tüвітак
http://journals.tubitak.gov.tr/math/
Research Article

Turk J Math
(2022) 46: 2854 - 2866
© TÜBİTAK
doi:10.55730/1300-0098.3305

# Minimal Legendrian submanifolds of $\mathbb{S}^{9}$ with nonnegative sectional curvature 

Shujie ZHAI ${ }^{1, *}$ (®) Heng ZHANG ${ }^{1,2}$ ( ${ }^{\text {( }}$<br>${ }^{1}$ School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China<br>${ }^{2}$ Department of Foundation, Naval University of Engineering, Wuhan, China

| Received: 24.09 .2021 | Accepted/Published Online: 07.07.2022 | • Final Version: 05.09 .2022 |
| :--- | :--- | :--- | :--- | :--- |

Abstract: In this paper, we established a complete classification of 4-dimensional compact minimal Legendrian submanifolds with nonnegative sectional curvature in the 9-dimensional unit sphere.

Key words: Sasakian structure, Legendrian submanifold, minimal submanifold, $C$-parallel, Calabi torus

## 1. Introduction

Let $M^{m}$ be an $m$-dimensional submanifold isometrically immersed in the unit sphere $\mathbb{S}^{2 n+1}$, which has canonical Sasakian structure $(\varphi, \xi, \eta, g)$ (see Section 2 for more details). We say that $M^{m}$ is $C$-totally real (or integral) if the contact form $\eta$ restricted to $M^{m}$ vanishes, i.e. $\eta(X)=0$ for any $X \in T M^{m}$. In particular, if $m=n$, we call it a Legendrian submanifold. The study of these submanifolds is an important geometry topic that has been widely carried out, see, e.g., among many others, $[1-5,8,11,12,18]$.

Now, we are interested in the problem of how to classify $n$-dimensional compact minimal Legendrian submanifolds in $\mathbb{S}^{2 n+1}$ with nonnegative sectional curvature. For the case $n=2$, Yamaguchi, Kon and Miyahara [19] proved that $M^{2}$ is $\mathbb{S}^{2}\left(M^{2}\right.$ is totally geodesic and $\left.K \equiv 1\right)$ or $T^{2}\left(M^{2}\right.$ is flat and $\left.K \equiv 0\right)$. In [8], Dillen and Vrancken settled this problem for $n=3$ by giving the following classification:

Theorem 1.1 ([8]) Let $x: M^{3} \rightarrow \mathbb{S}^{7}$ be a C-totally real, minimal immersion of a 3-dimensional compact Riemannian manifold $M$. If the sectional curvatures $K$ of $M$ satisfying $K \geq 0$, then it holds the following:
(1) $M$ is simply connected and $x$ is congruent to $i: S^{3} \rightarrow \mathbb{S}^{7}$ (i.e. $M$ is totally geodesic in $\mathbb{S}^{7}$ ), or
(2) $M$ is a covering of $T^{3}$ with covering map $\pi$ and $x$ is congruent to $j \circ \pi: M \rightarrow \mathbb{S}^{7}$, or
(3) $M$ is a covering of $\mathbb{S}^{1}(\sqrt{3}) \times \mathbb{S}^{2}(\sqrt{3} / 2)$ with covering map $\pi$ and $x$ is congruent to $k \circ \pi: M \rightarrow \mathbb{S}^{7}$, where the map $i, j$ and $k$ are defined in section 5 of [8].

In this paper, we gave a complete classification of 4-dimensional compact minimal Legendrian submanifolds with nonnegative sectional curvature in $\mathbb{S}^{9}$, which extends the above theorem. To state our result, we first introduce several canonical examples.
Example 1.1 The totally geodesic Legendrian sphere in $\mathbb{S}^{9}$ (cf. [6]).

[^0]Let $L$ be a 5 -dimensional linear subspace of $\mathbb{C}^{5}$ passing through the origin and such that $J L$ is orthogonal to $L$. Then $\mathbb{S}^{4}=\mathbb{S}^{9} \cap L=: f^{(1)}\left(\mathbb{S}^{4}\right)$, is a 4-dimensional totally geodesic compact minimal Legendrian submanifold of $\mathbb{S}^{9}$.

Example 1.2 The flat torus in $\mathbb{S}^{9}$ (cf. $[6,8]$ ).
Let $\mathbb{S}^{1}$ be a circle of radius 1 and $T^{4}=\mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1} \times \mathbb{S}^{1}$. Then, with the usual parameterization $u=\left(u_{1}, u_{2}, u_{3}, u_{4}\right)$ of $T^{4}$, an immersion $f^{(2)}: T^{4} \rightarrow \mathbb{S}^{9}$ is defined by

$$
f^{(2)}(u)=\frac{1}{\sqrt{5}}\left(e^{i u_{1}}, e^{i u_{2}}, e^{i u_{3}}, e^{i u_{4}}, e^{-i\left(u_{1}+u_{2}+u_{3}+u_{4}\right)}\right) \in \mathbb{C}^{5} \simeq \mathbb{R}^{10}
$$

is a flat compact minimal Legendrian submanifold of $\mathbb{S}^{9}$ (see [6] for detailed computation).
Example 1.3 The Calabi torus in $\mathbb{S}^{9}$ (cf. $[11,13]$ ).
Let $\psi: \mathbb{S}^{3} \hookrightarrow \mathbb{R}^{4}: p \mapsto\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ be the inclusion mapping, and $\gamma: \mathbb{R} \hookrightarrow \mathbb{S}^{3}$ be the standard embedding with a parametrization

$$
\gamma(t)=\left(\frac{2}{\sqrt{5}} e^{-\frac{i t}{2}}, \frac{1}{\sqrt{5}} e^{i 2 t}\right)=\left(\gamma_{1}(t), \gamma_{2}(t)\right) \in \mathbb{C}^{2}
$$

Putting $f^{(3)}: \mathbb{R} \times \mathbb{S}^{3} \rightarrow \mathbb{S}^{9}$ such that $f^{(3)}(t, p)=\left(\gamma_{1}(t) \psi(p), \gamma_{2}(t)\right) \in \mathbb{C}^{5} \simeq \mathbb{R}^{10}$. For the sake of calculation, we assume that $f^{(3)}(t, p)=\left(x_{1}, x_{2}, \cdots, x_{10}\right)$, then

$$
\left\{\begin{aligned}
\left(x_{2 i-1}, x_{2 i}\right) & =\frac{2}{\sqrt{5}}\left(y_{i} \cos \frac{t}{2},-y_{i} \sin \frac{t}{2}\right), \quad 1 \leq i \leq 4 \\
\left(x_{9}, x_{10}\right) & =\frac{1}{\sqrt{5}}(\cos 2 t, \sin 2 t)
\end{aligned}\right.
$$

where $\left(y_{1}, y_{2}, y_{3}, y_{4}\right)=\left(\sin \theta_{1}, \cos \theta_{1} \sin \theta_{2}, \cos \theta_{1} \cos \theta_{2} \sin \theta_{3}, \cos \theta_{1} \cos \theta_{2} \cos \theta_{3}\right)$.
Choose an orthonormal frame $\left\{e_{i}\right\}_{i=1}^{4}$ for $f^{(3)}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ with respect to $g$, where $g$ is the induced metric of $\mathbb{S}^{9} \rightarrow \mathbb{R}^{10}$, such that

$$
e_{1}=f_{t}^{(3)}, \quad e_{2}=\frac{\sqrt{5}}{2} f_{\theta_{1}}^{(3)}, \quad e_{3}=\frac{\sqrt{5}}{2 \cos \theta_{1}} f_{\theta_{2}}^{(3)}, \quad e_{4}=\frac{\sqrt{5}}{2 \cos \theta_{1} \cos \theta_{2}} f_{\theta_{3}}^{(3)}
$$

