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1. Introduction
Let Mm be an m -dimensional submanifold isometrically immersed in the unit sphere S2n+1 , which has canonical
Sasakian structure (ϕ, ξ, η, g) (see Section 2 for more details). We say that Mm is C-totally real (or integral)
if the contact form η restricted to Mm vanishes, i.e. η(X) = 0 for any X ∈ TMm . In particular, if m = n ,
we call it a Legendrian submanifold. The study of these submanifolds is an important geometry topic that has
been widely carried out, see, e.g., among many others, [1–5, 8, 11, 12, 18].

Now, we are interested in the problem of how to classify n -dimensional compact minimal Legendrian
submanifolds in S2n+1 with nonnegative sectional curvature. For the case n = 2 , Yamaguchi, Kon and Miyahara
[19] proved that M2 is S2 (M2 is totally geodesic and K ≡ 1) or T 2 (M2 is flat and K ≡ 0). In [8], Dillen
and Vrancken settled this problem for n = 3 by giving the following classification:

Theorem 1.1 ([8]) Let x : M3 → S7 be a C-totally real, minimal immersion of a 3-dimensional compact
Riemannian manifold M . If the sectional curvatures K of M satisfying K ≥ 0 , then it holds the following:

(1) M is simply connected and x is congruent to i : S3 → S7 (i.e. M is totally geodesic in S7 ), or
(2) M is a covering of T 3 with covering map π and x is congruent to j ◦ π :M → S7 , or

(3) M is a covering of S1(
√
3)× S2(

√
3/2) with covering map π and x is congruent to k ◦ π :M → S7 ,

where the map i, j and k are defined in section 5 of [8].

In this paper, we gave a complete classification of 4 -dimensional compact minimal Legendrian subman-
ifolds with nonnegative sectional curvature in S9 , which extends the above theorem. To state our result, we
first introduce several canonical examples.
Example 1.1 The totally geodesic Legendrian sphere in S9 (cf. [6]).
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Let L be a 5 -dimensional linear subspace of C5 passing through the origin and such that JL is orthogonal
to L . Then S4 = S9 ∩ L =: f (1)(S4) , is a 4 -dimensional totally geodesic compact minimal Legendrian
submanifold of S9 .

Example 1.2 The flat torus in S9 (cf. [6, 8]).
Let S1 be a circle of radius 1 and T 4 = S1 × S1 × S1 × S1 . Then, with the usual parameterization

u = (u1, u2, u3, u4) of T 4 , an immersion f (2) : T 4 → S9 is defined by

f (2)(u) = 1√
5
(eiu1 , eiu2 , eiu3 , eiu4 , e−i(u1+u2+u3+u4)) ∈ C5 ' R10

is a flat compact minimal Legendrian submanifold of S9 (see [6] for detailed computation).

Example 1.3 The Calabi torus in S9 (cf. [11, 13]).
Let ψ : S3 ↪→ R4 : p 7→ (y1, y2, y3, y4) be the inclusion mapping, and γ : R ↪→ S3 be the standard

embedding with a parametrization

γ(t) =
(

2√
5
e−

it
2 , 1√

5
ei2t

)
= (γ1(t), γ2(t)) ∈ C2.

Putting f (3) : R× S3 → S9 such that f (3)(t, p) = (γ1(t)ψ(p), γ2(t)) ∈ C5 ' R10 . For the sake of calculation, we
assume that f (3)(t, p) = (x1, x2, · · · , x10) , then

(x2i−1, x2i) =
2√
5

(
yi cos

t
2 , −yi sin

t
2

)
, 1 ≤ i ≤ 4,

(x9, x10) =
1√
5

(
cos 2t, sin 2t

)
,

where (y1, y2, y3, y4) = (sin θ1, cos θ1 sin θ2, cos θ1 cos θ2 sin θ3, cos θ1 cos θ2 cos θ3) .

Choose an orthonormal frame {ei}4i=1 for f (3)(R× S3) with respect to g , where g is the induced metric
of S9 → R10 , such that

e1 = f
(3)
t , e2 =

√
5
2 f

(3)
θ1
, e3 =

√
5

2 cos θ1
f
(3)
θ2
, e4 =

√
5

2 cos θ1 cos θ2
f
(3)
θ3
.

