

Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/

Research Article

Minimal Legendrian submanifolds of \mathbb{S}^9 with nonnegative sectional curvature

Shujie ZHAI^{1,*}, Heng ZHANG^{1,2}

¹School of Mathematics and Statistics, Zhengzhou University, Zhengzhou, China ²Department of Foundation, Naval University of Engineering, Wuhan, China

Received: 24.09.2021	•	Accepted/Published Online: 07.07.2022	•	Final Version: 05.09.2022
----------------------	---	---------------------------------------	---	----------------------------------

Abstract: In this paper, we established a complete classification of 4-dimensional compact minimal Legendrian submanifolds with nonnegative sectional curvature in the 9-dimensional unit sphere.

Key words: Sasakian structure, Legendrian submanifold, minimal submanifold, C-parallel, Calabi torus

1. Introduction

Let M^m be an *m*-dimensional submanifold isometrically immersed in the unit sphere \mathbb{S}^{2n+1} , which has canonical Sasakian structure (φ, ξ, η, g) (see Section 2 for more details). We say that M^m is *C*-totally real (or integral) if the contact form η restricted to M^m vanishes, i.e. $\eta(X) = 0$ for any $X \in TM^m$. In particular, if m = n, we call it a *Legendrian submanifold*. The study of these submanifolds is an important geometry topic that has been widely carried out, see, e.g., among many others, [1–5, 8, 11, 12, 18].

Now, we are interested in the problem of how to classify *n*-dimensional compact minimal Legendrian submanifolds in \mathbb{S}^{2n+1} with nonnegative sectional curvature. For the case n = 2, Yamaguchi, Kon and Miyahara [19] proved that M^2 is \mathbb{S}^2 (M^2 is totally geodesic and $K \equiv 1$) or T^2 (M^2 is flat and $K \equiv 0$). In [8], Dillen and Vrancken settled this problem for n = 3 by giving the following classification:

Theorem 1.1 ([8]) Let $x : M^3 \to \mathbb{S}^7$ be a C-totally real, minimal immersion of a 3-dimensional compact Riemannian manifold M. If the sectional curvatures K of M satisfying $K \ge 0$, then it holds the following:

(1) M is simply connected and x is congruent to $i: S^3 \to \mathbb{S}^7$ (i.e. M is totally geodesic in \mathbb{S}^7), or

(2) M is a covering of T^3 with covering map π and x is congruent to $j \circ \pi : M \to \mathbb{S}^7$, or

(3) *M* is a covering of $\mathbb{S}^1(\sqrt{3}) \times \mathbb{S}^2(\sqrt{3}/2)$ with covering map π and *x* is congruent to $k \circ \pi : M \to \mathbb{S}^7$, where the map *i*, *j* and *k* are defined in section 5 of [8].

In this paper, we gave a complete classification of 4-dimensional compact minimal Legendrian submanifolds with nonnegative sectional curvature in S^9 , which extends the above theorem. To state our result, we first introduce several canonical examples.

Example 1.1 The totally geodesic Legendrian sphere in \mathbb{S}^9 (cf. [6]).

^{*}Correspondence: zhaishujie@zzu.edu.cn

²⁰²⁰ Mathematics Subject Classification. Primary 53C25; Secondary 53C40, 53C42.

Let L be a 5-dimensional linear subspace of \mathbb{C}^5 passing through the origin and such that JL is orthogonal to L. Then $\mathbb{S}^4 = \mathbb{S}^9 \cap L =: f^{(1)}(\mathbb{S}^4)$, is a 4-dimensional totally geodesic compact minimal Legendrian submanifold of \mathbb{S}^9 .

Example 1.2 The flat torus in \mathbb{S}^9 (cf. [6, 8]).

Let \mathbb{S}^1 be a circle of radius 1 and $T^4 = \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$. Then, with the usual parameterization $u = (u_1, u_2, u_3, u_4)$ of T^4 , an immersion $f^{(2)} : T^4 \to \mathbb{S}^9$ is defined by

$$f^{(2)}(u) = \frac{1}{\sqrt{5}} (e^{iu_1}, e^{iu_2}, e^{iu_3}, e^{iu_4}, e^{-i(u_1+u_2+u_3+u_4)}) \in \mathbb{C}^5 \simeq \mathbb{R}^{10}$$

is a flat compact minimal Legendrian submanifold of \mathbb{S}^9 (see [6] for detailed computation).

Example 1.3 The Calabi torus in \mathbb{S}^9 (cf. [11, 13]).

Let $\psi : \mathbb{S}^3 \hookrightarrow \mathbb{R}^4 : p \mapsto (y_1, y_2, y_3, y_4)$ be the inclusion mapping, and $\gamma : \mathbb{R} \hookrightarrow \mathbb{S}^3$ be the standard embedding with a parametrization

$$\gamma(t) = \left(\frac{2}{\sqrt{5}}e^{-\frac{it}{2}}, \frac{1}{\sqrt{5}}e^{i2t}\right) = (\gamma_1(t), \gamma_2(t)) \in \mathbb{C}^2.$$

Putting $f^{(3)}: \mathbb{R} \times \mathbb{S}^3 \to \mathbb{S}^9$ such that $f^{(3)}(t,p) = (\gamma_1(t)\psi(p), \gamma_2(t)) \in \mathbb{C}^5 \simeq \mathbb{R}^{10}$. For the sake of calculation, we assume that $f^{(3)}(t,p) = (x_1, x_2, \cdots, x_{10})$, then

$$\begin{cases} (x_{2i-1}, x_{2i}) = \frac{2}{\sqrt{5}} (y_i \cos \frac{t}{2}, -y_i \sin \frac{t}{2}), & 1 \le i \le 4, \\ (x_9, x_{10}) = \frac{1}{\sqrt{5}} (\cos 2t, \sin 2t), \end{cases}$$

where $(y_1, y_2, y_3, y_4) = (\sin \theta_1, \cos \theta_1 \sin \theta_2, \cos \theta_1 \cos \theta_2 \sin \theta_3, \cos \theta_1 \cos \theta_2 \cos \theta_3).$

Choose an orthonormal frame $\{e_i\}_{i=1}^4$ for $f^{(3)}(\mathbb{R} \times \mathbb{S}^3)$ with respect to g, where g is the induced metric of $\mathbb{S}^9 \to \mathbb{R}^{10}$, such that

$$e_1 = f_t^{(3)}, \ e_2 = \frac{\sqrt{5}}{2} f_{\theta_1}^{(3)}, \ e_3 = \frac{\sqrt{5}}{2\cos\theta_1} f_{\theta_2}^{(3)}, \ e_4 = \frac{\sqrt{5}}{2\cos\theta_1\cos\theta_2} f_{\theta_3}^{(3)}.$$