It is easy to verify that $\eta\left(e_{i}\right)=0$ for $i=1,2,3,4$, so $f^{(3)}$ is a Legendrian submanifold. Let $D$ be the standard Euclidean flat connection, by using $g\left(D_{e_{i}} e_{j}, \varphi e_{k}\right)=g\left(h\left(e_{i}, e_{j}\right), \varphi e_{k}\right), 1 \leq i, j, k \leq 4$, we can derive the second fundamental form $h$ satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\frac{3}{2} \varphi e_{1}, \quad h\left(e_{1}, e_{j}\right)=-\frac{1}{2} \varphi e_{j}, \quad h\left(e_{i}, e_{j}\right)=-\frac{1}{2} \delta_{i j} \varphi e_{1}, \quad i, j=2,3,4 \tag{1.1}
\end{equation*}
$$

Then, $f^{(3)}$ is a minimal submanifold with nonnegative sectional curvature. Furthermore, we see that $f^{(3)}\left(t, y_{1}, y_{2}, y_{3}, y_{4}\right)=f^{(3)}\left(\tilde{t}, \tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}, \tilde{y}_{4}\right) \quad$ if and only if $t=\tilde{t}(\bmod 4 \pi)$ and $y_{i}=\tilde{y}_{i}, 1 \leq i \leq 4$, thus $f^{(3)}\left(\mathbb{R} \times \mathbb{S}^{3}\right)$ is isometric with $\mathbb{S}^{1}(2) \times \mathbb{S}^{3}(2 / \sqrt{5})$.

Therefore, we obtain an embedding $\tilde{f}^{(3)}$ from $\mathbb{S}^{1}(2) \times \mathbb{S}^{3}(2 / \sqrt{5})$ into $\mathbb{S}^{9}$, which is a compact minimal Legendrian submanifold with nonnegative sectional curvature.

Example 1.4 Let $\psi: \mathbb{R} \times \mathbb{S}^{2} \rightarrow \mathbb{S}^{7}:\left(t_{2}, p\right) \mapsto\left(\frac{\sqrt{3}}{2} e^{-\frac{i t_{2}}{\sqrt{3}}} \tau(p), \frac{1}{2} e^{i \sqrt{3} t_{2}}\right)$ be a Calabi torus defined in [11], here $\tau: \mathbb{S}^{2} \hookrightarrow \mathbb{R}^{3}$ is the inclusion mapping. Then, following the method of Li-Wang [15], we can define
$f^{(4)}: \mathbb{R}^{2} \times \mathbb{S}^{2} \rightarrow \mathbb{S}^{9}$ by

$$
\begin{aligned}
f^{(4)}\left(t_{1}, t_{2}, p\right) & =\left(\frac{2}{\sqrt{5}} e^{-\frac{i t_{1}}{5}} \psi\left(t_{2}, p\right), \frac{1}{\sqrt{5}} e^{\frac{i 4 t_{1}}{5}}\right) \\
& =\left(\frac{\sqrt{3}}{\sqrt{5}} e^{-i\left(\frac{t_{1}}{5}+\frac{t_{2}}{\sqrt{3}}\right)} \tau(p), \frac{1}{\sqrt{5}} e^{-i\left(\frac{t_{1}}{5}-\sqrt{3} t_{2}\right)}, \frac{1}{\sqrt{5}} e^{\frac{i 4 t_{1}}{5}}\right)
\end{aligned}
$$

Similar to Example 1.3, putting $f^{(4)}\left(t_{1}, t_{2}, p\right)=\left(x_{1}, x_{2}, \cdots, x_{10}\right)$, then we have

$$
\left\{\begin{aligned}
\left(x_{2 i-1}, x_{2 i}\right) & =\frac{\sqrt{3}}{\sqrt{5}} y_{i}\left(\cos \left(\frac{t_{1}}{5}+\frac{t_{2}}{\sqrt{3}}\right),-\sin \left(\frac{t_{1}}{5}+\frac{t_{2}}{\sqrt{3}}\right)\right), \quad i=1,2,3 \\
\left(x_{7}, x_{8}\right) & =\frac{1}{\sqrt{5}}\left(\cos \left(\frac{t_{1}}{5}-\sqrt{3} t_{2}\right),-\sin \left(\frac{t_{1}}{5}-\sqrt{3} t_{2}\right)\right), \\
\left(x_{9}, x_{10}\right) & =\frac{1}{\sqrt{5}}\left(\cos \frac{4 t_{1}}{5}, \sin \frac{4 t_{1}}{5}\right),
\end{aligned}\right.
$$

where $\left(y_{1}, y_{2}, y_{3}\right)=\left(\sin \theta_{1}, \cos \theta_{1} \sin \theta_{2}, \cos \theta_{1} \cos \theta_{2}\right)=\tau(p)$.
Choose an orthonormal frame $\left\{e_{i}\right\}_{i=1}^{4}$ for $f^{(4)}\left(\mathbb{R}^{2} \times \mathbb{S}^{2}\right)$ :

$$
e_{1}=\frac{5}{2} f_{t_{1}}^{(4)}, \quad e_{2}=\frac{\sqrt{5}}{2} f_{t_{2}}^{(4)}, \quad e_{3}=\sqrt{\frac{5}{3}} f_{\theta_{1}}^{(4)}, \quad e_{4}=\sqrt{\frac{5}{3 \cos ^{2} \theta_{1}}} f_{\theta_{2}}^{(4)}
$$

By computation we can derive that the second fundamental form $h$ satisfies

$$
\left\{\begin{array}{l}
h\left(e_{1}, e_{j}\right)=-\frac{1}{2} \varphi e_{j}+2 \delta_{1 j} \varphi e_{1}, \quad 1 \leq j \leq 4  \tag{1.2}\\
h\left(e_{2}, e_{2}\right)=-\frac{1}{2} \varphi e_{1}+\sqrt{\frac{5}{3}} \varphi e_{2}, \quad h\left(e_{3}, e_{4}\right)=0 \\
h\left(e_{k}, e_{k}\right)=-\frac{1}{2} \varphi e_{1}-\sqrt{\frac{5}{12}} \varphi e_{2}, \quad h\left(e_{2}, e_{k}\right)=-\sqrt{\frac{5}{12}} \varphi e_{k}, \quad k=3,4
\end{array}\right.
$$

Then, $f^{(4)}: \mathbb{R}^{2} \times \mathbb{S}^{2} \rightarrow \mathbb{S}^{9}$ is a minimal submanifold with nonnegative sectional curvatures. Furthermore, we see that $f^{(4)}\left(t_{1}, t_{2}, y_{1}, y_{2}, y_{3}\right)=f^{(4)}\left(\tilde{t}_{1}, \tilde{t}_{2}, \tilde{y}_{1}, \tilde{y}_{2}, \tilde{y}_{3}\right)$ if and only if $t_{1}=\tilde{t_{1}}(\bmod 5 \pi), t_{2}=\tilde{t_{2}}(\bmod \sqrt{3} \pi)$ and $y_{i}=\tilde{y}_{i}, i=1,2,3$.

Therefore, we obain an embedding $\tilde{f}^{(4)}: T^{2} \times \mathbb{S}^{2}(\sqrt{3 / 5}) \rightarrow \mathbb{S}^{9}$, which is a compact minimal Legendrian submanifold with nonnegative sectional curvature.