It is easy to verify that η(ei) = 0 for i = 1, 2, 3, 4 , so f (3) is a Legendrian submanifold. Let D be the standard
Euclidean flat connection, by using g(Deiej , ϕek) = g(h(ei, ej), ϕek) , 1 ≤ i, j, k ≤ 4 , we can derive the second
fundamental form h satisfies

h(e1, e1) =
3
2ϕe1, h(e1, ej) = − 1

2ϕej , h(ei, ej) = − 1
2δijϕe1, i, j = 2, 3, 4. (1.1)

Then, f (3) is a minimal submanifold with nonnegative sectional curvature. Furthermore, we see that
f (3)(t, y1, y2, y3, y4) = f (3)(t̃, ỹ1, ỹ2, ỹ3, ỹ4) if and only if t = t̃ (mod 4π) and yi = ỹi , 1 ≤ i ≤ 4 , thus
f (3)(R× S3) is isometric with S1(2)× S3(2/

√
5) .

Therefore, we obtain an embedding f̃ (3) from S1(2) × S3(2/
√
5) into S9 , which is a compact minimal

Legendrian submanifold with nonnegative sectional curvature.

Example 1.4 Let ψ : R × S2 → S7 : (t2, p) 7→
(√

3
2 e

− it2√
3 τ(p), 12e

i
√
3t2

)
be a Calabi torus defined in [11],

here τ : S2 ↪→ R3 is the inclusion mapping. Then, following the method of Li-Wang [15], we can define
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f (4) : R2 × S2 → S9 by

f (4)(t1, t2, p) =( 2√
5
e−

it1
5 ψ(t2, p),

1√
5
e

i4t1
5 )

=(
√
3√
5
e
−i(

t1
5 +

t2√
3
)
τ(p), 1√

5
e−i(

t1
5 −

√
3t2), 1√

5
e

i4t1
5 ).

Similar to Example 1.3, putting f (4)(t1, t2, p) = (x1, x2, · · · , x10) , then we have
(x2i−1, x2i) =

√
3√
5
yi
(
cos( t15 + t2√

3
), − sin( t15 + t2√

3
)
)
, i = 1, 2, 3,

(x7, x8) =
1√
5

(
cos( t15 −

√
3t2), − sin( t15 −

√
3t2)

)
,

(x9, x10) =
1√
5

(
cos 4t1

5 , sin
4t1
5

)
,

where (y1, y2, y3) = (sin θ1, cos θ1 sin θ2, cos θ1 cos θ2) = τ(p) .

Choose an orthonormal frame {ei}4i=1 for f (4)(R2 × S2) :

e1 = 5
2f

(4)
t1 , e2 =

√
5
2 f

(4)
t2 , e3 =

√
5
3f

(4)
θ1
, e4 =

√
5

3 cos2 θ1
f
(4)
θ2
.

By computation we can derive that the second fundamental form h satisfies

h(e1, ej) = − 1
2ϕej + 2δ1jϕe1, 1 ≤ j ≤ 4,

h(e2, e2) = − 1
2ϕe1 +

√
5
3ϕe2, h(e3, e4) = 0,

h(ek, ek) = − 1
2ϕe1 −

√
5
12ϕe2, h(e2, ek) = −

√
5
12ϕek, k = 3, 4.

(1.2)

Then, f (4) : R2 × S2 → S9 is a minimal submanifold with nonnegative sectional curvatures. Furthermore, we
see that f (4)(t1, t2, y1, y2, y3) = f (4)(t̃1, t̃2, ỹ1, ỹ2, ỹ3) if and only if t1 = t̃1 (mod 5π) , t2 = t̃2 (mod

√
3π) and

yi = ỹi , i = 1, 2, 3 .
Therefore, we obain an embedding f̃ (4) : T 2 × S2(

√
3/5) → S9 , which is a compact minimal Legendrian

submanifold with nonnegative sectional curvature.
Having the preceding preparations, now we can state our main theorem as follows:

Theorem 1.2 Let x : M4 → S9 be a compact minimal Legendrian submanifold of the 9-dimensional unit
sphere. If the sectional curvature K ≥ 0 , then it holds the following:

(1) x(M4) is totally geodesic and is given by f (1) in Example 1.1; or

(2) x(M4) is flat and is given by f (2) in Example 1.2; or

(3) x(M4) is congruent to S1(2)× S3(2/
√
5) and is given by f̃ (3) in Example 1.3; or

(4) x(M4) is congruent to T 2 × S2(
√

3/5) and is given by f̃ (4) in Example 1.4.