It is easy to verify that $\eta(e_i) = 0$ for i = 1, 2, 3, 4, so $f^{(3)}$ is a Legendrian submanifold. Let D be the standard Euclidean flat connection, by using $g(D_{e_i}e_j, \varphi e_k) = g(h(e_i, e_j), \varphi e_k), 1 \le i, j, k \le 4$, we can derive the second fundamental form h satisfies

$$h(e_1, e_1) = \frac{3}{2}\varphi e_1, \quad h(e_1, e_j) = -\frac{1}{2}\varphi e_j, \quad h(e_i, e_j) = -\frac{1}{2}\delta_{ij}\varphi e_1, \quad i, j = 2, 3, 4.$$
(1.1)

Then, $f^{(3)}$ is a minimal submanifold with nonnegative sectional curvature. Furthermore, we see that $f^{(3)}(t, y_1, y_2, y_3, y_4) = f^{(3)}(\tilde{t}, \tilde{y}_1, \tilde{y}_2, \tilde{y}_3, \tilde{y}_4)$ if and only if $t = \tilde{t} \pmod{4\pi}$ and $y_i = \tilde{y}_i$, $1 \le i \le 4$, thus $f^{(3)}(\mathbb{R} \times \mathbb{S}^3)$ is isometric with $\mathbb{S}^1(2) \times \mathbb{S}^3(2/\sqrt{5})$.

Therefore, we obtain an embedding $\tilde{f}^{(3)}$ from $\mathbb{S}^1(2) \times \mathbb{S}^3(2/\sqrt{5})$ into \mathbb{S}^9 , which is a compact minimal Legendrian submanifold with nonnegative sectional curvature.

Example 1.4 Let $\psi : \mathbb{R} \times \mathbb{S}^2 \to \mathbb{S}^7 : (t_2, p) \mapsto \left(\frac{\sqrt{3}}{2}e^{-\frac{it_2}{\sqrt{3}}}\tau(p), \frac{1}{2}e^{i\sqrt{3}t_2}\right)$ be a Calabi torus defined in [11], here $\tau : \mathbb{S}^2 \hookrightarrow \mathbb{R}^3$ is the inclusion mapping. Then, following the method of Li-Wang [15], we can define

 $f^{(4)}: \mathbb{R}^2 \times \mathbb{S}^2 \to \mathbb{S}^9$ by

$$f^{(4)}(t_1, t_2, p) = \left(\frac{2}{\sqrt{5}}e^{-\frac{it_1}{5}}\psi(t_2, p), \frac{1}{\sqrt{5}}e^{\frac{i4t_1}{5}}\right)$$
$$= \left(\frac{\sqrt{3}}{\sqrt{5}}e^{-i\left(\frac{t_1}{5} + \frac{t_2}{\sqrt{3}}\right)}\tau(p), \frac{1}{\sqrt{5}}e^{-i\left(\frac{t_1}{5} - \sqrt{3}t_2\right)}, \frac{1}{\sqrt{5}}e^{\frac{i4t_1}{5}}\right).$$

Similar to Example 1.3, putting $f^{(4)}(t_1, t_2, p) = (x_1, x_2, \cdots, x_{10})$, then we have

$$\begin{cases} (x_{2i-1}, x_{2i}) = \frac{\sqrt{3}}{\sqrt{5}} y_i \Big(\cos(\frac{t_1}{5} + \frac{t_2}{\sqrt{3}}), -\sin(\frac{t_1}{5} + \frac{t_2}{\sqrt{3}}) \Big), & i = 1, 2, 3 \\ (x_7, x_8) = \frac{1}{\sqrt{5}} \Big(\cos(\frac{t_1}{5} - \sqrt{3}t_2), -\sin(\frac{t_1}{5} - \sqrt{3}t_2) \Big), \\ (x_9, x_{10}) = \frac{1}{\sqrt{5}} \Big(\cos\frac{4t_1}{5}, \sin\frac{4t_1}{5} \Big), \end{cases}$$

where $(y_1, y_2, y_3) = (\sin \theta_1, \cos \theta_1 \sin \theta_2, \cos \theta_1 \cos \theta_2) = \tau(p)$.

Choose an orthonormal frame $\{e_i\}_{i=1}^4$ for $f^{(4)}(\mathbb{R}^2 \times \mathbb{S}^2)$:

$$e_1 = \frac{5}{2}f_{t_1}^{(4)}, \quad e_2 = \frac{\sqrt{5}}{2}f_{t_2}^{(4)}, \quad e_3 = \sqrt{\frac{5}{3}}f_{\theta_1}^{(4)}, \quad e_4 = \sqrt{\frac{5}{3\cos^2\theta_1}}f_{\theta_2}^{(4)}.$$

By computation we can derive that the second fundamental form h satisfies

$$\begin{cases} h(e_1, e_j) = -\frac{1}{2}\varphi e_j + 2\delta_{1j}\varphi e_1, & 1 \le j \le 4, \\ h(e_2, e_2) = -\frac{1}{2}\varphi e_1 + \sqrt{\frac{5}{3}}\varphi e_2, & h(e_3, e_4) = 0, \\ h(e_k, e_k) = -\frac{1}{2}\varphi e_1 - \sqrt{\frac{5}{12}}\varphi e_2, & h(e_2, e_k) = -\sqrt{\frac{5}{12}}\varphi e_k, & k = 3, 4. \end{cases}$$
(1.2)

Then, $f^{(4)} : \mathbb{R}^2 \times \mathbb{S}^2 \to \mathbb{S}^9$ is a minimal submanifold with nonnegative sectional curvatures. Furthermore, we see that $f^{(4)}(t_1, t_2, y_1, y_2, y_3) = f^{(4)}(\tilde{t}_1, \tilde{t}_2, \tilde{y}_1, \tilde{y}_2, \tilde{y}_3)$ if and only if $t_1 = \tilde{t}_1 \pmod{5\pi}$, $t_2 = \tilde{t}_2 \pmod{\sqrt{3\pi}}$ and $y_i = \tilde{y}_i$, i = 1, 2, 3.

Therefore, we obtain an embedding $\tilde{f}^{(4)}: T^2 \times \mathbb{S}^2(\sqrt{3/5}) \to \mathbb{S}^9$, which is a compact minimal Legendrian submanifold with nonnegative sectional curvature.