Having the preceding preparations, now we can state our main theorem as follows:
Theorem 1.2 Let $x: M^{4} \rightarrow \mathbb{S}^{9}$ be a compact minimal Legendrian submanifold of the 9-dimensional unit sphere. If the sectional curvature $K \geq 0$, then it holds the following:
(1) $x\left(M^{4}\right)$ is totally geodesic and is given by $f^{(1)}$ in Example 1.1; or
(2) $x\left(M^{4}\right)$ is flat and is given by $f^{(2)}$ in Example 1.2; or
(3) $x\left(M^{4}\right)$ is congruent to $\mathbb{S}^{1}(2) \times \mathbb{S}^{3}(2 / \sqrt{5})$ and is given by $\tilde{f}^{(3)}$ in Example 1.3; or
(4) $x\left(M^{4}\right)$ is congruent to $T^{2} \times \mathbb{S}^{2}(\sqrt{3 / 5})$ and is given by $\tilde{f}^{(4)}$ in Example 1.4.

Remark 1.3 We note that the Legendrian submanifolds given in (1) and (2) of Theorem 1.2 have constant sectional curvature, which have been described in [6]. While the last two examples have nonconstant sectional curvature, they are constructed by Calabi product of a 3-dimensional Legendrian submanifold in $\mathbb{S}^{7}$ and a point (refer to [15]).

## 2. Preliminaries

In this section, we first review some basic formulas about Sasakian manifold $\mathbb{S}^{2 n+1}$ and its Legendrian submanifolds (see [2, 12] for details), then we give an important property for compact, minimal, Legendrian submanifolds.

### 2.1. The Sasakian structure on the ( $2 n+1$ )-dimensional unit sphere

As a Sasakian manifold, the unit sphere $\mathbb{S}^{2 n+1}$ has constant $\varphi$-sectional curvature 1 and canonical Sasakian structure $(\varphi, \xi, \eta, g): g$ is the induced metric; $\xi=J N, J$ is the natural complex structure of $\mathbb{C}^{n+1}$ and $N$ is the unit normal vector field of the inclusion $\mathbb{S}^{2 n+1} \hookrightarrow \mathbb{C}^{n+1}$; let $\langle\cdot, \cdot\rangle$ denote the standard Hermitian metric on $\mathbb{C}^{n+1}$. Then for any tangent vector fields $X, Y$ of $\mathbb{S}^{2 n+1}$, it holds that:

$$
\left\{\begin{array}{l}
\varphi(X)=J X-\langle J X, N\rangle N, \quad \varphi^{2} X=-X+\eta(X) \xi, \quad \varphi \xi=0 \\
\eta(X)=g(X, \xi), \quad \eta(\varphi X)=0, \quad d \eta(X, Y)=g(X, \varphi Y)  \tag{2.2}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \quad \operatorname{rank}(\varphi)=2 n \\
\bar{\nabla}_{X} \xi=-\varphi X, \quad\left(\bar{\nabla}_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X
\end{array}\right.
$$

where $\bar{\nabla}$ is the Levi-Civita connection with respect to the metric $g$.
The curvature tensor $\bar{R}(X, Y) Z:=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z$ of $\mathbb{S}^{2 n+1}$ has the expression: $\bar{R}(X, Y) Z=g(Y, Z) X-g(X, Z) Y$.

### 2.2. Legendrian submanifolds of $\mathbb{S}^{2 n+1}$

Let $M^{n}$ be an $n$-dimensional submanifold isometrically immersed in the unit sphere $\mathbb{S}^{2 n+1}$. Denote also by $g$ the metric of $M^{n}$, and $\nabla$ the Levi-Civita connection of $\left(M^{n}, g\right)$. The Gauss and Weingarten formulae of $M^{n} \hookrightarrow \mathbb{S}^{2 n+1}$ are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V \tag{2.3}
\end{equation*}
$$

where $X, Y \in T M^{n}$ are tangent vector fields, $V \in T^{\perp} M^{n}$ is a normal vector field, $h$ is the second fundamental form of $M^{n}, A_{V}$ is the shape operator associated to $V$, and $\nabla^{\perp}$ is the normal connection of the normal bundle $T^{\perp} M^{n}$. From (2.3), we can obtain

$$
\begin{equation*}
g(h(X, Y), V)=g\left(A_{V} X, Y\right) \tag{2.4}
\end{equation*}
$$

Assume that $M^{n}$ is a Legendrian submanifold of $\mathbb{S}^{2 n+1}$, i.e. the contact form $\eta$ satisfies $\eta(X)=g(X, \xi)=0$ for all $X \in T M^{n}$. Then $\xi$ is a normal vector field of $M^{n}$, and by $d \eta(Y, X)=g(Y, \varphi X)=0$, we see that $\varphi X \in T^{\perp} M^{n}$. From (2.3), we can also get

$$
\begin{equation*}
A_{\varphi Y} X=-\varphi h(X, Y), \quad \nabla_{X}^{\perp} \varphi Y=\varphi \nabla_{X} Y+g(X, Y) \xi, \quad \forall X, Y \in T M^{n} \tag{2.5}
\end{equation*}
$$

In the sequel, we will make the following convention on range of indices:

$$
i^{*}=i+n, \quad \alpha^{*}=\alpha+n ; \quad 1 \leq i, j, k, l, m, p, s \leq n ; \quad 1 \leq \alpha, \beta \leq n+1 .
$$

Now, we choose a local Legendre frame $\left\{e_{i}, e_{i^{*}}, e_{2 n+1}\right\}_{i=1}^{n}$ in $\mathbb{S}^{2 n+1}$ along $M^{n}$, such that $\left\{e_{i}\right\}_{i=1}^{n}$ is an orthonormal frame field of $T M^{n}$, and $\left\{e_{i^{*}}=\varphi e_{i}, e_{2 n+1}=\xi\right\}_{i=1}^{n}$ is the orthonormal normal vector fields of $M^{n} \hookrightarrow \mathbb{S}^{2 n+1}$. Denote by $\left\{\omega^{i}\right\}$ the dual frame of $\left\{e_{i}\right\}$. Let $\left\{\omega_{i}^{j}\right\}$ and $\left\{\omega_{\alpha^{*}}^{\beta^{*}}\right\}$ denote the connection 1-forms of $T M^{n}$ and $T^{\perp} M^{n}$, respectively:

$$
\nabla e_{i}=\sum_{j=1}^{n} \omega_{i}^{j} e_{j}, \quad \nabla^{\perp} e_{\alpha^{*}}=\sum_{\beta=1}^{n+1} \omega_{\alpha^{*}}^{\beta^{*}} e_{\beta^{*}},
$$

where $\omega_{i}^{j}+\omega_{i}^{j}=0$ and $\omega_{\alpha^{*}}^{\beta^{*}}+\omega_{\beta^{*}}^{\alpha^{*}}=0$. By (2.5), we have $\omega_{i}^{j}=\omega_{i^{*}}^{j^{*}}$ and $\omega_{i^{*}}^{2 n+1}=\omega^{i}$.
Put $h_{i j}^{k^{*}}=g\left(h\left(e_{i}, e_{j}\right), \varphi e_{k}\right)$. It is easily seen that

$$
\begin{equation*}
h_{i j}^{k^{*}}=h_{i k}^{j^{*}}=h_{j k}^{i^{*}}, \quad \forall i, j, k \tag{2.6}
\end{equation*}
$$