Remark 1.3 We note that the Legendrian submanifolds given in (1) and (2) of Theorem 1.2 have constant
sectional curvature, which have been described in [6]. While the last two examples have nonconstant sectional
curvature, they are constructed by Calabi product of a 3-dimensional Legendrian submanifold in S7 and a point
(refer to [15]).
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2. Preliminaries
In this section, we first review some basic formulas about Sasakian manifold S2n+1 and its Legendrian submani-
folds (see [2, 12] for details), then we give an important property for compact, minimal, Legendrian submanifolds.

2.1. The Sasakian structure on the (2n+1)-dimensional unit sphere

As a Sasakian manifold, the unit sphere S2n+1 has constant ϕ -sectional curvature 1 and canonical Sasakian
structure (ϕ, ξ, η, g) : g is the induced metric; ξ = JN , J is the natural complex structure of Cn+1 and N is
the unit normal vector field of the inclusion S2n+1 ↪→ Cn+1 ; let 〈·, ·〉 denote the standard Hermitian metric on
Cn+1 . Then for any tangent vector fields X,Y of S2n+1 , it holds that:


ϕ(X) = JX − 〈JX,N〉N, ϕ2X = −X + η(X)ξ, ϕξ = 0,

η(X) = g(X, ξ), η(ϕX) = 0, dη(X,Y ) = g(X,ϕY ),

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), rank (ϕ) = 2n,

(2.1)

∇̄Xξ = −ϕX, (∇̄Xϕ)Y = g(X,Y )ξ − η(Y )X, (2.2)

where ∇̄ is the Levi-Civita connection with respect to the metric g .
The curvature tensor R̄(X,Y )Z := ∇̄X∇̄Y Z − ∇̄Y ∇̄XZ − ∇̄[X,Y ]Z of S2n+1 has the expression:

R̄(X,Y )Z = g(Y, Z)X − g(X,Z)Y .

2.2. Legendrian submanifolds of S2n+1

Let Mn be an n -dimensional submanifold isometrically immersed in the unit sphere S2n+1 . Denote also by
g the metric of Mn , and ∇ the Levi-Civita connection of (Mn, g) . The Gauss and Weingarten formulae of
Mn ↪→ S2n+1 are given by

∇̄XY = ∇XY + h(X,Y ), ∇̄XV = −AVX +∇⊥
XV, (2.3)

where X,Y ∈ TMn are tangent vector fields, V ∈ T⊥Mn is a normal vector field, h is the second fundamental
form of Mn , AV is the shape operator associated to V , and ∇⊥ is the normal connection of the normal bundle
T⊥Mn . From (2.3), we can obtain

g(h(X,Y ), V ) = g(AVX,Y ). (2.4)

Assume that Mn is a Legendrian submanifold of S2n+1 , i.e. the contact form η satisfies η(X) = g(X, ξ) = 0

for all X ∈ TMn . Then ξ is a normal vector field of Mn , and by dη(Y,X) = g(Y, ϕX) = 0 , we see that
ϕX ∈ T⊥Mn . From (2.3), we can also get

AφYX = −ϕh(X,Y ), ∇⊥
XϕY = ϕ∇XY + g(X,Y )ξ, ∀X,Y ∈ TMn. (2.5)

In the sequel, we will make the following convention on range of indices:

i∗ = i+ n, α∗ = α+ n; 1 ≤ i, j, k, l,m, p, s ≤ n; 1 ≤ α, β ≤ n+ 1.
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Now, we choose a local Legendre frame {ei, ei∗ , e2n+1}ni=1 in S2n+1 along Mn , such that {ei}ni=1 is an
orthonormal frame field of TMn , and {ei∗ = ϕei, e2n+1 = ξ}ni=1 is the orthonormal normal vector fields

of Mn ↪→ S2n+1 . Denote by {ωi} the dual frame of {ei} . Let {ωj
i } and {ωβ∗

α∗} denote the connection 1 -forms
of TMn and T⊥Mn , respectively:

∇ei =
n∑

j=1

ωj
i ej , ∇⊥eα∗ =

n+1∑
β=1

ωβ∗

α∗eβ∗ ,

where ωj
i + ωj

i = 0 and ωβ∗

α∗ + ωα∗

β∗ = 0 . By (2.5), we have ωj
i = ωj∗

i∗ and ω2n+1
i∗ = ωi .