Having the preceding preparations, now we can state our main theorem as follows:

Theorem 1.2 Let $x : M^4 \to \mathbb{S}^9$ be a compact minimal Legendrian submanifold of the 9-dimensional unit sphere. If the sectional curvature $K \ge 0$, then it holds the following:

- (1) $x(M^4)$ is totally geodesic and is given by $f^{(1)}$ in Example 1.1; or
- (2) $x(M^4)$ is flat and is given by $f^{(2)}$ in Example 1.2; or
- (3) $x(M^4)$ is congruent to $\mathbb{S}^1(2) \times \mathbb{S}^3(2/\sqrt{5})$ and is given by $\tilde{f}^{(3)}$ in Example 1.3; or
- (4) $x(M^4)$ is congruent to $T^2 \times \mathbb{S}^2(\sqrt{3/5})$ and is given by $\tilde{f}^{(4)}$ in Example 1.4.

Remark 1.3 We note that the Legendrian submanifolds given in (1) and (2) of Theorem 1.2 have constant sectional curvature, which have been described in [6]. While the last two examples have nonconstant sectional curvature, they are constructed by Calabi product of a 3-dimensional Legendrian submanifold in \mathbb{S}^7 and a point (refer to [15]).

2. Preliminaries

In this section, we first review some basic formulas about Sasakian manifold \mathbb{S}^{2n+1} and its Legendrian submanifolds (see [2, 12] for details), then we give an important property for compact, minimal, Legendrian submanifolds.

2.1. The Sasakian structure on the (2n+1)-dimensional unit sphere

As a Sasakian manifold, the unit sphere \mathbb{S}^{2n+1} has constant φ -sectional curvature 1 and canonical Sasakian structure (φ, ξ, η, g) : g is the induced metric; $\xi = JN$, J is the natural complex structure of \mathbb{C}^{n+1} and N is the unit normal vector field of the inclusion $\mathbb{S}^{2n+1} \hookrightarrow \mathbb{C}^{n+1}$; let $\langle \cdot, \cdot \rangle$ denote the standard Hermitian metric on \mathbb{C}^{n+1} . Then for any tangent vector fields X, Y of \mathbb{S}^{2n+1} , it holds that:

$$\begin{cases} \varphi(X) = JX - \langle JX, N \rangle N, \quad \varphi^2 X = -X + \eta(X)\xi, \quad \varphi\xi = 0, \\ \eta(X) = g(X,\xi), \quad \eta(\varphi X) = 0, \quad d\eta(X,Y) = g(X,\varphi Y), \\ g(\varphi X,\varphi Y) = g(X,Y) - \eta(X)\eta(Y), \quad \operatorname{rank}(\varphi) = 2n, \end{cases}$$
(2.1)

$$\bar{\nabla}_X \xi = -\varphi X, \quad (\bar{\nabla}_X \varphi) Y = g(X, Y) \xi - \eta(Y) X, \tag{2.2}$$

where $\overline{\nabla}$ is the Levi-Civita connection with respect to the metric g.

The curvature tensor $\bar{R}(X,Y)Z := \bar{\nabla}_X \bar{\nabla}_Y Z - \bar{\nabla}_Y \bar{\nabla}_X Z - \bar{\nabla}_{[X,Y]} Z$ of \mathbb{S}^{2n+1} has the expression: $\bar{R}(X,Y)Z = g(Y,Z)X - g(X,Z)Y$.

2.2. Legendrian submanifolds of \mathbb{S}^{2n+1}

Let M^n be an *n*-dimensional submanifold isometrically immersed in the unit sphere \mathbb{S}^{2n+1} . Denote also by g the metric of M^n , and ∇ the Levi-Civita connection of (M^n, g) . The Gauss and Weingarten formulae of $M^n \hookrightarrow \mathbb{S}^{2n+1}$ are given by

$$\bar{\nabla}_X Y = \nabla_X Y + h(X, Y), \quad \bar{\nabla}_X V = -A_V X + \nabla_X^{\perp} V, \tag{2.3}$$

where $X, Y \in TM^n$ are tangent vector fields, $V \in T^{\perp}M^n$ is a normal vector field, h is the second fundamental form of M^n , A_V is the shape operator associated to V, and ∇^{\perp} is the normal connection of the normal bundle $T^{\perp}M^n$. From (2.3), we can obtain

$$g(h(X,Y),V) = g(A_V X,Y).$$
 (2.4)

Assume that M^n is a Legendrian submanifold of \mathbb{S}^{2n+1} , i.e. the contact form η satisfies $\eta(X) = g(X,\xi) = 0$ for all $X \in TM^n$. Then ξ is a normal vector field of M^n , and by $d\eta(Y,X) = g(Y,\varphi X) = 0$, we see that $\varphi X \in T^{\perp}M^n$. From (2.3), we can also get

$$A_{\varphi Y}X = -\varphi h(X,Y), \quad \nabla_X^{\perp}\varphi Y = \varphi \nabla_X Y + g(X,Y)\xi, \quad \forall X,Y \in TM^n.$$
(2.5)

In the sequel, we will make the following convention on range of indices:

$$i^* = i + n, \quad \alpha^* = \alpha + n; \quad 1 \le i, j, k, l, m, p, s \le n; \quad 1 \le \alpha, \beta \le n + 1.$$

Now, we choose a local Legendre frame $\{e_i, e_{i^*}, e_{2n+1}\}_{i=1}^n$ in \mathbb{S}^{2n+1} along M^n , such that $\{e_i\}_{i=1}^n$ is an orthonormal frame field of TM^n , and $\{e_{i^*} = \varphi e_i, e_{2n+1} = \xi\}_{i=1}^n$ is the orthonormal normal vector fields of $M^n \hookrightarrow \mathbb{S}^{2n+1}$. Denote by $\{\omega^i\}$ the dual frame of $\{e_i\}$. Let $\{\omega_i^j\}$ and $\{\omega_{\alpha^*}^{\beta^*}\}$ denote the connection 1-forms of TM^n and $T^{\perp}M^n$, respectively:

$$\nabla e_i = \sum_{j=1}^n \omega_i^j e_j, \quad \nabla^\perp e_{\alpha^*} = \sum_{\beta=1}^{n+1} \omega_{\alpha^*}^{\beta^*} e_{\beta^*},$$

where $\omega_i^j + \omega_i^j = 0$ and $\omega_{\alpha^*}^{\beta^*} + \omega_{\beta^*}^{\alpha^*} = 0$. By (2.5), we have $\omega_i^j = \omega_{i^*}^{j^*}$ and $\omega_{i^*}^{2n+1} = \omega^i$.