From (2.2), (2.4) and the Gauss formula, we get

$$
\begin{gather*}
g\left(A_{\xi} e_{i}, e_{j}\right)=g\left(h\left(e_{i}, e_{j}\right), \xi\right)=g\left(\bar{\nabla}_{e_{i}} e_{j}, \xi\right)=-g\left(e_{j}, \bar{\nabla}_{e_{i}} \xi\right)=g\left(e_{j}, \varphi e_{i}\right)=0 \\
h_{i j}^{(n+1)^{*}}=h_{i j}^{2 n+1}:=g\left(h\left(e_{i}, e_{j}\right), e_{2 n+1}\right)=g\left(A_{\xi} e_{i}, e_{j}\right)=0, \quad \forall i, j \tag{2.7}
\end{gather*}
$$

Let $R_{i j k l}:=g\left(R\left(e_{i}, e_{j}\right) e_{l}, e_{k}\right)$ and $R_{i j \alpha^{*} \beta^{*}}:=g\left(R\left(e_{i}, e_{j}\right) e_{\beta^{*}}, e_{\alpha^{*}}\right)$ be the components of the curvature tensors of $\nabla$ and $\nabla^{\perp}$ with respect to the Legendre frame, respectively. Then the equations of Gauss, Ricci and Codazzi are given by

$$
\begin{align*}
& R_{i j k l}=\delta_{i k} \delta_{j l}-\delta_{i l} \delta_{j k}+\sum_{m=1}^{n}\left(h_{i k}^{m^{*}} h_{j l}^{m^{*}}-h_{i l}^{m^{*}} h_{j k}^{m^{*}}\right)  \tag{2.8}\\
& R_{i j k^{*} l^{*}}=\sum_{m=1}^{n}\left(h_{i k}^{m^{*}} h_{j l}^{m^{*}}-h_{i l}^{m^{*}} h_{j k}^{m^{*}}\right), \quad R_{i j k^{*}(2 n+1)}=0  \tag{2.9}\\
& h_{i j, k}^{\alpha^{*}}=h_{i k, j}^{\alpha^{*}} \tag{2.10}
\end{align*}
$$

where $h_{i j, k}^{\alpha^{*}}$ is the component of the covariant differentiation of $h$, defined by

$$
\begin{equation*}
\sum_{k=1}^{n} h_{i j, k}^{\alpha^{*}} \omega^{k}:=d h_{i j}^{\alpha^{*}}-\sum_{k=1}^{n} h_{k j}^{\alpha^{*}} \omega_{i}^{k}-\sum_{k=1}^{n} h_{i k}^{\alpha^{*}} \omega_{j}^{k}+\sum_{\beta=1}^{n+1} h_{i j}^{\beta^{*}} \omega_{\beta^{*}}^{\alpha^{*}} \tag{2.11}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
(\bar{\nabla} h)\left(e_{k}, e_{i}, e_{j}\right):=\nabla_{e_{k}}^{\perp}\left(h\left(e_{i}, e_{j}\right)\right)-h\left(\nabla_{e_{k}} e_{i}, e_{j}\right)-h\left(e_{i}, \nabla_{e_{k}} e_{j}\right)=\sum_{\alpha=1}^{n+1} h_{i j, k}^{\alpha^{*}} e_{\alpha^{*}} \tag{2.12}
\end{equation*}
$$

For a compact minimal Legendrian submanifold of $\mathbb{S}^{2 n+1}$, we have the following result:

Lemma 2.1 (cf. $[8,17]$ ) If $M^{n}$ is an $n$-dimensional compact, minimal, Legendrian submanifold of $\mathbb{S}^{2 n+1}$ and if all the sectional curvatures $K$ of $M^{n}$ satisfy $K \geq 0$, then
(i) $(\bar{\nabla} h)(u, v, w)=g((\bar{\nabla} h)(u, v, w), \xi(p)) \xi(p)$,
(ii) $R\left(v, A_{\varphi v} v, A_{\varphi v} v, v\right)=0$, for all $p \in M^{n}$ and $u, v, w \in T_{p} M^{n}$.

Next, we can naturally define a modified covariant differentiation $\bar{\nabla}^{\xi} h$ by

$$
\begin{equation*}
\left(\bar{\nabla}^{\xi} h\right)\left(e_{k}, e_{i}, e_{j}\right):=(\bar{\nabla} h)\left(e_{k}, e_{i}, e_{j}\right)-g\left(h\left(e_{i}, e_{j}\right), \varphi e_{k}\right) \xi:=\sum_{k=1}^{n} \tilde{h}_{i j, l}^{k^{*}} e_{k^{*}} . \tag{2.13}
\end{equation*}
$$

Then, from (2.12) and Lemma 2.1, we know that a compact minimal Legendrian submanifold with nonnegative sectional curvature of $\mathbb{S}^{2 n+1}$ satisfies $\bar{\nabla}^{\xi} h=0$, now the second fundamental form is called $C$-parallel.

Moreover, the second covariant derivative $\tilde{h}_{i j, l_{p}}^{k^{*}}$ is defined by

$$
\begin{equation*}
\sum_{p=1}^{n} \tilde{h}_{i j, l p}^{k^{*}} \theta_{p}:=d h_{i j, l}^{k^{*}}+\sum_{p=1}^{n} h_{p j, l}^{k^{*}} \theta_{p i}+\sum_{p=1}^{n} h_{i p, l}^{k^{*}, \theta_{p j}}+\sum_{p=1}^{n} h_{i j, p}^{k^{*}} \theta_{p l}+\sum_{p=1}^{n} h_{i j, l}^{p^{*}} \theta_{p^{*} k^{*}}, \tag{2.14}
\end{equation*}
$$

and the components satisfy the following Ricci identity:

$$
\begin{equation*}
\tilde{h}_{i j, l p}^{k^{*}}-\tilde{h}_{i j, p l}^{k^{*}}=\sum_{m=1}^{n} h_{m j}^{k^{*}} R_{m i l p}+\sum_{m=1}^{n} h_{i m}^{k^{*}} R_{m j l p}+\sum_{m=1}^{n} h_{i j}^{m^{*}} R_{m k l p} . \tag{2.15}
\end{equation*}
$$

## 3. Proof of Theorem 1.2

Let $M^{4}$ be a 4 -dimensional compact minimal Legendrian submanifold of $\mathbb{S}^{9}$ with nonnegative sectional curvature. For any fixed point $p \in M^{4}$, we will consider a construction of typical orthonormal basis with respect to the metric $g$, which was introduced by Ejiri [9] and has been widely applied, see, e.g., [7, 12, 14, 16].

On $U_{p} M^{4}=\left\{u \in T_{p} M^{4} \mid g(u, u)=1\right\}$, we define a function $f(u)=g(h(u, u), \varphi u)$. Since $U_{p} M^{4}$ is compact, there is a unit vector $e_{1} \in U_{p} M^{4}$ at which the function $f(u)$ attains an absolute maximum, denoted by $\lambda_{1}$ and $\lambda_{1} \geq 0$. Moreover, we have the following result.