Put hk∗

ij = g(h(ei, ej), ϕek) . It is easily seen that

hk
∗

ij = hj
∗

ik = hi
∗

jk, ∀ i, j, k. (2.6)

From (2.2), (2.4) and the Gauss formula, we get

g(Aξei, ej) = g(h(ei, ej), ξ) = g(∇̄eiej , ξ) = −g(ej , ∇̄eiξ) = g(ej , ϕei) = 0.

h
(n+1)∗

ij = h2n+1
ij := g(h(ei, ej), e2n+1) = g(Aξei, ej) = 0, ∀ i, j. (2.7)

Let Rijkl := g
(
R(ei, ej)el, ek

)
and Rijα∗β∗ := g

(
R(ei, ej)eβ∗ , eα∗

)
be the components of the curvature

tensors of ∇ and ∇⊥ with respect to the Legendre frame, respectively. Then the equations of Gauss, Ricci and
Codazzi are given by

Rijkl = δikδjl − δilδjk +

n∑
m=1

(hm
∗

ik h
m∗

jl − hm
∗

il h
m∗

jk ), (2.8)

Rijk∗l∗ =

n∑
m=1

(hm
∗

ik h
m∗

jl − hm
∗

il h
m∗

jk ), Rijk∗(2n+1) = 0, (2.9)

hα
∗

ij,k = hα
∗

ik,j , (2.10)

where hα∗

ij,k is the component of the covariant differentiation of h , defined by

n∑
k=1

hα
∗

ij,kω
k := dhα

∗

ij −
n∑

k=1

hα
∗

kj ω
k
i −

n∑
k=1

hα
∗

ik ω
k
j +

n+1∑
β=1

hβ
∗

ij ω
α∗

β∗ , (2.11)

or, equivalently,

(∇̄h)(ek, ei, ej) := ∇⊥
ek
(h(ei, ej))− h(∇ekei, ej)− h(ei,∇ekej) =

n+1∑
α=1

hα
∗

ij,keα∗ . (2.12)

For a compact minimal Legendrian submanifold of S2n+1 , we have the following result:
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Lemma 2.1 (cf. [8, 17]) If Mn is an n-dimensional compact, minimal, Legendrian submanifold of S2n+1

and if all the sectional curvatures K of Mn satisfy K ≥ 0 , then
(i) (∇̄h)(u, v, w) = g

(
(∇̄h)(u, v, w), ξ(p)

)
ξ(p) ,

(ii) R(v,Aφvv,Aφvv, v) = 0 , for all p ∈Mn and u, v, w ∈ TpM
n .

Next, we can naturally define a modified covariant differentiation ∇̄ξh by

(∇̄ξh)(ek, ei, ej) : = (∇̄h)(ek, ei, ej)− g
(
h(ei, ej

)
, ϕek)ξ :=

n∑
k=1

h̃k
∗

ij,lek∗ . (2.13)

Then, from (2.12) and Lemma 2.1, we know that a compact minimal Legendrian submanifold with nonnegative
sectional curvature of S2n+1 satisfies ∇̄ξh = 0 , now the second fundamental form is called C -parallel.

Moreover, the second covariant derivative h̃k∗

ij,lp is defined by

n∑
p=1

h̃k
∗

ij,lpθp := dhk
∗

ij,l +

n∑
p=1

hk
∗

pj,lθpi +

n∑
p=1

hk
∗

ip,lθpj +

n∑
p=1

hk
∗

ij,pθpl +

n∑
p=1

hp
∗

ij,lθp∗k∗ , (2.14)

and the components satisfy the following Ricci identity:

h̃k
∗

ij,lp − h̃k
∗

ij,pl =

n∑
m=1

hk
∗

mjRmilp +

n∑
m=1

hk
∗

imRmjlp +

n∑
m=1

hm
∗

ij Rmklp. (2.15)

3. Proof of Theorem 1.2
Let M4 be a 4 -dimensional compact minimal Legendrian submanifold of S9 with nonnegative sectional curva-
ture. For any fixed point p ∈M4 , we will consider a construction of typical orthonormal basis with respect to
the metric g , which was introduced by Ejiri [9] and has been widely applied, see, e.g., [7, 12, 14, 16].

On UpM
4 = {u ∈ TpM

4|g(u, u) = 1} , we define a function f(u) = g(h(u, u), ϕu) . Since UpM
4 is

compact, there is a unit vector e1 ∈ UpM
4 at which the function f(u) attains an absolute maximum, denoted

by λ1 and λ1 ≥ 0 . Moreover, we have the following result.

