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Abstract: In this work a new functional expansion-compression fixed point theorem of Leggett–Williams type is
developed for a class of mappings of the form T + F, where (I − T ) is Lipschitz invertible map and F is a k -set
contraction. The arguments are based upon recent fixed point index theory in cones of Banach spaces for this class
of mappings. As application, our approach is applied to prove the existence of nontrivial nonnegative solutions for
three-point boundary value problem.
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1. Introduction
Throughout this paper, P will refer to a cone in a Banach space (E, ∥.∥). Let χ and ψ be nonnegative
continuous functionals on P . For positive real numbers a and b , we define the sets:

P(χ, b) = {x ∈ P : χ(x) ≤ b},

and
P(χ, ψ, a, b) = {x ∈ P : a ≤ χ(x) and ψ(x) ≤ b}.

Krasnosel’skii type expansion-compression fixed point theorems give us fixed points localized in a conical shell
of the form {x ∈ P : a ≤ ∥x∥ ≤ b} , where a, b ∈ (0,∞) , while with the Leggett–Williams theorems type, fixed
points are localized in a conical shell of the form P(χ, ψ, a, b) .

In [2, Theorem 4.1], Anderson et al. have developed a functional expansion-compression fixed point
theorem of Leggett–Williams type. They have discussed the existence of at least one solution in P(β, α, r,R) or
in P(α, β, r,R) for the nonlinear operational equation Ax = x, where A is a completely continuous nonlinear
map acting in P, α is a nonnegative continuous concave functional on P and β is a nonnegative continuous
convex functional on P. Noting that, in [2], the authors provided more general results than those obtained in
[1, 3, 14–17] for completely continuous mappings.

Recently, in 2019 a new direction of research in the theory of fixed point in ordered Banach spaces for
the sum of two operators is opened by Djebali and Mebarki [8]. Then, several fixed point theorems, including
Krasnosel’skii type and Leggett–Williams types theorems in cones, have been established (see [5–7, 10–12]).
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These theorems have been applied to obtain existence results for nonnegative solutions of various types of
boundary and/or initial value problems (see [9, 10, 12, 13]).
In this paper, we use the fixed point index theory developed in [8] and [12] to generalize the main result of [2,
Theorem 4.1] for the sum T + F where (I − T ) is Lipschitz invertible mapping with constant γ > 0 and F is
a k -set contraction with k γ < 1 .

The paper is organized as follows. In Section 2, we give some preliminary results which will be used for
the proof of our main results. In Section 3, we present our main contribution. As application, in Section 4, we
establish the existence of nontrivial nonnegative solutions for a nonlinear second order three-point boundary
value problem. The article ends with a conclusion.

2. Auxiliary results
Let E be a real Banach space.

Definition 2.1 A closed, convex set P in E is said to be cone if

1. βx ∈ P for any β ≥ 0 and for any x ∈ P ,

2. x,−x ∈ P implies x = 0 .

Definition 2.2 A mapping K : E → E is said to be completely continuous if it is continuous and maps bounded
sets into relatively compact sets.

The concept for k -set contraction is related to that of the Kuratowski measure of noncompactness which we
recall for completeness.

Definition 2.3 Let ΩE be the class of all bounded sets of E . The Kuratowski measure of noncompactness
α : ΩE → [0,∞) is defined by

α(Y ) = inf
{
δ > 0 : Y = ∪m

j=1Yj and diam(Yj) ≤ δ, j ∈ {1, . . . ,m}
}
,

where diam(Yj) = sup{∥x− y∥X : x, y ∈ Yj} is the diameter of Yj , j ∈ {1, . . . ,m} .

For the main properties of measure of noncompactness we refer the reader to [4].

Definition 2.4 A mapping K : E → E is said to be k -set contraction if it is continuous, bounded and there
exists a constant k ≥ 0 such that

α(K(Y )) ≤ kα(Y ),

for any bounded set Y ⊂ E .

Obviously, if K : E → E is a completely continuous mapping, then K is 0 -set contraction.
Let P be a cone in X , Ω ⊂ P and U is a bounded open subset of P . Assume that T : Ω → E is

such that (I − T ) is Lipschitz invertible with constant γ > 0 , F : U → E is a k -set contraction mapping with
0 ≤ k < γ−1 . Suppose that

F (U) ⊂ (I − T )(Ω), (2.1)
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and
x ̸= Tx+ Fx, for all x ∈ ∂U

⋂
Ω. (2.2)

Then x ̸= (I − T )−1Fx , for all x ∈ ∂U and the mapping (I − T )−1F : U → P is a strict kγ -set contraction.
Indeed, (I − T )−1F is continuous and bounded; and for any bounded set B in U , we have

α(((I − T )−1F )(B)) ≤ γ α(F (B)) ≤ kγ α(B).