Put $h_{ij}^{k^*} = g(h(e_i, e_j), \varphi e_k)$. It is easily seen that

$$h_{ij}^{k^*} = h_{ik}^{j^*} = h_{jk}^{i^*}, \quad \forall \ i, j, k.$$
(2.6)

From (2.2), (2.4) and the Gauss formula, we get

$$g(A_{\xi}e_i, e_j) = g(h(e_i, e_j), \xi) = g(\bar{\nabla}_{e_i}e_j, \xi) = -g(e_j, \bar{\nabla}_{e_i}\xi) = g(e_j, \varphi e_i) = 0.$$

$$h_{ij}^{(n+1)^*} = h_{ij}^{2n+1} := g(h(e_i, e_j), e_{2n+1}) = g(A_{\xi}e_i, e_j) = 0, \quad \forall \ i, j.$$

$$(2.7)$$

Let $R_{ijkl} := g(R(e_i, e_j)e_l, e_k)$ and $R_{ij\alpha^*\beta^*} := g(R(e_i, e_j)e_{\beta^*}, e_{\alpha^*})$ be the components of the curvature tensors of ∇ and ∇^{\perp} with respect to the Legendre frame, respectively. Then the equations of Gauss, Ricci and Codazzi are given by

$$R_{ijkl} = \delta_{ik}\delta_{jl} - \delta_{il}\delta_{jk} + \sum_{m=1}^{n} (h_{ik}^{m^*}h_{jl}^{m^*} - h_{il}^{m^*}h_{jk}^{m^*}), \qquad (2.8)$$

$$R_{ijk^*l^*} = \sum_{m=1}^{n} (h_{ik}^{m^*} h_{jl}^{m^*} - h_{il}^{m^*} h_{jk}^{m^*}), \quad R_{ijk^*(2n+1)} = 0,$$
(2.9)

$$h_{ij,k}^{\alpha^*} = h_{ik,j}^{\alpha^*}, \tag{2.10}$$

where $h_{ij,k}^{\alpha^*}$ is the component of the covariant differentiation of h, defined by

$$\sum_{k=1}^{n} h_{ij,k}^{\alpha^*} \omega^k := dh_{ij}^{\alpha^*} - \sum_{k=1}^{n} h_{kj}^{\alpha^*} \omega_i^k - \sum_{k=1}^{n} h_{ik}^{\alpha^*} \omega_j^k + \sum_{\beta=1}^{n+1} h_{ij}^{\beta^*} \omega_{\beta^*}^{\alpha^*}, \qquad (2.11)$$

or, equivalently,

$$(\bar{\nabla}h)(e_k, e_i, e_j) := \nabla_{e_k}^{\perp}(h(e_i, e_j)) - h(\nabla_{e_k}e_i, e_j) - h(e_i, \nabla_{e_k}e_j) = \sum_{\alpha=1}^{n+1} h_{ij,k}^{\alpha^*} e_{\alpha^*}.$$
(2.12)

For a compact minimal Legendrian submanifold of \mathbb{S}^{2n+1} , we have the following result:

Lemma 2.1 (cf. [8, 17]) If M^n is an n-dimensional compact, minimal, Legendrian submanifold of \mathbb{S}^{2n+1} and if all the sectional curvatures K of M^n satisfy $K \ge 0$, then

- (i) $(\overline{\nabla}h)(u,v,w) = g((\overline{\nabla}h)(u,v,w),\xi(p))\xi(p),$
- (ii) $R(v, A_{\varphi v}v, A_{\varphi v}v, v) = 0$, for all $p \in M^n$ and $u, v, w \in T_p M^n$.

Next, we can naturally define a modified covariant differentiation $\overline{\nabla}^{\xi} h$ by

$$(\bar{\nabla}^{\xi}h)(e_k, e_i, e_j) := (\bar{\nabla}h)(e_k, e_i, e_j) - g(h(e_i, e_j), \varphi e_k)\xi := \sum_{k=1}^n \tilde{h}_{ij,l}^{k^*} e_{k^*}.$$
(2.13)

Then, from (2.12) and Lemma 2.1, we know that a compact minimal Legendrian submanifold with nonnegative sectional curvature of \mathbb{S}^{2n+1} satisfies $\bar{\nabla}^{\xi} h = 0$, now the second fundamental form is called *C*-parallel.

Moreover, the second covariant derivative $\tilde{h}_{ij,lp}^{k^*}$ is defined by

$$\sum_{p=1}^{n} \tilde{h}_{ij,lp}^{k^*} \theta_p := dh_{ij,l}^{k^*} + \sum_{p=1}^{n} h_{pj,l}^{k^*} \theta_{pi} + \sum_{p=1}^{n} h_{ip,l}^{k^*} \theta_{pj} + \sum_{p=1}^{n} h_{ij,p}^{k^*} \theta_{pl} + \sum_{p=1}^{n} h_{ij,l}^{p^*} \theta_{p^*k^*},$$
(2.14)

and the components satisfy the following Ricci identity:

$$\tilde{h}_{ij,lp}^{k^*} - \tilde{h}_{ij,pl}^{k^*} = \sum_{m=1}^n h_{mj}^{k^*} R_{milp} + \sum_{m=1}^n h_{im}^{k^*} R_{mjlp} + \sum_{m=1}^n h_{ij}^{m^*} R_{mklp}.$$
(2.15)

3. Proof of Theorem 1.2

Let M^4 be a 4-dimensional compact minimal Legendrian submanifold of \mathbb{S}^9 with nonnegative sectional curvature. For any fixed point $p \in M^4$, we will consider a construction of typical orthonormal basis with respect to the metric g, which was introduced by Ejiri [9] and has been widely applied, see, e.g., [7, 12, 14, 16].

On $U_p M^4 = \{u \in T_p M^4 | g(u, u) = 1\}$, we define a function $f(u) = g(h(u, u), \varphi u)$. Since $U_p M^4$ is compact, there is a unit vector $e_1 \in U_p M^4$ at which the function f(u) attains an absolute maximum, denoted by λ_1 and $\lambda_1 \ge 0$. Moreover, we have the following result.