Lemma 3.1 (cf. $\left[\mathbf{1 0}, \mathbf{1 2 ] )}\right.$ Let $x: M^{4} \rightarrow \mathbb{S}^{9}$ be a compact minimal Legendrian submanifold of $\mathbb{S}^{9}$. If the sectional curvature $K$ of $M^{4}$ satisfies $K \geq 0$, then for any fixed point $p$, there exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of $T_{p} M^{4}$ such that the following hold:
(i) $h\left(e_{1}, e_{i}\right)=\lambda_{i} \varphi e_{i}, i=1,2,3,4$, where $\lambda_{1}$ is the maximum of $f$,
(ii) $\lambda_{1} \geq 2 \lambda_{i}$ for $i \geq 2$. Moreover, if $\lambda_{1}=2 \lambda_{j}$ for some $j \geq 2$, then $f\left(e_{j}\right)=0$,
(iii) $\left(2 \lambda_{l}-\lambda_{1}\right)\left(1+\lambda_{1} \lambda_{l}-\lambda_{l}^{2}\right)=0, \quad l \geq 2$.

Lemma 3.2 Let $x: M^{4} \rightarrow \mathbb{S}^{9}$ be a compact minimal Legendrian submanifold with nonnegative sectional curvature. If it is not totally geodesic, then there exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that Lemma 3.1 and the following hold:

$$
\begin{equation*}
\lambda_{m+1}=\cdots=\lambda_{4}=-\frac{m+1}{2(4-m)} \lambda_{1}, \quad \lambda_{1}=\frac{2(4-m)}{\sqrt{(m+1)(9-m)}}, \quad m=1,2 . \tag{3.1}
\end{equation*}
$$

Proof Since $x$ is minimal and $\lambda_{1}>0$, we get $\sum_{i=1}^{4} \lambda_{i}=0$ and at least one of $\left\{\lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ is not equal to $\frac{1}{2} \lambda_{1}$. If there exist $l, t \geq 2$ satisfy $\left(2 \lambda_{l}-\lambda_{1}\right)\left(2 \lambda_{t}-\lambda_{1}\right) \neq 0$, then from (iii) of Lemma 3.1, we have $1+\lambda_{1} \lambda_{l}-\lambda_{l}^{2}=0=1+\lambda_{1} \lambda_{t}-\lambda_{t}^{2}$, thus $\left(\lambda_{l}-\lambda_{t}\right)\left[\lambda_{1}-\left(\lambda_{l}+\lambda_{t}\right)\right]=0$, together with (ii) of Lemma 3.1, we obtain that $\lambda_{l}=\lambda_{t}$.

Assume that there are $(4-m)(1 \leq m \leq 3)$ elements of $\left\{\lambda_{2}, \lambda_{3}, \lambda_{4}\right\}$ satisfying $\lambda_{i} \neq \frac{1}{2} \lambda_{1}$, we can rearranging the order of $\left\{e_{2}, e_{3}, e_{4}\right\}$ such that

$$
\lambda_{m+1}=\cdots=\lambda_{4} \neq \frac{1}{2} \lambda_{1}, \quad 1+\lambda_{1} \lambda_{4}-\lambda_{4}^{2}=0
$$

which together with $\sum_{i=1}^{4} \lambda_{i}=0$ gives that $\lambda_{4}=-\frac{m+1}{2(4-m)} \lambda_{1}$ and $\lambda_{1}^{2}=\frac{4(4-m)^{2}}{(m+1)(9-m)}$.
Choose $\varepsilon= \pm 1$ such that $\varepsilon f\left(e_{4}\right)=\kappa \geq 0$. Since $\lambda_{1}=f\left(e_{1}\right)=\max _{v \in U_{p} M^{4}} f(v)$, then for any $\delta \in(0,1)$ and $u=-\delta e_{1}+\sqrt{1-\delta^{2}} \varepsilon e_{4}$, we have

$$
f(u)=g(h(u, u), \varphi u)=-\delta^{3} \lambda_{1}-3 \delta\left(1-\delta^{2}\right) \lambda_{4}+\left(\sqrt{1-\delta^{2}}\right)^{3} \kappa \leq \lambda_{1}
$$

Thus $-3 \delta\left(1-\delta^{2}\right) \lambda_{4} \leq\left(1+\delta^{3}\right) \lambda_{1}$, which equivalents to $m \leq \frac{11 \delta^{2}-11 \delta+8}{-\delta^{2}+\delta+2}:=C(\delta)$. It is not difficult to find that the function $C(\delta)$ attains the minimum value $\frac{7}{3}$ at $\delta=\frac{1}{2}$. Hence $m \leq \frac{7}{3}$ and $m$ can only take 1,2 .

We have completed the proof of Lemma 3.2.
Applying Lemma 3.2, we see that there are two cases if $M^{4}$ is not totally geodesic:
Case I: $\quad \lambda_{1}=\frac{3}{2}, \quad \lambda_{2}=\lambda_{3}=\lambda_{4}=-\frac{1}{3} \lambda_{1}=-\frac{1}{2}$;
Case II: $\quad \lambda_{1}=\frac{4}{\sqrt{21}}, \quad \lambda_{2}=\frac{1}{2} \lambda_{1}=\frac{2}{\sqrt{21}}, \quad \lambda_{3}=\lambda_{4}=-\frac{3}{4} \lambda_{1}=-\frac{3}{\sqrt{21}}$.
We first deal with Case I.
Follow the method of [9] (or [10]), for fixed point $p$, we can choose $\left\{e_{2}, e_{3}, e_{4}\right\}$ satisfying

$$
\begin{equation*}
f\left(e_{2}\right)=\max _{v \in U_{p} M^{4} \cap\left\{e_{1}\right\}^{\perp}} f(v):=a, \quad f\left(e_{3}\right)=\max _{v \in U_{p} M^{4} \cap\left\{e_{1}, e_{2}\right\}^{\perp}} f(v):=d . \tag{3.2}
\end{equation*}
$$

Then $g\left(h\left(e_{2}, e_{2}\right), \varphi e_{3}\right)=g\left(h\left(e_{2}, e_{2}\right), \varphi e_{4}\right)=0, \quad g\left(h\left(e_{3}, e_{3}\right), \varphi e_{4}\right)=0$.
We may assume that $g\left(h\left(e_{2}, e_{3}\right), \varphi e_{4}\right)=c \geq 0$ by changing the sign of $e_{4}$. Now by using (3.2), Lemma 3.1 and the minimality of $M^{4}$, we obtain the following expressions for the second fundamental form $h$ :

$$
\left\{\begin{array}{l}
h\left(e_{1}, e_{1}\right)=\frac{3}{2} \varphi e_{1}, \quad h\left(e_{1}, e_{j}\right)=-\frac{1}{2} \varphi e_{j}, \quad j=2,3,4  \tag{3.3}\\
h\left(e_{2}, e_{2}\right)=-\frac{1}{2} \varphi e_{1}+a \varphi e_{2}, \quad h\left(e_{2}, e_{3}\right)=b \varphi e_{3}+c \varphi e_{4} \\
h\left(e_{3}, e_{3}\right)=-\frac{1}{2} \varphi e_{1}+b \varphi e_{2}+d \varphi e_{3}, \quad h\left(e_{2}, e_{4}\right)=c \varphi e_{3}-(a+b) \varphi e_{4} \\
h\left(e_{4}, e_{4}\right)=-\frac{1}{2} \varphi e_{1}-(a+b) \varphi e_{2}-d \varphi e_{3}, \quad h\left(e_{3}, e_{4}\right)=c \varphi e_{2}-d \varphi e_{4}
\end{array}\right.
$$

where $a, b, c, d \in \mathbb{R}$ and $\frac{3}{2} \geq a \geq d \geq 0, c \geq 0$.
We note that $h_{i j}^{k^{*}}=g\left(h\left(e_{i}, e_{j}\right), \varphi e_{k}\right)$, and $h_{i j}^{k^{*}}$ is totally symmetric for indices $i, j, k$. By (3.3) and Gauss equation (2.8), we get

$$
\left\{\begin{array}{lr}
R_{2323}=\frac{5}{4}+a b-b^{2}-c^{2}, & R_{2324}=2 a c  \tag{3.4}\\
R_{2424}=\frac{5}{4}-2 a^{2}-b^{2}-c^{2}-3 a b, & R_{2334}=-2 d c \\
R_{3434}=\frac{5}{4}-2 d^{2}-b^{2}-c^{2}-a b, & R_{2434}=-d(a+2 b)
\end{array}\right.
$$