Lemma 3.1 (cf. [10, 12]) Let x : M4 → S9 be a compact minimal Legendrian submanifold of S9 . If the
sectional curvature K of M4 satisfies K ≥ 0 , then for any fixed point p, there exists an orthonormal basis
{e1, e2, e3, e4} of TpM4 such that the following hold:

(i) h(e1, ei) = λiϕei, i = 1, 2, 3, 4 , where λ1 is the maximum of f ,
(ii) λ1 ≥ 2λi for i ≥ 2 . Moreover, if λ1 = 2λj for some j ≥ 2 , then f(ej) = 0 ,
(iii) (2λl − λ1)(1 + λ1λl − λ2l ) = 0, l ≥ 2 .

Lemma 3.2 Let x : M4 → S9 be a compact minimal Legendrian submanifold with nonnegative sectional
curvature. If it is not totally geodesic, then there exists an orthonormal basis {e1, e2, e3, e4} such that Lemma
3.1 and the following hold:

λm+1 = · · · = λ4 = − m+1
2(4−m)λ1, λ1 = 2(4−m)√

(m+1)(9−m)
, m = 1, 2. (3.1)
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Proof Since x is minimal and λ1 > 0 , we get
∑4

i=1 λi = 0 and at least one of {λ2, λ3, λ4} is not equal
to 1

2λ1 . If there exist l, t ≥ 2 satisfy (2λl − λ1)(2λt − λ1) 6= 0 , then from (iii) of Lemma 3.1, we have
1+λ1λl−λ2l = 0 = 1+λ1λt−λ2t , thus (λl−λt)[λ1− (λl+λt)] = 0 , together with (ii) of Lemma 3.1, we obtain
that λl = λt .

Assume that there are (4 − m) (1 ≤ m ≤ 3) elements of {λ2, λ3, λ4} satisfying λi 6= 1
2λ1 , we can

rearranging the order of {e2, e3, e4} such that

λm+1 = · · · = λ4 6= 1
2λ1, 1 + λ1λ4 − λ24 = 0,

which together with
∑4

i=1 λi = 0 gives that λ4 = − m+1
2(4−m)λ1 and λ21 = 4(4−m)2

(m+1)(9−m) .

Choose ε = ±1 such that εf(e4) = κ ≥ 0 . Since λ1 = f(e1) = maxv∈UpM4 f(v) , then for any δ ∈ (0, 1)

and u = −δe1 +
√
1− δ2εe4 , we have

f(u) = g
(
h(u, u), ϕu

)
= −δ3λ1 − 3δ(1− δ2)λ4 + (

√
1− δ2)3κ ≤ λ1.

Thus −3δ(1− δ2)λ4 ≤ (1 + δ3)λ1 , which equivalents to m ≤ 11δ2−11δ+8
−δ2+δ+2 := C(δ) . It is not difficult to find that

the function C(δ) attains the minimum value 7
3 at δ = 1

2 . Hence m ≤ 7
3 and m can only take 1, 2 .

We have completed the proof of Lemma 3.2. 2

Applying Lemma 3.2, we see that there are two cases if M4 is not totally geodesic:
Case I: λ1 = 3

2 , λ2 = λ3 = λ4 = − 1
3λ1 = − 1

2 ;

Case II: λ1 = 4√
21
, λ2 = 1

2λ1 = 2√
21
, λ3 = λ4 = − 3

4λ1 = − 3√
21

.

We first deal with Case I.
Follow the method of [9] (or [10]), for fixed point p , we can choose {e2, e3, e4} satisfying

f(e2) = max
v∈UpM4∩{e1}⊥

f(v) := a, f(e3) = max
v∈UpM4∩{e1, e2}⊥

f(v) := d. (3.2)

Then g(h(e2, e2), ϕe3) = g(h(e2, e2), ϕe4) = 0 , g(h(e3, e3), ϕe4) = 0 .
We may assume that g

(
h(e2, e3), ϕe4

)
= c ≥ 0 by changing the sign of e4 . Now by using (3.2), Lemma

3.1 and the minimality of M4 , we obtain the following expressions for the second fundamental form h :
h(e1, e1) =

3
2ϕe1, h(e1, ej) = − 1

2ϕej , j = 2, 3, 4,

h(e2, e2) = − 1
2ϕe1 + aϕe2, h(e2, e3) = bϕe3 + cϕe4,

h(e3, e3) = − 1
2ϕe1 + bϕe2 + dϕe3, h(e2, e4) = cϕe3 − (a+ b)ϕe4,

h(e4, e4) = − 1
2ϕe1 − (a+ b)ϕe2 − dϕe3, h(e3, e4) = cϕe2 − dϕe4,

(3.3)

where a, b, c, d ∈ R and 3
2 ≥ a ≥ d ≥ 0 , c ≥ 0 .