Lemma 3.1 (cf. [10, 12]) Let $x : M^4 \to \mathbb{S}^9$ be a compact minimal Legendrian submanifold of \mathbb{S}^9 . If the sectional curvature K of M^4 satisfies $K \ge 0$, then for any fixed point p, there exists an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of $T_p M^4$ such that the following hold:

- (i) $h(e_1, e_i) = \lambda_i \varphi e_i, i = 1, 2, 3, 4$, where λ_1 is the maximum of f,
- (ii) $\lambda_1 \geq 2\lambda_i$ for $i \geq 2$. Moreover, if $\lambda_1 = 2\lambda_j$ for some $j \geq 2$, then $f(e_j) = 0$,
- (iii) $(2\lambda_l \lambda_1)(1 + \lambda_1\lambda_l \lambda_l^2) = 0, \quad l \ge 2.$

Lemma 3.2 Let $x : M^4 \to \mathbb{S}^9$ be a compact minimal Legendrian submanifold with nonnegative sectional curvature. If it is not totally geodesic, then there exists an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ such that Lemma 3.1 and the following hold:

$$\lambda_{m+1} = \dots = \lambda_4 = -\frac{m+1}{2(4-m)}\lambda_1, \quad \lambda_1 = \frac{2(4-m)}{\sqrt{(m+1)(9-m)}}, \quad m = 1, 2.$$
(3.1)

2859

Proof Since x is minimal and $\lambda_1 > 0$, we get $\sum_{i=1}^{4} \lambda_i = 0$ and at least one of $\{\lambda_2, \lambda_3, \lambda_4\}$ is not equal to $\frac{1}{2}\lambda_1$. If there exist $l, t \geq 2$ satisfy $(2\lambda_l - \lambda_1)(2\lambda_t - \lambda_1) \neq 0$, then from (iii) of Lemma 3.1, we have $1 + \lambda_1\lambda_l - \lambda_l^2 = 0 = 1 + \lambda_1\lambda_t - \lambda_t^2$, thus $(\lambda_l - \lambda_t)[\lambda_1 - (\lambda_l + \lambda_t)] = 0$, together with (ii) of Lemma 3.1, we obtain that $\lambda_l = \lambda_t$.

Assume that there are (4 - m) $(1 \le m \le 3)$ elements of $\{\lambda_2, \lambda_3, \lambda_4\}$ satisfying $\lambda_i \ne \frac{1}{2}\lambda_1$, we can rearranging the order of $\{e_2, e_3, e_4\}$ such that

$$\lambda_{m+1} = \dots = \lambda_4 \neq \frac{1}{2}\lambda_1, \quad 1 + \lambda_1\lambda_4 - \lambda_4^2 = 0,$$

which together with $\sum_{i=1}^{4} \lambda_i = 0$ gives that $\lambda_4 = -\frac{m+1}{2(4-m)}\lambda_1$ and $\lambda_1^2 = \frac{4(4-m)^2}{(m+1)(9-m)}$.

Choose $\varepsilon = \pm 1$ such that $\varepsilon f(e_4) = \kappa \ge 0$. Since $\lambda_1 = f(e_1) = \max_{v \in U_p M^4} f(v)$, then for any $\delta \in (0, 1)$ and $u = -\delta e_1 + \sqrt{1 - \delta^2} \varepsilon e_4$, we have

$$f(u) = g(h(u, u), \varphi u) = -\delta^3 \lambda_1 - 3\delta(1 - \delta^2)\lambda_4 + (\sqrt{1 - \delta^2})^3 \kappa \le \lambda_1.$$

Thus $-3\delta(1-\delta^2)\lambda_4 \leq (1+\delta^3)\lambda_1$, which equivalents to $m \leq \frac{11\delta^2-11\delta+8}{-\delta^2+\delta+2} := C(\delta)$. It is not difficult to find that the function $C(\delta)$ attains the minimum value $\frac{7}{3}$ at $\delta = \frac{1}{2}$. Hence $m \leq \frac{7}{3}$ and m can only take 1, 2.

We have completed the proof of Lemma 3.2.

Applying Lemma 3.2, we see that there are two cases if M^4 is not totally geodesic:

$$\begin{array}{lll} \textbf{Case I:} & \lambda_1 = \frac{3}{2}, & \lambda_2 = \lambda_3 = \lambda_4 = -\frac{1}{3}\lambda_1 = -\frac{1}{2}; \\ \textbf{Case II:} & \lambda_1 = \frac{4}{\sqrt{21}}, & \lambda_2 = \frac{1}{2}\lambda_1 = \frac{2}{\sqrt{21}}, & \lambda_3 = \lambda_4 = -\frac{3}{4}\lambda_1 = -\frac{3}{\sqrt{21}}. \end{array}$$

We first deal with **Case** I.

Follow the method of [9] (or [10]), for fixed point p, we can choose $\{e_2, e_3, e_4\}$ satisfying

$$f(e_2) = \max_{v \in U_p M^4 \cap \{e_1\}^{\perp}} f(v) := a, \qquad f(e_3) = \max_{v \in U_p M^4 \cap \{e_1, e_2\}^{\perp}} f(v) := d.$$
(3.2)

Then $g(h(e_2, e_2), \varphi e_3) = g(h(e_2, e_2), \varphi e_4) = 0$, $g(h(e_3, e_3), \varphi e_4) = 0$.

We may assume that $g(h(e_2, e_3), \varphi e_4) = c \ge 0$ by changing the sign of e_4 . Now by using (3.2), Lemma 3.1 and the minimality of M^4 , we obtain the following expressions for the second fundamental form h:

$$\begin{cases} h(e_1, e_1) = \frac{3}{2}\varphi e_1, & h(e_1, e_j) = -\frac{1}{2}\varphi e_j, & j = 2, 3, 4, \\ h(e_2, e_2) = -\frac{1}{2}\varphi e_1 + a\varphi e_2, & h(e_2, e_3) = b\varphi e_3 + c\varphi e_4, \\ h(e_3, e_3) = -\frac{1}{2}\varphi e_1 + b\varphi e_2 + d\varphi e_3, & h(e_2, e_4) = c\varphi e_3 - (a+b)\varphi e_4, \\ h(e_4, e_4) = -\frac{1}{2}\varphi e_1 - (a+b)\varphi e_2 - d\varphi e_3, & h(e_3, e_4) = c\varphi e_2 - d\varphi e_4, \end{cases}$$
(3.3)

where $a, b, c, d \in \mathbb{R}$ and $\frac{3}{2} \ge a \ge d \ge 0$, $c \ge 0$.

