
1− µ2

k (1− δ)
]
∥τk − u∗∥

≤ ∥τk+1 − u∗∥+
∥∥u1

k+1 − u∗∥∥+ ∥∥u1
k − u∗∥∥+ ∥τk − u∗∥+ κk ∥τk − u∗∥ , ∀k ∈ N.

Here, κk = 2
[
3− µ1

k (1− 2δ)
]
∈ [2, 4] , ∀k ∈ N , i.e. {κk} is a finite sequence of positive numbers. From the

assumption limk−→∞ τk = u∗ and from Theorem 2.1, we have limk−→∞ u1
k = u∗ .

If we take the limit of both sides of the above inequality, we have limk−→∞ εk = 0 . Hence,
{
u1
k

}
is T -stable.

2

Theorem 2.3 Let (N, ∥·∥) be a real normed space, T : N → N be a mapping which satisfies (1.7) and has a
fixed point u∗ ,

{
u1
k

}
be a sequence produced by (1.6), and

{
p1k
}

be a sequence produced by
p10 ∈ S,

p1k+1 = Tp2k,
p2k =

(
1− µ1

k

)
p3k + µ1

kTp
3
k,

p3k =
(
1− µ2

k

)
p1k + µ2

kTp
1
k, for all k ∈ N,

(2.3)

with real sequences
{
µ1
k

}
,
{
µ2
k

}
⊆ [0, 1] . If u1

0, p
1
0 ̸= u∗ ,

{
u1
k

}
converges to u∗ faster than

{
p1k
}

does.

Proof We got the following inequality in (2.1) in the proof of the Theorem 2.1

∥∥u1
k+1 − u∗∥∥ ≤ δ2(k+1)

k∏
n=0

[
1− µ1

n (1− δ)
] [
1− µ2

n (1− δ)
] ∥∥u1

0 − u∗∥∥ = κ
(1)
k , ∀k ∈ N.
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Now, from (1.7) and (2.3), we have∥∥p1k+1 − u∗∥∥ ≤ δ
∥∥p2k − u∗∥∥

≤ δ
[
1− µ1

k (1− δ)
] ∥∥p3k − u∗∥∥

≤ δ
[
1− µ1

k (1− δ)
] [
1− µ2

k (1− δ)
] ∥∥p1k − u∗∥∥

≤ · · ·

≤ δk+1
k∏

n=0

[
1− µ1

n (1− δ)
] [
1− µ2

n (1− δ)
] ∥∥p10 − u∗∥∥ = κ

(2)
k , ∀k ∈ N.

Observe that κ
(1)
k and κ

(2)
k are the best possible upper bounds for

∥∥u1
k+1 − u∗

∥∥ and
∥∥p1k+1 − u∗

∥∥ , respectively,

and limk−→∞ κ
(1)
k = limk−→∞ κ

(2)
k = 0 .

Therefore, all the necessities of Definition 1.2 are satisfied.
Let us define ∆k :

∆k =

∥∥∥κ(1)
k − 0

∥∥∥∥∥∥κ(2)
k − 0

∥∥∥ = δk+1

∥∥u1
0 − u∗

∥∥
∥p10 − u∗∥

, ∀k ∈ N.

Now, we can formulate the following ratio test

lim
k→∞

∆k+1

∆k
= lim

k→∞

δk+2 ∥u1
0−u∗∥

∥p1
0−u∗∥

δk+1 ∥u1
0−u∗∥

∥p1
0−u∗∥

= δ < 1,

which implies that the series
∑∞

k=0 ∆k is convergent. Thus, we arrive at limk→∞ ∆k = limk→∞

∥∥∥κ(1)
k −0

∥∥∥∥∥∥κ(2)
k −0

∥∥∥ = 0 .