The fixed point index i ((I − T )−1F,U,P) is well defined. Thus we put,

i∗ (T + F,U
⋂

Ω,P) =

{
i ((I − T )−1F,U,P), if U

⋂
Ω ̸= ∅

0, if U
⋂

Ω = ∅. (2.3)

The proof of our theoretical result invokes the following main properties of the fixed point index i∗ .

(i) (Normalization) If Fx = y0, for all x ∈ U, where (I − T )−1y0 ∈ U ∩ Ω, then

i∗ (T + F,U ∩ Ω,P) = 1.

(ii) (Additivity) For any pair of disjoint open subsets U1, U2 ⊂ U such that T + F has no fixed point on
(U \(U1 ∪ U2)) ∩ Ω, we have

i ∗(T + F,U ∩ Ω,P) = i ∗(T + F,U1 ∩ Ω,P) + i ∗(T + F,U2 ∩ Ω,P).

(iii) (Homotopy invariance) The fixed point index i ∗(T +H(., t), U ∩Ω,P) does not depend on the parameter
t ∈ [0, 1], where

(a) H : [0, 1]× U → E is continuous and H(t, x) is uniformly continuous in t with respect to x ∈ U,

(b) H([0, 1]× U) ⊂ (I − T )(Ω),

(c) H(t, .) : U → E is a ℓ -set contraction with 0 ≤ ℓ < γ−1 for all t ∈ [0, 1],

(d) Tx+H(t, x) ̸= x for all t ∈ [0, 1] and x ∈ ∂U ∩ Ω.

(iv) (Solvability) If i ∗(T + F,U ∩ Ω,P) ̸= 0, then T + F has a fixed point in U ∩ Ω.

For more details about the definition of the index i∗ and its properties see [8, 12].

3. Main results
Our main result is as follows.

Theorem 3.1 Let α be a nonnegative continuous concave functional on P and β be a nonnegative continuous
convex functional on P . Let T : Ω ⊂ P → E be such that (I −T ) is Lipschitz invertible mapping with constant
γ > 0 , F : P → E is a k -set contraction with 0 ≤ k < γ−1 .
Assume that there exist four nonnegative numbers a , b , c , d and z0 ∈ P such that
β((I − T )−10) < b, α((I − T )−1z0) > c and

Fx+ Tx ∈ P, Tx ∈ P, for all x ∈ ∂P(β, b) ∪ ∂P(α, c),

2558



MOUHOUS and MEBARKI/Turk J Math

λF (P(β, b)) ⊂ (I − T )(Ω), for all λ ∈ [0, 1], (3.1)

λF (P(α, c)) + (1− λ)z0 ⊂ (I − T )(Ω), for all λ ∈ [0, 1]. (3.2)

Suppose that:

(A1) if x ∈ P with β(x) = b , then α(Tx) ≥ a;

(A2) if x ∈ P with β(x) = b and [α(x) ≥ a or α(Tx+ Fx) < a] , then β(Tx+ Fx) < b and β(Tx) ≤ b ;

(A3) if x ∈ P with α(x) = c , then β(Tx+ z0) ≤ d ;

(A4) if x ∈ P with α(x) = c and [β(x) ≤ d or β(Tx+ Fx) > d] , then α(Tx+ Fx) > c and α(Tx+ z0) ≥ c .

Then,

1. (Expansive form) T + F has a fixed point x∗ in P(β, α, b, c) ∩ Ω if

(H1) a < c , b < d , {x ∈ P : b < β(x) and α(x) < c} ∩ Ω ̸= ∅ , P(β, b) ⊂ P(α, c), P(β, b) ∩ Ω ̸= ∅ and
P(α, c) is bounded.

2. (Compressive form) T + F has a fixed point x∗ in P(α, β, c, b) ∩ Ω if

(H2) c < a , d < b , {x ∈ P : c < α(x) and β(x) < b} ∩ Ω ̸= ∅ , P(α, c) ⊂ P(β, b), P(α, c) ∩ Ω ̸= ∅ , and
P(β, b) is bounded.

Proof We will prove the expansion form. The proof of the compression form is similar.
We list

U = {x ∈ P : β(x) < b},

V = {x ∈ P : α(x) < c}.