We note that $h_{ij}^{k^*} = g(h(e_i, e_j), \varphi e_k)$, and $h_{ij}^{k^*}$ is totally symmetric for indices i, j, k. By (3.3) and Gauss equation (2.8), we get

$$\begin{cases} R_{2323} = \frac{5}{4} + ab - b^2 - c^2, & R_{2324} = 2ac, \\ R_{2424} = \frac{5}{4} - 2a^2 - b^2 - c^2 - 3ab, & R_{2334} = -2dc, \\ R_{3434} = \frac{5}{4} - 2d^2 - b^2 - c^2 - ab, & R_{2434} = -d(a+2b). \end{cases}$$
(3.4)

2860

From Lemma 2.1, we know that $\overline{\nabla}^{\xi} h = 0$. Hence, by (2.15), for any $l, p \in \{1, 2, 3, 4\}$, we have

$$\sum_{m=1}^{4} h_{mj}^{k^*} R_{milp} + \sum_{m=1}^{4} h_{im}^{k^*} R_{mjlp} + \sum_{m=1}^{4} h_{ij}^{m^*} R_{mklp} = 0.$$
(3.5)

Taking (k, i, j) = (1, 1, 2), (1, 1, 3), (1, 1, 4) in (3.5), respectively, and combining with (3.3), we can get

$$R_{12lp} = R_{13lp} = R_{14lp} = 0, \quad l, p \in \{1, 2, 3, 4\}.$$
(3.6)

Taking (k, i, j) = (3, 3, 3), (2, 2, 3), (2, 2, 4), (4, 4, 4) in (3.5), respectively, for any $l, p \in \{1, 2, 3, 4\}$, we have the following equations:

$$3bR_{23lp} = 0,$$
 (3.7)

$$(a-2b)R_{23lp} - 2cR_{24lp} = 0, (3.8)$$

$$2cR_{23lp} - (3a + 2b)R_{24lp} = 0, (3.9)$$

$$dR_{34lp} + (a+b)R_{24lp} = 0. (3.10)$$

From (3.7), (3.4) we obtain that

$$\frac{1}{2}bR_{2324} = abc = 0, \qquad -\frac{1}{2}bR_{2334} = bcd = 0.$$
 (3.11)

So we can divide the discussions into the following three subcases:

I-(i): a = 0; **I-(ii)**: $a \neq 0$, b = 0; **I-(iii)**: $a \neq 0$, $b \neq 0$, c = 0.

I-(i). Let $u_1 = \frac{1}{\sqrt{2}}(e_2 + e_3)$, $u_2 = \frac{1}{\sqrt{3}}(e_2 + e_3 + e_4)$, then by (3.2), we have $f(e_2) = f(e_3) = f(e_4) = f(u_1) = f(u_2) = 0$, which implies d = b = c = 0.

I-(ii). As $a \neq 0, b = 0$, from (3.4) and (3.8) we can get

$$aR_{2323} - 2cR_{2423} = a(\frac{5}{4} - c^2) - 2c(2ac) = 0,$$

which gives that $c^2 = \frac{1}{4}$. Similarly, by (3.4), (3.9) and (3.10), we get

$$2cR_{2323} - 3aR_{2423} = 2c(1 - 3a^2) = 0,$$

$$dR_{3423} + aR_{2423} = d(-2dc) + a(2ac) = 0$$

From which we obtain that $a^2 = d^2 = \frac{1}{3}$. Since $a \ge d \ge 0$, $c \ge 0$, so $a = d = \frac{1}{\sqrt{3}}$, $c = \frac{1}{2}$. Then for $u = -\frac{1}{\sqrt{5}}(e_2 + e_3 - \sqrt{3}e_4)$, we have $g(h(u, u), \varphi u) = \sqrt{\frac{5}{3}} > \frac{1}{\sqrt{3}} = a$, which contradicts to the definition of a in (3.2), hence case I-(ii) does not occur.

I-(iii). From $b \neq 0$, c = 0 and (3.7), (3.9), we get the following equations:

$$R_{2323} = \frac{5}{4} + ab - b^2 = 0, \tag{3.12}$$

$$(3a+2b)(\frac{5}{4}-2a^2-b^2-3ab) = 0.$$
(3.13)

2861

If 3a+2b=0, then by (3.12), we can obtain that $b^2 = \frac{3}{4}$ and $ab = -\frac{1}{2}$, thus $a^2 = \frac{4}{9}b^2 = \frac{1}{3}$. Substituting this and c = 0 into (3.4), (3.10), we can get that

$$R_{2424} = \frac{4}{3}, \quad R_{3424} = -\frac{4}{3}bd, \quad dR_{3424} + (a+b)R_{2424} = -\frac{4}{3}b(d^2 - \frac{1}{3}) = 0.$$

It follows that $d^2 = \frac{1}{3}$. Since $a \ge d \ge 0$, we have $a = d = \frac{1}{\sqrt{3}}$, $b = -\frac{\sqrt{3}}{2}$. Then for $u = \frac{1}{\sqrt{2}}(-e_2 + e_3)$, we have $f(u) = \frac{3}{4}\sqrt{\frac{3}{2}} > a$. This is a contradiction.

If $3a + 2b \neq 0$, then (3.13) implies that $\frac{5}{4} - 2a^2 - b^2 - 3ab = 0$. Using this and (3.12), we can deduce that $b^2 = \frac{5}{12}$, $a^2 = \frac{5}{3}$. Substituting this into (3.10) gives that

$$dR_{3434} + (a+b)R_{2434} = d(\frac{5}{3} - 2d^2) = 0, ag{3.14}$$

this and $d \ge 0$ gives that d = 0 or $d = \sqrt{\frac{5}{6}}$.

To sum up, we obtain the following three posibilities for Case I:

(1) a = b = c = d = 0;(2) $a = \sqrt{\frac{5}{3}}, \ b = -\sqrt{\frac{5}{12}}, \ c = 0, \ d = 0;$ (3) $a = \sqrt{\frac{5}{3}}, \ b = -\sqrt{\frac{5}{12}}, \ c = 0, \ d = \sqrt{\frac{5}{6}}.$

Next, we will show that **Case II** does not occur.

In this case, as $\lambda_1 = 2\lambda_2$, by Lemma 3.1, we see that $f(e_2) = 0$. Choose $\{e_3, e_4\}$ such that $g(h(e_2, e_2), \varphi e_4) = 0$ and $g(h(e_2, e_2), \varphi e_3) = a \ge 0$. Then the second fundamental form h of $M^4 \hookrightarrow \mathbb{S}^9$ can be expressed as follows:

$$\begin{cases} h(e_1, e_1) = \frac{4}{\sqrt{21}}\varphi e_1, \quad h(e_1, e_2) = \frac{2}{\sqrt{21}}\varphi e_2, \quad h(e_1, e_k) = -\frac{3}{\sqrt{21}}\varphi e_k, \quad k = 3, 4, \\ h(e_2, e_2) = \frac{2}{\sqrt{21}}\varphi e_1 + a\varphi e_3, \qquad h(e_2, e_3) = a\varphi e_2 + b\varphi e_3 + c\varphi e_4, \\ h(e_3, e_3) = -\frac{3}{\sqrt{21}}\varphi e_1 + b\varphi e_2 + d\varphi e_3 + f\varphi e_4, \quad h(e_2, e_4) = c\varphi e_3 - b\varphi e_4, \\ h(e_4, e_4) = -\frac{3}{\sqrt{21}}\varphi e_1 - b\varphi e_2 - (a+d)\varphi e_3 - f\varphi e_4, \\ h(e_3, e_4) = c\varphi e_2 + f\varphi e_3 - (a+d)\varphi e_4, \end{cases}$$
(3.15)

where $a, b, c, d, f \in \mathbb{R}$.