From Lemma 2.1, we know that $\bar{\nabla}^{\xi} h=0$. Hence, by (2.15), for any $l, p \in\{1,2,3,4\}$, we have

$$
\begin{equation*}
\sum_{m=1}^{4} h_{m j}^{k^{*}} R_{m i l p}+\sum_{m=1}^{4} h_{i m}^{k^{*}} R_{m j l p}+\sum_{m=1}^{4} h_{i j}^{m^{*}} R_{m k l p}=0 \tag{3.5}
\end{equation*}
$$

Taking $(k, i, j)=(1,1,2),(1,1,3),(1,1,4)$ in (3.5), respectively, and combining with (3.3), we can get

$$
\begin{equation*}
R_{12 l p}=R_{13 l p}=R_{14 l p}=0, \quad l, p \in\{1,2,3,4\} \tag{3.6}
\end{equation*}
$$

Taking $(k, i, j)=(3,3,3),(2,2,3),(2,2,4),(4,4,4)$ in (3.5), respectively, for any $l, p \in\{1,2,3,4\}$, we have the following equations:

$$
\begin{align*}
& 3 b R_{23 l p}=0  \tag{3.7}\\
& (a-2 b) R_{23 l p}-2 c R_{24 l p}=0  \tag{3.8}\\
& 2 c R_{23 l p}-(3 a+2 b) R_{24 l p}=0  \tag{3.9}\\
& d R_{34 l p}+(a+b) R_{24 l p}=0 \tag{3.10}
\end{align*}
$$

From (3.7), (3.4) we obtain that

$$
\begin{equation*}
\frac{1}{2} b R_{2324}=a b c=0, \quad-\frac{1}{2} b R_{2334}=b c d=0 \tag{3.11}
\end{equation*}
$$

So we can divide the discussions into the following three subcases:

$$
\mathbf{I}-(\mathbf{i}): a=0 ; \quad \mathbf{I}-(\mathbf{i i}): a \neq 0, b=0 ; \quad \mathbf{I}-(\mathbf{i i i}): \quad a \neq 0, b \neq 0, c=0
$$

$\mathbf{I}$-(i). Let $u_{1}=\frac{1}{\sqrt{2}}\left(e_{2}+e_{3}\right), u_{2}=\frac{1}{\sqrt{3}}\left(e_{2}+e_{3}+e_{4}\right)$, then by (3.2), we have $f\left(e_{2}\right)=f\left(e_{3}\right)=f\left(e_{4}\right)=$ $f\left(u_{1}\right)=f\left(u_{2}\right)=0$, which implies $d=b=c=0$.

I-(ii). As $a \neq 0, b=0$, from (3.4) and (3.8) we can get

$$
a R_{2323}-2 c R_{2423}=a\left(\frac{5}{4}-c^{2}\right)-2 c(2 a c)=0
$$

which gives that $c^{2}=\frac{1}{4}$. Similarly, by (3.4), (3.9) and (3.10), we get

$$
\begin{aligned}
& 2 c R_{2323}-3 a R_{2423}=2 c\left(1-3 a^{2}\right)=0 \\
& d R_{3423}+a R_{2423}=d(-2 d c)+a(2 a c)=0
\end{aligned}
$$

From which we obtain that $a^{2}=d^{2}=\frac{1}{3}$. Since $a \geq d \geq 0, c \geq 0$, so $a=d=\frac{1}{\sqrt{3}}, c=\frac{1}{2}$. Then for $u=-\frac{1}{\sqrt{5}}\left(e_{2}+e_{3}-\sqrt{3} e_{4}\right)$, we have $g(h(u, u), \varphi u)=\sqrt{\frac{5}{3}}>\frac{1}{\sqrt{3}}=a$, which contradicts to the definition of $a$ in (3.2), hence case I-(ii) does not occur.

I-(iii). From $b \neq 0, c=0$ and (3.7), (3.9), we get the following equations:

$$
\begin{gather*}
R_{2323}=\frac{5}{4}+a b-b^{2}=0  \tag{3.12}\\
(3 a+2 b)\left(\frac{5}{4}-2 a^{2}-b^{2}-3 a b\right)=0 \tag{3.13}
\end{gather*}
$$

If $3 a+2 b=0$, then by (3.12), we can obtain that $b^{2}=\frac{3}{4}$ and $a b=-\frac{1}{2}$, thus $a^{2}=\frac{4}{9} b^{2}=\frac{1}{3}$. Substituting this and $c=0$ into (3.4), (3.10), we can get that

$$
R_{2424}=\frac{4}{3}, \quad R_{3424}=-\frac{4}{3} b d, \quad d R_{3424}+(a+b) R_{2424}=-\frac{4}{3} b\left(d^{2}-\frac{1}{3}\right)=0
$$

It follows that $d^{2}=\frac{1}{3}$. Since $a \geq d \geq 0$, we have $a=d=\frac{1}{\sqrt{3}}, b=-\frac{\sqrt{3}}{2}$. Then for $u=\frac{1}{\sqrt{2}}\left(-e_{2}+e_{3}\right)$, we have $f(u)=\frac{3}{4} \sqrt{\frac{3}{2}}>a$. This is a contradiction.

If $3 a+2 b \neq 0$, then (3.13) implies that $\frac{5}{4}-2 a^{2}-b^{2}-3 a b=0$. Using this and (3.12), we can deduce that $b^{2}=\frac{5}{12}, a^{2}=\frac{5}{3}$. Substituting this into (3.10) gives that

$$
\begin{equation*}
d R_{3434}+(a+b) R_{2434}=d\left(\frac{5}{3}-2 d^{2}\right)=0 \tag{3.14}
\end{equation*}
$$

this and $d \geq 0$ gives that $d=0$ or $d=\sqrt{\frac{5}{6}}$.
To sum up, we obtain the following three posibilities for Case I:
(1) $a=b=c=d=0$;
(2) $a=\sqrt{\frac{5}{3}}, b=-\sqrt{\frac{5}{12}}, c=0, d=0$;
(3) $a=\sqrt{\frac{5}{3}}, b=-\sqrt{\frac{5}{12}}, c=0, d=\sqrt{\frac{5}{6}}$.