Then, the interior of V − U is given by

W = (V − U)o = {x ∈ P : b < β(x) and α(x) < c}.

Thus U , V and W are bounded, not empty and open subsets of P . To prove the existence of a fixed point for
the sum T + F in P(β, α, b, c) ∩ Ω , it is enough for us to show that i∗(T + F,W ∩ Ω,P) ̸= 0 since W is the
interior of P(β, α, b, c) .

Claim 1. Tx+ Fx ̸= x for all x ∈ ∂U ∩ Ω .
Let x0 ∈ ∂U ∩ Ω, then β(x0) = b . Suppose that x0 = Tx0 + Fx0 , then β(Tx0 + Fx0) = b. By the condition
(A2), if α(x0) ≥ a , then β(Tx0+Fx0) < b , and if α(x0) < a , thus α(Tx0+Fx0) < a , then β(Tx0+Fx0) < b .
This is a contradiction. Thus we have Tx+ Fx ̸= x for all x ∈ ∂U ∩ Ω .

Claim 2. Tx+ Fx ̸= x for all x ∈ ∂V ∩ Ω .
Let x1 ∈ ∂V ∩ Ω , then α(x1) = c . Suppose that x1 = Tx1 + Fx1 , then α(Tx1 + Fx1) = c. By the condition
(A4), if β(x1) ≤ d , then α(Tx1+Fx1) > c , and if β(x1) > d , thus β(Tx1+Fx1) > d , then α(Tx1+Fx1) > c .

2559



MOUHOUS and MEBARKI/Turk J Math

This is a contradiction. Thus we have Tx+ Fx ̸= x for all x ∈ ∂V ∩ Ω .

Claim 3 . Let H1 : [0, 1]× U → E be defined by

H1(t, x) = tFx.

Clearly H1 is continuous and uniformly continuous in t with respect to x ∈ U , and from (3.2) we easily see
that H1([0, 1] × U) ⊂ (I − T )(Ω) . Moreover H1(t, .) : U → E is a k -set contraction for all t ∈ [0, 1] and
Tx+H1(t, x) ̸= x for all (t, x) ∈ [0, 1]× ∂U ∩ Ω . Otherwise, there would exist (t2, x2) ∈ [0, 1]× ∂U ∩ Ω such
that Tx2 +H1(t2, x2) = x2 . Since x2 ∈ ∂U , β(x2) = b . Either α(Tx2 + Fx2) < a or α(Tx2 + Fx2) ≥ a .

Case (1) : If α(Tx2 + Fx2) < a , the convexity of β and the condition (A2) lead

b = β(x2) = β (Tx2 +H1(t2, x2))
= β ((1− t2)Tx2 + t2(Tx2 + Fx2))
≤ (1− t2)β(Tx2) + t2β(Tx2 + Fx2)
< b,

which is a contradiction.
Case (2) : If α(Tx2 + Fx2) ≥ a , from the concavity of α and the condition (A1), we obtain α(x2) ≥ a .

Indeed,
α(x2) = α (Tx2 +H1(t2, x2))

≥ (1− t2)α(Tx2) + t2α(Tx2 + Fx2)
≥ a,

and thus by the condition (A2), we have β(Tx2 + Fx2) < b and β(Tx2) < b , which is the same contradiction
we arrived at in the previous case.
Being (I − T )−10 ∈ U ∩ Ω , the homotopy invariance property (iii) and the normality property (i) of the index
i∗ lead

i∗(T + F,U ∩ Ω,P) = i∗(T + 0, U ∩ Ω,P) = 1.

Claim 4. Let H2 : [0, 1]× V → E be defined by

H2(t, x) = t Fx+ (1− t)z0.

Clearly H2 is continuous, and uniformly continuous in t with respect to x ∈ V , and from (3.2) we easily see
that (H2([0, 1] × V )) ⊂ (I − T )(Ω) . Moreover H2(t, .) : V → E is a k -set contraction for all t ∈ [0, 1] and
Tx+H2(t, x) ̸= x for all (t, x) ∈ [0, 1]×∂V ∩Ω . Otherwise, there would exist (t3, x3) ∈ [0, 1]×∂V ∩Ω such that
Tx3+H2(t3, x3) = x3 . Since x3 ∈ ∂V we have that α(x3) = c . Either β(Tx3+Fx3) ≤ d or β(Tx3+Fx3) > d .