We note that hk∗

ij = g(h(ei, ej), ϕek) , and hk
∗

ij is totally symmetric for indices i, j, k . By (3.3) and Gauss
equation (2.8), we get 

R2323 = 5
4 + ab− b2 − c2, R2324 = 2ac,

R2424 = 5
4 − 2a2 − b2 − c2 − 3ab, R2334 = −2dc,

R3434 = 5
4 − 2d2 − b2 − c2 − ab, R2434 = −d(a+ 2b).

(3.4)
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From Lemma 2.1, we know that ∇̄ξh = 0 . Hence, by (2.15), for any l, p ∈ {1, 2, 3, 4} , we have

4∑
m=1

hk
∗

mjRmilp +

4∑
m=1

hk
∗

imRmjlp +

4∑
m=1

hm
∗

ij Rmklp = 0. (3.5)

Taking (k, i, j) = (1, 1, 2), (1, 1, 3), (1, 1, 4) in (3.5), respectively, and combining with (3.3), we can get

R12lp = R13lp = R14lp = 0, l, p ∈ {1, 2, 3, 4}. (3.6)

Taking (k, i, j) = (3, 3, 3), (2, 2, 3), (2, 2, 4), (4, 4, 4) in (3.5), respectively, for any l, p ∈ {1, 2, 3, 4} , we have the
following equations:

3bR23lp = 0, (3.7)

(a− 2b)R23lp − 2cR24lp = 0, (3.8)

2cR23lp − (3a+ 2b)R24lp = 0, (3.9)

dR34lp + (a+ b)R24lp = 0. (3.10)

From (3.7), (3.4) we obtain that

1
2bR2324 = abc = 0, − 1

2bR2334 = bcd = 0. (3.11)

So we can divide the discussions into the following three subcases:
I-(i): a = 0 ; I-(ii): a 6= 0, b = 0 ; I-(iii): a 6= 0, b 6= 0, c = 0 .

I-(i). Let u1 = 1√
2
(e2 + e3) , u2 = 1√

3
(e2 + e3 + e4) , then by (3.2), we have f(e2) = f(e3) = f(e4) =

f(u1) = f(u2) = 0 , which implies d = b = c = 0 .

I-(ii). As a 6= 0, b = 0 , from (3.4) and (3.8) we can get

aR2323 − 2cR2423 = a( 54 − c2)− 2c(2ac) = 0,

which gives that c2 = 1
4 . Similarly, by (3.4), (3.9) and (3.10), we get

2cR2323 − 3aR2423 = 2c(1− 3a2) = 0,

dR3423 + aR2423 = d(−2dc) + a(2ac) = 0.

From which we obtain that a2 = d2 = 1
3 . Since a ≥ d ≥ 0 , c ≥ 0 , so a = d = 1√

3
, c = 1

2 . Then for

u = − 1√
5
(e2 + e3 −

√
3e4) , we have g(h(u, u), ϕu) =

√
5
3 >

1√
3
= a , which contradicts to the definition of a in

(3.2), hence case I-(ii) does not occur.

I-(iii). From b 6= 0 , c = 0 and (3.7), (3.9), we get the following equations:

R2323 = 5
4 + ab− b2 = 0, (3.12)

(3a+ 2b)( 54 − 2a2 − b2 − 3ab) = 0. (3.13)
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If 3a+2b = 0 , then by (3.12), we can obtain that b2 = 3
4 and ab = − 1

2 , thus a2 = 4
9b

2 = 1
3 . Substituting

this and c = 0 into (3.4), (3.10), we can get that

R2424 = 4
3 , R3424 = − 4

3bd, dR3424 + (a+ b)R2424 = − 4
3b(d

2 − 1
3 ) = 0.

It follows that d2 = 1
3 . Since a ≥ d ≥ 0 , we have a = d = 1√

3
, b = −

√
3
2 . Then for u = 1√

2
(−e2 + e3) , we have

f(u) = 3
4

√
3
2 > a . This is a contradiction.

If 3a + 2b 6= 0 , then (3.13) implies that 5
4 − 2a2 − b2 − 3ab = 0 . Using this and (3.12), we can deduce

that b2 = 5
12 , a

2 = 5
3 . Substituting this into (3.10) gives that

dR3434 + (a+ b)R2434 = d( 53 − 2d2) = 0, (3.14)

this and d ≥ 0 gives that d = 0 or d =
√

5
6 .