Similar to Case I, using (3.15) and Gauss equation (2.8), we easily have

$$\begin{cases} R_{1212} = 1 + \lambda_1 \lambda_2 - \lambda_2^2 = \frac{25}{21}, & R_{1224} = R_{1234} = 0, \\ R_{2323} = \frac{15}{21} + (ad - a^2 - c^2 - b^2), & R_{1223} = \frac{5}{\sqrt{21}}a. \end{cases}$$
(3.16)

Taking (k, i, j) = (2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 3, 4) in (3.5), respectively, and using (3.15), for any $l, p \in \{1, 2, 3, 4\}$, we can get

$$\frac{2}{\sqrt{21}}R_{12lp} + aR_{32lp} = 0, \tag{3.17}$$

$$bR_{32lp} + cR_{42lp} = 0, (3.18)$$

$$aR_{34lp} + 2cR_{32lp} - 2bR_{42lp} = 0, (3.19)$$

$$(2a+d)R_{24lp} - fR_{23lp} = 0. (3.20)$$

Taking (l, p) = (1, 2) in (3.17)-(3.20), we obtain $a^2 = \frac{10}{21}$ and b = c = f = 0, then $a = \sqrt{\frac{10}{21}}$. From (3.17), we also have

$$\frac{2}{\sqrt{21}}R_{1223} + aR_{3223} = \frac{10}{21}a - a(\frac{15}{21} + ad - a^2) = 0,$$
(3.21)

which implies that $d = \sqrt{\frac{5}{42}}$. Let $u = -\cos \alpha e_3 - \sin \alpha e_4$, $\alpha \in (0, \frac{\pi}{2})$ such that $\tan \alpha = \sqrt{\frac{7}{3}}$, then $f(u) = \frac{3\sqrt{3}}{\sqrt{21}} > \frac{4}{\sqrt{21}} = \lambda_1$, which gives the desired contradiction. Hence, **Case II** does not occur.

Therefore, we immediately obtain the following lemma:

Lemma 3.3 Let M^4 be a 4-dimensional compact minimal Legendrian submanifold of \mathbb{S}^9 . If the sectional curvature $K \ge 0$ for each point p of M^4 , then there exists an orthonormal basis $\{e_1, e_2, e_3, e_4\}$ of $T_p M^4$ such that the second fundamental form h of M^4 can be expressed as one of the following:

(i) $h(e_i, e_j) = 0, \ 1 \le i, j \le 4;$

- (ii) *h* is expressed by (3.3), with $a = \sqrt{\frac{5}{3}}, \ b = -\sqrt{\frac{5}{12}}, \ c = 0, \ d = \sqrt{\frac{5}{6}};$
- (iii) h is expressed by (3.3), with a = b = c = d = 0;
- (iv) *h* is expressed by (3.3), with $a = \sqrt{\frac{5}{3}}, \ b = -\sqrt{\frac{5}{12}}, \ c = 0, \ d = 0.$

Let M^4 be given as in Lemma 3.3, then we have the following result:

Lemma 3.4 Let $p \in M^4$, we have

- (1) if (i) of Lemma 3.3 holds, then $K(p) \equiv 1$;
- (2) if (ii) of Lemma 3.3 holds, then $K(p) \equiv 0$;
- (3) if (iii) of Lemma 3.3 holds, then $0 \le K(p) \le \frac{5}{4}$, where K(p) = 0 for every plane through e_1 , and $K(p) = \frac{5}{4}$ for any plane perpendicular to e_1 ;
- (4) if (iv) of Lemma 3.3 holds, then $0 \le K(p) \le \frac{5}{3}$, where K(p) = 0 for every plane through e_1 or e_2 , and $K(p) = \frac{5}{3}$ only for the plane determined by e_3 and e_4 .

Proof (1) If (i) of Lemma 3.3 holds, $h \equiv 0$, by Gauss equation (2.8), we obtain that $K(p) \equiv 1$.

(2) If (ii) of Lemma 3.3 holds, by (3.4), (3.6) we have $R_{ijij} = 0$ for $\forall i, j$, then K(p) = 0.

(3) If (iii) of Lemma 3.3 holds, by (3.4), (3.6), we immediately obtain that

$$R_{1212} = R_{1313} = R_{1414} = 0, \quad R_{2323} = R_{2424} = R_{3434} = \frac{5}{4}.$$

Choose an orthonormal basis $\{X, Y, Z, W\}$ of $T_p M^4$:

$$X = \sin \theta e_1 - \cos \theta \sin \alpha e_2 + \cos \theta \cos \alpha \sin \beta e_3 + \cos \theta \cos \alpha \cos \beta e_4,$$

$$Y = \cos \theta e_1 + \sin \theta \sin \alpha e_2 - \sin \theta \cos \alpha \sin \beta e_3 - \sin \theta \cos \alpha \cos \beta e_4,$$

$$Z = \cos \alpha e_2 + \sin \alpha \sin \beta e_3 + \sin \alpha \cos \beta e_4,$$

$$W = \cos \beta e_3 - \sin \beta e_4,$$

(3.22)

where $\theta, \alpha, \beta \in \mathbb{R}$. Then straightforward computation shows that

$$g(R(X,Y)Y,X) = 0, \quad g(R(X,Z)Z,X) = g(R(X,W)W,X) = \frac{5}{4}\cos^2\theta,$$

$$g(R(Z,W)W,Z) = \frac{5}{4}, \quad g(R(Y,Z)Z,Y) = g(R(Y,W)W,Y) = \frac{5}{4}\sin^2\theta.$$

Hence $0 \le K(p) \le \frac{5}{4}$, where K(p) = 0 for any plane through e_1 , $K(p) = \frac{5}{4}$ for any plane perpendicular to e_1 . (4) In this case, we also use (3.4) and (3.6) to get

$$R_{1212} = R_{1313} = R_{1414} = R_{2323} = R_{2424} = 0, \quad R_{3434} = \frac{5}{3}.$$

Then for the basis stated in (3.22), we have g(R(X,Y)Y,X) = g(R(X,Z)Z,X) = 0,

$$g(R(X, W)W, X) = \frac{5}{3}\cos^{2}\theta\cos^{2}\alpha, \quad g(R(Y, Z)Z, Y) = 0,$$

$$g(R(Y, W)W, Y) = \frac{5}{3}\sin^{2}\theta\cos^{2}\alpha, \quad g(R(Z, W)W, Z) = \frac{5}{3}\sin^{2}\alpha.$$

Thus the assertion of (4) immediately follows from the above arguments.