Case (1) : If β(Tx3 + Fx3) > d . the concavity of α and the condition (A4) lead

c = α(x3) = α(Tx3 +H2(t3, x3))
= α(t3(Tx3 + Fx3) + (1− t3)(Tx3 + z0))
≥ t3α(Tx3 + Fx3) + (1− t3)α(Tx3 + z0)
> c.

This is a contradiction.
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Case (2) : If β(Tx3 + Fx3) ≤ d , from the convexity of β and the condition (A3), we obtain β(x3) ≤ d .
Indeed,

β(x3) = β(Tx3 +H2(t3, x3))
≤ t3β(Tx3 + Fx3) + (1− t3)β(Tx3 + z0)
≤ d,

and thus by the condition (A4), we have α(Tx3 + Fx3) > c , this is the same contradiction that we found in
the previous case.
Hence, the homotopy invariance property (iii) of the fixed index i∗ yields

i∗(T + F, V ∩ Ω,P) = i∗(T + z0, V ∩ Ω,P),

and by the solvability property (iv) of the index i∗ ( since (I − T )−1z0 ̸∈ V the index cannot be nonzero) we
have

i∗(T + F, V ∩ Ω,P) = i∗(T + z0, V ∩ Ω,P) = 0.

Since U and W are disjoint open subsets of V and T + F has no fixed points in V − (U ∪W ) (by Claims 1

and 2), from the additivity property (ii) of the index i∗, we deduce

i∗(T + F, V ∩ Ω,P) = i∗(T + F,U ∩ Ω,P) + i∗(T + F,W ∩ Ω,P).

Consequently, we get
i(T + F,W ∩ Ω,P) = −1,

and thus by the solvability property (iv) of the fixed point index i∗ , the sum T + F has a fixed point
x∗ ∈W ∩ Ω ⊂ P(β, α, b, c) ∩ Ω. 2

Now we add restrictions on the operator T + F of Theorem 3.1 and we combine the expansive form and
the compressive form to establish a multiplicity result.

Theorem 3.2 Let α be a nonnegative continuous concave functional on P and β, γ be nonnegative continuous
convex functionals on P for all x ∈ P . Let T : Ω ⊂ P → E be such that (I−T ) is Lipschitz invertible mapping
with constant γ > 0 , F : P → E is a k -set contraction with 0 ≤ k < γ−1 .
Assume that there exist six nonnegative numbers a < c < r , b < d < R and z0 ∈ P such that

β((I − T )−10) < b, γ((I − T )−10) < R, α((I − T )−1z0) > c,

Fx+ Tx ∈ P, Tx ∈ P, for all x ∈ ∂P(β, b) ∪ ∂P(α, c) ∪ ∂P(γ,R),

λ F (P(γ,R)) ⊂ (I − T )(Ω), for all λ ∈ [0, 1],

λ F (P(α, c)) + (1− λ)z0 ⊂ (I − T )(Ω), for all λ ∈ [0, 1].

In addition to the assumptions (A1) − (A4) of Theorem 3.1, we suppose that the following conditions
hold:

(B1) if x ∈ P with γ(x) = R , then α(Tx) ≥ r;

(B2) if x ∈ P with γ(x) = R and [α(x) ≥ r or α(Tx+ Fx) < r] , then γ(Tx+ Fx) < R and γ(Tx) ≤ R .
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If the two following conditions hold,

(H1) {x ∈ P : b < β(x) and α(x) < c} ∩ Ω ̸= ∅ , P(β, b) ⊂ P(α, c),

P(β, b) ∩ Ω ̸= ∅ and P(α, c) is bounded,

(H2) {x ∈ P : c < α(x) and γ(x) < R} ∩ Ω ̸= ∅ , P(α, c) ⊂ P(γ,R),

P(α, c) ∩ Ω ̸= ∅ , and P(γ,R) is bounded,

then, T + F has at least two nontrivial fixed points x1, x2 ∈ P such that

x1 ∈ P(β, α, b, c) ∩ Ω and x2 ∈ P(α, γ, c, R) ∩ Ω.

Proof We list
U = {x ∈ P : β(x) < b},

V = {x ∈ P : α(x) < c},

Y = {x ∈ P : γ(x) < R}.

Then, the interior of V − U is given by

W = (V − U)o = {x ∈ P : b < β(x) and α(x) < c},

and the interior of Y − V is given by

Z = (Y − V )o = {x ∈ P : c < α(x) and γ(x) < R}.