Now, by Definition 1.1,
{
κ
(1)
k

}
converges faster than

{
κ
(2)
k

}
and thus, by Definition 1.2,

{
u
(1)
k

}
converges

faster than
{
p
(2)
k

}
. 2

Example 2.4 Let S = [0, 1] be endowed with the usual metric and let us define an operator T : [0, 1] → [0, 1]

by Tυ = 1
1+υ .

The unique fixed point of T can easily be computed: υ = 1/ (1 + υ) in S at υ = (
√
5−1)/2 ≈ 0.618033988 .

When υ1 ̸= υ2 , we have |Tυ1 − Tυ2| = |υ1 − υ2| / |(1 + υ1) (1 + υ2)| which implies |Tυ1 − Tυ2| / |υ1 − υ2| =
1/ |(1 + υ1) (1 + υ2)| < 1 . Therefore, we have |Tυ1 − Tυ2| < |υ1 − υ2| .

Hence, T is not a contraction mapping on S . However, Figure 1 shows that the operator T satisfies
condition (1.7) for any δ ∈ [0.618034, 1) .

Take µ1
k = µ2

k = µ3
k = 10

k+10
√
10

for all k ∈ N , and choose the initial guess as 0.8 for each iteration

algorithm; the convergence behaviors of the various iteration algorithms are listed in Table 1 and demonstrated
in Figure 2.
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Figure 1. T satisfies condition (1.7) for Example 2.4. The blue line and red curve represent, respectively, the RHS and
LHS of (1.7).

Table 1. The convergence behaviors of the various iteration algorithms for Example 2.4.

# of Iter. S Normal-S CR Picard-S K∗

0 0.8 0.8 0.8 0.8 0.8
1 0.563438674 0.580484164 0.587527981 0.639615752 0.626548978
2 0.636730509 0.626371958 0.623983442 0.620754250 0.618446952
3 0.611828608 0.616162026 0.616863223 0.618382033 0.618054890
4 0.620138126 0.618463819 0.618271872 0.618078907 0.618035088
5 0.617318635 0.617933513 0.617984439 0.618039829 0.618034049
6 0.618279171 0.618057885 0.618044559 0.618034752 0.618033992
7 0.617949493 0.618028213 0.618031684 0.618034088 0.618033988
...

...
...

...
...

...
10 0.618037558 0.618034076 0.618034016 0.618033988
...

...
...

...
...

13 0.618033832 0.618033988 0.618033988
...

...
...

...
19 0.618033988
...

...
# of Iter. Picard Mann Ishikawa Noor SP∗

0 0.8 0.8 0.8 0.8 0.8
1 0.555555556 0.722699880 0.730582998 0.729746825 0.596044416
2 0.642857141 0.679105885 0.688687472 0.687633216 0.620824628
3 0.608695653 0.654256412 0.663028749 0.662032296 0.617664249
4 0.621621622 0.639885756 0.647085147 0.646244532 0.618084977
5 0.616666667 0.631439704 0.637038324 0.636368867 0.618026693
6 0.618556700 0.626392527 0.630621554 0.630105309 0.618035069
7 0.617834395 0.623326616 0.626470258 0.626079526 0.618033824
...

...
...

...
...

...
10 0.618045111 0.619495877 0.620743540 0.620581775 0.618033988
...

...
...

...
...

...
19 0.618033988 0.618089961 0.618177720 0.618165526
...

...
...

...
...
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Figure 2. The convergence behaviors of the various iteration algorithms for Example 2.4.

Theorem 2.5 Let T : N → N be a mapping satisfying condition (1.7) with a fixed point u∗ and T̃ : N → N

be an approximate mapping of T , that is, there exists ϵ > 0 such that
∥∥∥Tu− T̃ u

∥∥∥ < ϵ for all u ∈ N .