In summing up, we have completed the proof of Lemma 3.4.

Since the second fundamental form h of $M^4 \hookrightarrow \mathbb{S}^9$ is *C*-parallel, we can extend the basis $\{e_i\}_{i=1}^4$ by parallel translation along geodesics through p to a normal neighborhood around p, so as to obtain a local orthonormal frame $\{E_i\}_{i=1}^4$, such that h has the same expression in any point as in p. This is stated in the following lemma, which can be proved similarly as Proposition 4.2 of [8].

Lemma 3.5 Let M^4 be a 4-dimensional compact minimal Legendrian submanifold of \mathbb{S}^9 with K not constant and satisfying $K \ge 0$. Then there exists globally a unique tangent vector field E_1 , and locally tangent vector fields $\{E_2, E_3, E_4\}$, such that

- (1) $\{E_1, E_2, E_3, E_4\}$ is a local orthonormal frame,
- (2) for any $p \in M^4$, f attains its maximum value at $E_1(p)$,
- (3) for any $p \in M^4$, $\{E_1(p), E_2(p), E_3(p), E_4(p)\}$ satisfies (iii) or (iv) of Lemma 3.3.

In order to prove Theorem 1.2, we need also the following uniqueness theorem for Legendrian submanifolds.

Lemma 3.6 (cf. [6]) Let f and $\bar{f}: M^n \to \mathbb{S}^{2n+1}$ be two n-dimensional Legendrian isometric immersions of a connected Riemannian manifold M^n into the unit sphere with second fundamental forms h and \bar{h} , respectively. If

 $g(f_*X, f_*Y) = g(\bar{f}_*X, \bar{f}_*Y), \quad g(h(X, Y), \varphi f_*Z) = g(\bar{h}(X, Y), \varphi \bar{f}_*Z),$

for all vector fields X, Y, Z tangent to M^n , then there exists an isometry τ of \mathbb{S}^{2n+1} such that $f = \tau \circ \overline{f}$.

Completion of the proof of Theorem 1.2

If the sectional curvature K is constant, by Lemma 3.3 and 3.4, we know that $K \equiv 1$ or $K \equiv 0$ and M^4 is totally geodesic or it is flat. According to the main result of [6], we conclude that, up to an isometry, $M^4 \hookrightarrow \mathbb{S}^9$ must be given by the immersion $f^{(1)}$, $f^{(2)}$, as described in Example 1.1, Example 1.2, repectively.

If K is not constant, by comparing Lemma 3.3 and (1.1), (1.2), we can apply Lemma 3.4, 3.5 and 3.6 to conclude that, up to an isometry, $M^4 \hookrightarrow \mathbb{S}^9$ must be given by the immersion $\tilde{f}^{(3)}$, $\tilde{f}^{(4)}$, as described in Example 1.3, Example 1.4, repectively.

We have finished the proof of Theorem 1.2.

Acknowledgment

The authors would like to thank the anonymous referees for their valuable comments and suggestions. This work was supported by the grant No.11801524 of NSFC.

References

- Blair DE. Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics 509, Springer-Verlag, Berlin-New York, 1976.
- [2] Blair DE. Riemannian geometry of contact and symplectic manifolds, 2nd edn. Birkhauser, Boston, 2010.
- [3] Baikoussis C, Blair DE, Koufogiorgos T. Integral submanifolds of Sasakian space forms $\overline{M}^{7}(k)$. Results in Mathematics 1995; 27: 207-226.
- [4] Chen BY, Dillen F, Verstraelen L, Vrancken L. An exotic totally real minimal immersion of S^3 in $\mathbb{C}P^3$ and its characterisation. Proceedings of the Royal Society of Edinburgh. Section A. Mathematics 1996; 126: 153-165.
- [5] Chen BY, Ogiue K. On totally real submanifolds. Transactions of the American Mathematical Society 1974; 193: 257-266.
- [6] Cheng XX, He HL, Hu ZJ. C-totally real submanifolds with constant sectional curvature in the Sasakian space forms. Results in Mathematics 2021; 76: 144, 16 pp.
- [7] Cheng XX, Hu ZJ. An optimal inequality on locally strongly convex centroaffine hypersurfaces. Journal of Geometric Analysis 2018; 28: 643-655.
- [8] Dillen F, Vrancken L. C-totally real submanifolds of $S^7(1)$ with non-negative sectional curvature. Mathematical Journal of Okayama University 1989; 31: 227-242.
- [9] Ejiri N. Totally real minimal immersions of n-dimensional real space forms into n-dimensional complex space forms. Proceedings of the American Mathematical Society 1982; 84: 243-246.
- [10] Hu ZJ, Li HZ, Simon U, Vrancken L. On locally strongly convex affine hypersurfaces with parallel cubic form, I. Differential Geometry and its Applications 2009; 27: 188-205.
- [11] Hu ZJ, Xing C. On the Ricci curvature of 3-submanifolds in the unit sphere. Archiv der Mathematik 2020; 115: 727-735.
- [12] Hu ZJ, Yin JB. An optimal inequality related to characterizations of the contact Whitney spheres in Sasakian space forms. Journal of Geometric Analysis 2020; 30: 3373-3397.
- [13] Luo Y, Sun LL, Yin JB. A new characterization of the Calabi torus in the unit sphere. arXiv: 1911.08155.
- [14] Li HZ, Vrancken L. A basic inequality and new characterization of Whitney spheres in a complex space form. Israel Journal of Mathematics 2005; 146: 223-242.

ZHAI and ZHANG/Turk J Math

- [15] Li HZ, Wang XF. Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space. Results in Mathematics 2011; 59: 453-470.
- [16] Montiel S, Urbano F. Isotropic totally real submanifolds. Mathematische Zeitschrift 1988; 199: 55-60.
- [17] Verstraelen L, Vrancken L. Pinching theorems for C-tatally real submanifolds of Sasakian space forms. Journal of Geometry 1988; 33: 172-184.
- [18] Yamaguchi S, Kon M, Ikawa T. C-totally real submanifolds. Journal of Differential Geometry 1976; 11: 59-64.
- [19] Yamaguchi S, Kon M, Miyahara Y. A theorem on C-totally real minimal surface. Proceedings of the American Mathematical Society 1976; 54: 276-280.