To sum up, we obtain the following three posibilities for Case I:
(1) a = b = c = d = 0 ;

(2) a =
√

5
3 , b = −

√
5
12 , c = 0, d = 0 ;

(3) a =
√

5
3 , b = −

√
5
12 , c = 0, d =

√
5
6 .

Next, we will show that Case II does not occur.
In this case, as λ1 = 2λ2 , by Lemma 3.1, we see that f(e2) = 0 . Choose {e3, e4} such that

g(h(e2, e2), ϕe4) = 0 and g(h(e2, e2), ϕe3) = a ≥ 0 . Then the second fundamental form h of M4 ↪→ S9

can be expressed as follows:



h(e1, e1) =
4√
21
ϕe1, h(e1, e2) =

2√
21
ϕe2, h(e1, ek) = − 3√

21
ϕek, k = 3, 4,

h(e2, e2) =
2√
21
ϕe1 + aϕe3, h(e2, e3) = aϕe2 + bϕe3 + cϕe4,

h(e3, e3) = − 3√
21
ϕe1 + bϕe2 + dϕe3 + fϕe4, h(e2, e4) = cϕe3 − bϕe4,

h(e4, e4) = − 3√
21
ϕe1 − bϕe2 − (a+ d)ϕe3 − fϕe4,

h(e3, e4) = cϕe2 + fϕe3 − (a+ d)ϕe4,

(3.15)

where a, b, c, d, f ∈ R .
Similar to Case I, using (3.15) and Gauss equation (2.8), we easily have{

R1212 = 1 + λ1λ2 − λ22 = 25
21 , R1224 = R1234 = 0,

R2323 = 15
21 + (ad− a2 − c2 − b2), R1223 = 5√

21
a.

(3.16)

Taking (k, i, j) = (2, 2, 2), (2, 2, 3), (2, 2, 4), (2, 3, 4) in (3.5), respectively, and using (3.15), for any l, p ∈
{1, 2, 3, 4} , we can get

2√
21
R12lp + aR32lp = 0, (3.17)

bR32lp + cR42lp = 0, (3.18)
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aR34lp + 2cR32lp − 2bR42lp = 0, (3.19)

(2a+ d)R24lp − fR23lp = 0. (3.20)

Taking (l, p) = (1, 2) in (3.17)-(3.20), we obatin a2 = 10
21 and b = c = f = 0 , then a =

√
10
21 . From (3.17), we

also have
2√
21
R1223 + aR3223 = 10

21a− a( 1521 + ad− a2) = 0, (3.21)

which implies that d =
√

5
42 . Let u = − cosαe3 − sinαe4 , α ∈ (0, π2 ) such that tanα =

√
7
3 , then

f(u) = 3
√
3√

21
> 4√

21
= λ1 , which gives the desired contradiction. Hence, Case II does not occur.

Therefore, we immediately obtain the following lemma:

Lemma 3.3 Let M4 be a 4-dimensional compact minimal Legendrian submanifold of S9 . If the sectional
curvature K ≥ 0 for each point p of M4 , then there exists an orthonormal basis {e1, e2, e3, e4} of TpM4 such
that the second fundamental form h of M4 can be expressed as one of the following:

(i) h(ei, ej) = 0, 1 ≤ i, j ≤ 4 ;

(ii) h is expressed by (3.3), with a =
√

5
3 , b = −

√
5
12 , c = 0, d =

√
5
6 ;

(iii) h is expressed by (3.3), with a = b = c = d = 0 ;

(iv) h is expressed by (3.3), with a =
√

5
3 , b = −

√
5
12 , c = 0, d = 0 .

Let M4 be given as in Lemma 3.3, then we have the following result:

Lemma 3.4 Let p ∈M4 , we have
(1) if (i) of Lemma 3.3 holds, then K(p) ≡ 1 ;
(2) if (ii) of Lemma 3.3 holds, then K(p) ≡ 0 ;
(3) if (iii) of Lemma 3.3 holds, then 0 ≤ K(p) ≤ 5

4 , where K(p) = 0 for every plane through e1 , and

K(p) = 5
4 for any plane perpendicular to e1 ;

(4) if (iv) of Lemma 3.3 holds, then 0 ≤ K(p) ≤ 5
3 , where K(p) = 0 for every plane through e1 or e2 ,

and K(p) = 5
3 only for the plane determined by e3 and e4 .