Next, we will show that Case II does not occur.
In this case, as $\lambda_{1}=2 \lambda_{2}$, by Lemma 3.1, we see that $f\left(e_{2}\right)=0$. Choose $\left\{e_{3}, e_{4}\right\}$ such that $g\left(h\left(e_{2}, e_{2}\right), \varphi e_{4}\right)=0$ and $g\left(h\left(e_{2}, e_{2}\right), \varphi e_{3}\right)=a \geq 0$. Then the second fundamental form $h$ of $M^{4} \hookrightarrow \mathbb{S}^{9}$ can be expressed as follows:

$$
\left\{\begin{array}{l}
h\left(e_{1}, e_{1}\right)=\frac{4}{\sqrt{21}} \varphi e_{1}, \quad h\left(e_{1}, e_{2}\right)=\frac{2}{\sqrt{21}} \varphi e_{2}, \quad h\left(e_{1}, e_{k}\right)=-\frac{3}{\sqrt{21}} \varphi e_{k}, k=3,4,  \tag{3.15}\\
h\left(e_{2}, e_{2}\right)=\frac{2}{\sqrt{21}} \varphi e_{1}+a \varphi e_{3}, \quad h\left(e_{2}, e_{3}\right)=a \varphi e_{2}+b \varphi e_{3}+c \varphi e_{4}, \\
h\left(e_{3}, e_{3}\right)=-\frac{3}{\sqrt{21}} \varphi e_{1}+b \varphi e_{2}+d \varphi e_{3}+f \varphi e_{4}, \quad h\left(e_{2}, e_{4}\right)=c \varphi e_{3}-b \varphi e_{4} \\
h\left(e_{4}, e_{4}\right)=-\frac{3}{\sqrt{21}} \varphi e_{1}-b \varphi e_{2}-(a+d) \varphi e_{3}-f \varphi e_{4}, \\
h\left(e_{3}, e_{4}\right)=c \varphi e_{2}+f \varphi e_{3}-(a+d) \varphi e_{4},
\end{array}\right.
$$

where $a, b, c, d, f \in \mathbb{R}$.
Similar to Case I, using (3.15) and Gauss equation (2.8), we easily have

$$
\left\{\begin{array}{l}
R_{1212}=1+\lambda_{1} \lambda_{2}-\lambda_{2}^{2}=\frac{25}{21}, \quad R_{1224}=R_{1234}=0  \tag{3.16}\\
R_{2323}=\frac{15}{21}+\left(a d-a^{2}-c^{2}-b^{2}\right), \quad R_{1223}=\frac{5}{\sqrt{21}} a
\end{array}\right.
$$

Taking $(k, i, j)=(2,2,2),(2,2,3),(2,2,4),(2,3,4)$ in (3.5), respectively, and using (3.15), for any $l, p \in$ $\{1,2,3,4\}$, we can get

$$
\begin{gather*}
\frac{2}{\sqrt{21}} R_{12 l p}+a R_{32 l p}=0,  \tag{3.17}\\
b R_{32 l p}+c R_{42 l p}=0 \tag{3.18}
\end{gather*}
$$

$$
\begin{gather*}
a R_{34 l p}+2 c R_{32 l p}-2 b R_{42 l p}=0  \tag{3.19}\\
(2 a+d) R_{24 l p}-f R_{23 l p}=0 \tag{3.20}
\end{gather*}
$$

Taking $(l, p)=(1,2)$ in (3.17)-(3.20), we obatin $a^{2}=\frac{10}{21}$ and $b=c=f=0$, then $a=\sqrt{\frac{10}{21}}$. From (3.17), we also have

$$
\begin{equation*}
\frac{2}{\sqrt{21}} R_{1223}+a R_{3223}=\frac{10}{21} a-a\left(\frac{15}{21}+a d-a^{2}\right)=0 \tag{3.21}
\end{equation*}
$$

which implies that $d=\sqrt{\frac{5}{42}}$. Let $u=-\cos \alpha e_{3}-\sin \alpha e_{4}, \alpha \in\left(0, \frac{\pi}{2}\right)$ such that $\tan \alpha=\sqrt{\frac{7}{3}}$, then $f(u)=\frac{3 \sqrt{3}}{\sqrt{21}}>\frac{4}{\sqrt{21}}=\lambda_{1}$, which gives the desired contradiction. Hence, Case II does not occur.

Therefore, we immediately obtain the following lemma:

Lemma 3.3 Let $M^{4}$ be a 4-dimensional compact minimal Legendrian submanifold of $\mathbb{S}^{9}$. If the sectional curvature $K \geq 0$ for each point $p$ of $M^{4}$, then there exists an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ of $T_{p} M^{4}$ such that the second fundamental form $h$ of $M^{4}$ can be expressed as one of the following:
(i) $\quad h\left(e_{i}, e_{j}\right)=0, \quad 1 \leq i, j \leq 4 ;$
(ii) $h$ is expressed by (3.3), with $a=\sqrt{\frac{5}{3}}, b=-\sqrt{\frac{5}{12}}, c=0, d=\sqrt{\frac{5}{6}}$;
(iii) $\quad h$ is expressed by (3.3), with $a=b=c=d=0$;
(iv) $h$ is expressed by (3.3), with $a=\sqrt{\frac{5}{3}}, b=-\sqrt{\frac{5}{12}}, c=0, d=0$.

Let $M^{4}$ be given as in Lemma 3.3, then we have the following result:

Lemma 3.4 Let $p \in M^{4}$, we have
(1) if (i) of Lemma 3.3 holds, then $K(p) \equiv 1$;
(2) if (ii) of Lemma 3.3 holds, then $K(p) \equiv 0$;
(3) if (iii) of Lemma 3.3 holds, then $0 \leq K(p) \leq \frac{5}{4}$, where $K(p)=0$ for every plane through $e_{1}$, and $K(p)=\frac{5}{4}$ for any plane perpendicular to $e_{1}$;
(4) if (iv) of Lemma 3.3 holds, then $0 \leq K(p) \leq \frac{5}{3}$, where $K(p)=0$ for every plane through $e_{1}$ or $e_{2}$, and $K(p)=\frac{5}{3}$ only for the plane determined by $e_{3}$ and $e_{4}$.

Proof (1) If (i) of Lemma 3.3 holds, $h \equiv 0$, by Gauss equation (2.8), we obtain that $K(p) \equiv 1$.
(2) If (ii) of Lemma 3.3 holds, by (3.4), (3.6) we have $R_{i j i j}=0$ for $\forall i, j$, then $K(p)=0$.
(3) If (iii) of Lemma 3.3 holds, by (3.4), (3.6), we immediately obtain that

$$
R_{1212}=R_{1313}=R_{1414}=0, \quad R_{2323}=R_{2424}=R_{3434}=\frac{5}{4}
$$

Choose an orthonormal basis $\{X, Y, Z, W\}$ of $T_{p} M^{4}$ :

$$
\left\{\begin{array}{l}
X=\sin \theta e_{1}-\cos \theta \sin \alpha e_{2}+\cos \theta \cos \alpha \sin \beta e_{3}+\cos \theta \cos \alpha \cos \beta e_{4}  \tag{3.22}\\
Y=\cos \theta e_{1}+\sin \theta \sin \alpha e_{2}-\sin \theta \cos \alpha \sin \beta e_{3}-\sin \theta \cos \alpha \cos \beta e_{4} \\
Z=\cos \alpha e_{2}+\sin \alpha \sin \beta e_{3}+\sin \alpha \cos \beta e_{4}, \quad W=\cos \beta e_{3}-\sin \beta e_{4}
\end{array}\right.
$$

where $\theta, \alpha, \beta \in \mathbb{R}$. Then straightforward computation shows that

$$
\begin{aligned}
& g(R(X, Y) Y, X)=0, \quad g(R(X, Z) Z, X)=g(R(X, W) W, X)=\frac{5}{4} \cos ^{2} \theta \\
& g(R(Z, W) W, Z)=\frac{5}{4}, \quad g(R(Y, Z) Z, Y)=g(R(Y, W) W, Y)=\frac{5}{4} \sin ^{2} \theta
\end{aligned}
$$