Consider the sequence
{
u1
k

}
produced by (1.6) and a sequence

{
ũ1
k

}
produced by


ũ1
0 ∈ S

ũ1
k+1 = T̃ ũ2

k,

ũ2
k = T̃

[(
1− µ1

k

)
ũ3
k + µ1

kT̃ ũ
3
k

]
,

ũ3
k =

(
1− µ2

k

)
ũ1
k + µ2

kT̃ ũ
1
k, for all k ∈ N,

(2.4)

where
{
µ1
k

}
,
{
µ2
k

}
⊆ [0, 1] are real sequences. If limk−→∞ ũ1

k = ũ∗ , then it holds that

∥u∗ − ũ∗∥ ≤
(
1 + δ2

1− δ

)
ϵ, for ϵ > 0.

Proof Using (1.6), (1.7), and (2.4),we have

∥∥u1
k+1 − ũ1

k+1

∥∥ ≤
∥∥Tu2

k − T ũ2
k

∥∥+ ∥∥∥T ũ2
k − T̃ ũ2

k

∥∥∥
≤ δ

∥∥u2
k − ũ2

k

∥∥+ 2δ
∥∥u2

k − u∗∥∥+ ϵ, (2.5)
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∥∥u2
k − ũ2

k

∥∥ =
∥∥∥T [(1− µ1

k

)
u3
k + µ1

kTu
3
k

]
− T̃

[(
1− µ1

k

)
ũ3
k + µ1

kT̃ ũ
3
k

]∥∥∥
≤

∥∥∥T [(1− µ1
k

)
u3
k + µ1

kTu
3
k

]
− T

[(
1− µ1

k

)
ũ3
k + µ1

kT̃ ũ
3
k

]∥∥∥
+
∥∥∥T [(1− µ1

k

)
ũ3
k + µ1

kT̃ ũ
3
k

]
− T̃

[(
1− µ1

k

)
ũ3
k + µ1

kT̃ ũ
3
k

]∥∥∥
≤ δ

∥∥∥(1− µ1
k

)
u3
k + µ1

kTu
3
k −

(
1− µ1

k

)
ũ3
k − µ1

kT̃ ũ
3
k

∥∥∥
+2δ

∥∥(1− µ1
k

)
u3
k + µ1

kTu
3
k − u∗∥∥+ ϵ

≤ δ
[
1− µ1

k (1− δ)
] ∥∥u3

k − ũ3
k

∥∥+ 2δ2µ1
k

∥∥u3
k − u∗∥∥+ δµ1

kϵ

+2δ
[
1− µ1

k (1− δ)
] ∥∥u3

k − u∗∥∥+ ϵ, (2.6)

∥∥u2
k − u∗∥∥ =

∥∥T [(1− µ1
k

)
u3
k + µ1

kTu
3
k

]
− u∗∥∥

≤ δ
∥∥(1− µ1

k

)
u3
k + µ1

kTu
3
k − u∗∥∥

≤ δ
[
1− µ1

k (1− δ)
] ∥∥u3

k − u∗∥∥ , (2.7)

∥∥u3
k − ũ3

k

∥∥ =
∥∥∥(1− µ2

k

)
u1
k + µ2

kTu
1
k −

(
1− µ2

k

)
ũ1
k − µ2

kT̃ ũ
1
k

∥∥∥
≤

[
1− µ2

k (1− δ)
] ∥∥u1

k − ũ1
k

∥∥+ 2δµ2
k

∥∥u1
k − u∗∥∥+ µ2

kϵ, (2.8)

and ∥∥u3
k − u∗∥∥ =

[
1− µ2

k (1− δ)
] ∥∥u1

k − u∗∥∥ . (2.9)

Combining (2.5)-(2.9), we get∥∥u1
k+1 − ũ1

k+1

∥∥ ≤ δ2
{(

1− µ2
k

) [
1− µ1

k (1− δ)
]
+ δ2µ1

kµ
2
k

}∥∥u1
k − ũ1

k

∥∥
+2δ4µ1

kµ
2
k

∥∥u1
k − u∗∥∥+ 2δ3µ1

k

[
1− µ2

k (1− δ)
] ∥∥u1

k − u∗∥∥
+4δ2

[
1− µ1

k (1− δ)
] [

1− µ2
k (1− δ)