Proof (1) If (i) of Lemma 3.3 holds, h ≡ 0 , by Gauss equation (2.8), we obtain that K(p) ≡ 1 .
(2) If (ii) of Lemma 3.3 holds, by (3.4), (3.6) we have Rijij = 0 for ∀ i, j , then K(p) = 0 .
(3) If (iii) of Lemma 3.3 holds, by (3.4), (3.6), we immediately obtain that

R1212 = R1313 = R1414 = 0, R2323 = R2424 = R3434 = 5
4 .
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Choose an orthonormal basis {X,Y, Z,W} of TpM4 :


X = sin θe1 − cos θ sinαe2 + cos θ cosα sinβe3 + cos θ cosα cosβe4,

Y = cos θe1 + sin θ sinαe2 − sin θ cosα sinβe3 − sin θ cosα cosβe4,

Z = cosαe2 + sinα sinβe3 + sinα cosβe4, W = cosβe3 − sinβe4,

(3.22)

where θ, α, β ∈ R . Then straightforward computation shows that

g(R(X,Y )Y,X) = 0, g(R(X,Z)Z,X) = g(R(X,W )W,X) = 5
4 cos

2 θ,

g(R(Z,W )W,Z) = 5
4 , g(R(Y, Z)Z, Y ) = g(R(Y,W )W,Y ) = 5

4 sin
2 θ.

Hence 0 ≤ K(p) ≤ 5
4 , where K(p) = 0 for any plane through e1 , K(p) = 5

4 for any plane perpendicular to e1 .
(4) In this case, we also use (3.4) and (3.6) to get

R1212 = R1313 = R1414 = R2323 = R2424 = 0, R3434 = 5
3 .

Then for the basis stated in (3.22), we have g(R(X,Y )Y,X) = g(R(X,Z)Z,X) = 0 ,

g(R(X,W )W,X) = 5
3 cos

2 θ cos2 α, g(R(Y, Z)Z, Y ) = 0,

g(R(Y,W )W,Y ) = 5
3 sin

2 θ cos2 α, g(R(Z,W )W,Z) = 5
3 sin

2 α.

Thus the assertion of (4) immediately follows from the above arguments.
In summing up, we have completed the proof of Lemma 3.4. 2

Since the second fundamental form h of M4 ↪→ S9 is C -parallel, we can extend the basis {ei}4i=1 by
parallel translation along geodesics through p to a normal neighborhood around p , so as to obtain a local
orthonormal frame {Ei}4i=1 , such that h has the same expression in any point as in p . This is stated in the
following lemma, which can be proved similarly as Proposition 4.2 of [8].

Lemma 3.5 Let M4 be a 4-dimensional compact minimal Legendrian submanifold of S9 with K not constant
and satisfying K ≥ 0 . Then there exists globally a unique tangent vector field E1 , and locally tangent vector
fields {E2, E3, E4 }, such that

(1) {E1, E2, E3, E4 } is a local orthonormal frame,
(2) for any p ∈M4 , f attains its maximum value at E1(p) ,
(3) for any p ∈M4 , {E1(p), E2(p), E3(p), E4(p)} satisfies (iii) or (iv) of Lemma 3.3.

In order to prove Theorem 1.2, we need also the following uniqueness theorem for Legendrian submanifolds.

Lemma 3.6 (cf. [6]) Let f and f̄ : Mn → S2n+1 be two n-dimensional Legendrian isometric immersions of a
connected Riemannian manifold Mn into the unit sphere with second fundamental forms h and h̄ , respectively.
If

g(f∗X, f∗Y ) = g(f̄∗X, f̄∗Y ), g(h(X,Y ), ϕf∗Z) = g(h̄(X,Y ), ϕf̄∗Z),

for all vector fields X,Y, Z tangent to Mn , then there exists an isometry τ of S2n+1 such that f = τ ◦ f̄ .
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Completion of the proof of Theorem 1.2

If the sectional curvature K is constant, by Lemma 3.3 and 3.4, we know that K ≡ 1 or K ≡ 0 and
M4 is totally geodesic or it is flat. According to the main result of [6], we conclude that, up to an isometry,
M4 ↪→ S9 must be given by the immersion f (1) , f (2) , as described in Example 1.1, Example 1.2, repectively.

If K is not constant, by comparing Lemma 3.3 and (1.1), (1.2), we can apply Lemma 3.4, 3.5 and 3.6
to conclude that, up to an isometry, M4 ↪→ S9 must be given by the immersion f̃ (3) , f̃ (4) , as described in
Example 1.3, Example 1.4, repectively.

We have finished the proof of Theorem 1.2.
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