Hence $0 \leq K(p) \leq \frac{5}{4}$, where $K(p)=0$ for any plane through $e_{1}, K(p)=\frac{5}{4}$ for any plane perpendicular to $e_{1}$.
(4) In this case, we also use (3.4) and (3.6) to get

$$
R_{1212}=R_{1313}=R_{1414}=R_{2323}=R_{2424}=0, \quad R_{3434}=\frac{5}{3}
$$

Then for the basis stated in (3.22), we have $g(R(X, Y) Y, X)=g(R(X, Z) Z, X)=0$,

$$
\begin{aligned}
& g(R(X, W) W, X)=\frac{5}{3} \cos ^{2} \theta \cos ^{2} \alpha, \quad g(R(Y, Z) Z, Y)=0 \\
& g(R(Y, W) W, Y)=\frac{5}{3} \sin ^{2} \theta \cos ^{2} \alpha, \quad g(R(Z, W) W, Z)=\frac{5}{3} \sin ^{2} \alpha
\end{aligned}
$$

Thus the assertion of (4) immediately follows from the above arguments.
In summing up, we have completed the proof of Lemma 3.4.
Since the second fundamental form $h$ of $M^{4} \hookrightarrow \mathbb{S}^{9}$ is $C$-parallel, we can extend the basis $\left\{e_{i}\right\}_{i=1}^{4}$ by parallel translation along geodesics through $p$ to a normal neighborhood around $p$, so as to obtain a local orthonormal frame $\left\{E_{i}\right\}_{i=1}^{4}$, such that $h$ has the same expression in any point as in $p$. This is stated in the following lemma, which can be proved similarly as Proposition 4.2 of [8].

Lemma 3.5 Let $M^{4}$ be a 4-dimensional compact minimal Legendrian submanifold of $\mathbb{S}^{9}$ with $K$ not constant and satisfying $K \geq 0$. Then there exists globally a unique tangent vector field $E_{1}$, and locally tangent vector fields $\left\{E_{2}, E_{3}, E_{4}\right\}$, such that
(1) $\left\{E_{1}, E_{2}, E_{3}, E_{4}\right\}$ is a local orthonormal frame,
(2) for any $p \in M^{4}, f$ attains its maximum value at $E_{1}(p)$,
(3) for any $p \in M^{4},\left\{E_{1}(p), E_{2}(p), E_{3}(p), E_{4}(p)\right\}$ satisfies (iii) or (iv) of Lemma 3.3.

In order to prove Theorem 1.2, we need also the following uniqueness theorem for Legendrian submanifolds.

Lemma 3.6 (cf. [6]) Let $f$ and $\bar{f}: M^{n} \rightarrow \mathbb{S}^{2 n+1}$ be two $n$-dimensional Legendrian isometric immersions of a connected Riemannian manifold $M^{n}$ into the unit sphere with second fundamental forms $h$ and $\bar{h}$, respectively. If

$$
g\left(f_{*} X, f_{*} Y\right)=g\left(\bar{f}_{*} X, \bar{f}_{*} Y\right), \quad g\left(h(X, Y), \varphi f_{*} Z\right)=g\left(\bar{h}(X, Y), \varphi \bar{f}_{*} Z\right)
$$

for all vector fields $X, Y, Z$ tangent to $M^{n}$, then there exists an isometry $\tau$ of $\mathbb{S}^{2 n+1}$ such that $f=\tau \circ \bar{f}$.

## Completion of the proof of Theorem 1.2

If the sectional curvature $K$ is constant, by Lemma 3.3 and 3.4 , we know that $K \equiv 1$ or $K \equiv 0$ and $M^{4}$ is totally geodesic or it is flat. According to the main result of [6], we conclude that, up to an isometry, $M^{4} \hookrightarrow \mathbb{S}^{9}$ must be given by the immersion $f^{(1)}, f^{(2)}$, as described in Example 1.1, Example 1.2, repectively.

If $K$ is not constant, by comparing Lemma 3.3 and (1.1), (1.2), we can apply Lemma 3.4, 3.5 and 3.6 to conclude that, up to an isometry, $M^{4} \hookrightarrow \mathbb{S}^{9}$ must be given by the immersion $\tilde{f}^{(3)}, \tilde{f}^{(4)}$, as described in Example 1.3, Example 1.4, repectively.

We have finished the proof of Theorem 1.2.

## Acknowledgment

The authors would like to thank the anonymous referees for their valuable comments and suggestions. This work was supported by the grant No. 11801524 of NSFC.

## References

[1] Blair DE. Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics 509, Springer-Verlag, BerlinNew York, 1976.
[2] Blair DE. Riemannian geometry of contact and symplectic manifolds, 2nd edn. Birkhauser, Boston, 2010.
[3] Baikoussis C, Blair DE, Koufogiorgos T. Integral submanifolds of Sasakian space forms $\bar{M}^{7}(k)$. Results in Mathematics 1995; 27: 207-226.
[4] Chen BY, Dillen F, Verstraelen L, Vrancken L. An exotic totally real minimal immersion of $S^{3}$ in $\mathbb{C} P^{3}$ and its characterisation. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1996; 126: 153-165.
[5] Chen BY, Ogiue K. On totally real submanifolds. Transactions of the American Mathematical Society 1974; 193: 257-266.
[6] Cheng XX, He HL, Hu ZJ. C-totally real submanifolds with constant sectional curvature in the Sasakian space forms. Results in Mathematics 2021; 76: 144, 16 pp.
[7] Cheng XX, Hu ZJ. An optimal inequality on locally strongly convex centroaffine hypersurfaces. Journal of Geometric Analysis 2018; 28: 643-655.
[8] Dillen F, Vrancken L. C-totally real submanifolds of $S^{7}(1)$ with non-negative sectional curvature. Mathematical Journal of Okayama University 1989; 31: 227-242.
[9] Ejiri N. Totally real minimal immersions of $n$-dimensional real space forms into $n$-dimensional complex space forms. Proceedings of the American Mathematical Society 1982; 84: 243-246.
[10] Hu ZJ, Li HZ, Simon U, Vrancken L. On locally strongly convex affine hypersurfaces with parallel cubic form, I. Differential Geometry and its Applications 2009; 27: 188-205.
[11] Hu ZJ, Xing C. On the Ricci curvature of 3-submanifolds in the unit sphere. Archiv der Mathematik 2020; 115: 727-735.
[12] Hu ZJ, Yin JB. An optimal inequality related to characterizations of the contact Whitney spheres in Sasakian space forms. Journal of Geometric Analysis 2020; 30: 3373-3397.
[13] Luo Y, Sun LL, Yin JB. A new characterization of the Calabi torus in the unit sphere. arXiv: 1911.08155.
[14] Li HZ, Vrancken L. A basic inequality and new characterization of Whitney spheres in a complex space form. Israel Journal of Mathematics 2005; 146: 223-242.
[15] Li HZ, Wang XF. Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space. Results in Mathematics 2011; 59: 453-470.
[16] Montiel S, Urbano F. Isotropic totally real submanifolds. Mathematische Zeitschrift 1988; 199: 55-60.
[17] Verstraelen L, Vrancken L. Pinching theorems for C-tatally real submanifolds of Sasakian space forms. Journal of Geometry 1988; 33: 172-184.
[18] Yamaguchi S, Kon M, Ikawa T. C-totally real submanifolds. Journal of Differential Geometry 1976; 11: 59-64.
[19] Yamaguchi S, Kon M, Miyahara Y. A theorem on C-totally real minimal surface. Proceedings of the American Mathematical Society 1976; 54: 276-280.


[^0]:    *Correspondence: zhaishujie@zzu.edu.cn
    2020 Mathematics Subject Classification. Primary 53C25; Secondary 53C40, 53C42.