] ∥∥u1
k − u∗∥∥

+δ2
(
1− µ1

k

)
µ2
kϵ+ δ3µ1

kµ
2
kϵ+ δ2µ1

kϵ+ δϵ+ ϵ

As δ ∈ [0, 1) and 0 ≤ µ1
k, µ

2
k ≤ 1 , 1 − µ1

k (1− δ) < 1 , 1 − µ2
k (1− δ) < 1 for all k ∈ N , the above inequality

becomes ∥∥u1
k+1 − ũ1

k+1

∥∥ ≤ δ2
∥∥u1

k − ũ1
k

∥∥+ (2δ4 + 2δ3 + 4δ2
) ∥∥u1

k − u∗∥∥+ δ3ϵ+ δ2ϵ+ δϵ+ ϵ. (2.10)

From Theorem 2.1, we have limk−→∞ u1
k = u∗ and from the hypothesis of this theorem we have limk−→∞ ũ1

k =

ũ∗ . Now, taking the limit of both side of (2.10), we obtain

∥u∗ − ũ∗∥ ≤ δ2 ∥u∗ − ũ∗∥+ δ3ϵ+ δ2ϵ+ δϵ+ ϵ,

or

∥u∗ − ũ∗∥ ≤
(
1 + δ2

1− δ

)
ϵ.

2

In the following example, we will show data dependence of T iteration process (in Example 2.4).
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Example 2.6 Let S , T , and δ be as in Example 2.4 and define an operator T̃ : S → S with a unique fixed
point υ̃∗ = 0.624321324 in S by

T̃ υ =
υ2 + 4.2υ + 24.41

25
− lim arcsinh

(πυ
4

)
. (2.11)

With a calculation tool software package, it is easy to calculate that

sup
υ∈[0,1]

∣∣∣Tυ − T̃ υ
∣∣∣ = 0.0368247

which implies
∣∣∣Tυ − T̃ υ

∣∣∣ ≤ ϵ = 0.0368247 for all υ ∈ [0, 1] . Thence, T̃ can be treated as an approximate operator

of T . It has already been shown in Example 2.4 that iteration algorithm (1.6) converges to 0.618033988 =

υ∗ = Tυ∗ . On the other hand, for given ũ1
0 = 0.8 ∈ S , iteration algorithm ( 2.4) of T̃ in (2.11) with

µ1
k = µ2

k = 10
k+10

√
10

for all k ∈ N converges to 0.624321324 = υ̃∗ = T̃ υ̃∗ ; and it is presented in Table 2.

Table 2. The convergence behavior of the iteration algorithm (2.4) for Example 2.6.

# of Iter. Iteration algorithm (2.4) of T̃ in (2.11)
0 0.8
1 0.636212670
2 0.625157924
3 0.624383094
4 0.624326092
5 0.624321699
6 0.624321349
7 0.624321326
8 0.624321324
...

...

Now we have |υ∗ − υ̃∗| = 0.00628734 . However, without knowing υ̃∗ and without computing it, we can
find the following upper bound for |υ∗ − υ̃∗| by using the conclusion of Theorem 2.5:

|υ∗ − υ̃∗| ≤

(
1 + (0.618034)

2

1− 0.618034

)
× 0.0368247 = 0.133233.

3. Conclusion
In this paper, for further examination, we reconsider the convergence and stability results obtained by Yu et al.
[51]. We showed that these results can be obtained with no conditions imposed on parametric control sequences
used in the K∗ iteration algorithm. We also proved a data dependence result for the fixed point of quasistrictly
contractive mappings. Our results considerably improve the results of Yu et al. [51]. As a future study, we will
apply the K∗ iteration algorithm to solve various variational inequalities and convex minimization problems.
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