Thus U, V, Y and W, Z are bounded, not empty and open subsets of P . To prove the existence of two
fixed point for the sum T + F in P(β, α, b, c) ∩ Ω and P(α, γ, c, R) ∩ Ω it is enough for us to show that
i∗(T + F,W ∩ Ω,P) ̸= 0 and i∗(T + F,Z ∩ Ω,P) ̸= 0 since W is the interior of P(β, α, b, c) and Z is the
interior of P(α, γ, c, R).

The use of the fixed point index here is similar to the proof of Theorem 3.1. 2

4. Applications of our approach
In the sequel, we will investigate the three-point boundary value problem:

y′′ + f(t, y) = 0, t ∈ (0, 1),

y(0) = ky(η), y(1) = 0,
(4.1)

where η ∈ (0, 1) , k > 0 with k(1− η) < 1 and f ∈ C([0, 1]× [0,∞)). Set B = 1+kη
1−k(1−η) and suppose that

(C1) Ã < f(t, y) ≤ a1(t) + a2(t)|y|p for t ∈ [0, 1] and y ∈ [0,∞) , a1, a2 ∈ C([0, 1]) , 0 ≤ a1, a2 ≤ A on [0, 1] ,
for some positive constants A, Ã and p .

(C2) ϵ ∈ (0, 1) , and there exist a, b, c, d, z0, ρ > 0 such that

max(d, 2z0
ϵ ,

1
Λ (c− z0)) < b ≤ ρ; 3z0 > a; z0 ≤ c < min(a, 3 z0,

η
3

(
1− η

2

)
Ã+ (1− 1

ϵ )z0);

ϵAB(1+bp)+3z0
ϵ ≤ ρ; (1− ϵ) c

Λ + 3z0 ≤ d, where Λ =
min

(
ϵ η2

18 (1−
η
2 )Ã, z0

)
ϵ ρ ,
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and
AB(1 + bp) < b. (4.2)

Remark 4.1 1. We end this section by an illustrative example, in which we give the constants ϵ, a, b, c, d, ρ, z0
and the function f that satisfy (C 1)-(C 2). After setting the constants A, Ã and p , we choose the constants
ϵ, a, b, d, z0, c and ρ.

2. Discussion of Hypothesis (4.2):

(a) If p = 1 , the inequality (4.2) may be rewritten as ( 1
AB − 1) b > 1 . A necessary condition for (4.2) to

hold is that A < 1
B ·

(b) If p ̸= 1 , the inequality (4.2) can be written as Kb− bp > 1 with K = 1
AB .

Consider the continuous function Φ(x) = Kx− xp on [0,∞) , then

Φ′(x) = 0 ⇔ x = x0 = p−1

√
K

p
.

(i) When p < 1, the function Φ verifies Φ(0) = 0 and lim
x→+∞

Φ(x) = +∞ . Moreover, Φ is decreas-

ing on [0, x0) and increasing on (x0,∞) and assumes K
p

p−1

√
K
p (p − 1) as a minimum at the point

x0 . Hence for every real number r > 0, there exists a constant b > 0 with Φ(b) > r . In particular
Φ(b) > 1.

(ii) When p > 1, the function Φ verifies Φ(0) = 0 and lim
x→+∞

Φ(x) = −∞ . Moreover, Φ is

increasing on [0, x0) and decreasing on (x0,∞) and assumes K
p

p−1

√
K
p (p − 1) as a maximum at

x = x0 . Hence the inequality Φ(b) > 1 has a solution b > 0 if and only if K
p

p−1

√
K
p (p− 1) > 1 .

4.1. Existence of at least one nonnegative solution
Our first existence result is as follows.

Theorem 4.2 Suppose (C1) and (C2) . Then the problem (4.1) has at least one nontrivial nonnegative solution
y ∈ C2([0, 1]) such that c < min

t∈[ η3 ,
η
2 ]
y(t) + z0 and max

t∈[0,1]
|y(t)| < b.

Proof To prove our main result, we will use Theorem 3.1.
Set

H(t, s) =

{
s(1− t), 0 ≤ s ≤ t ≤ 1,
t(1− s), 0 ≤ t ≤ s ≤ 1.

In [18] it is proved that the solution of the problem (4.1) can be expressed in the following form

y(t) =

∫ 1

0

G(t, s) f(s, y(s))ds, t ∈ [0, 1],

2563



MOUHOUS and MEBARKI/Turk J Math

where

G(t, s) = H(t, s) +
k(1− t)

1− k(1− η)
H(η, s), t, s ∈ [0, 1].

Note that 0 ≤ H(t, s) ≤ 1 , t, s ∈ [0, 1] . Hence,

0 ≤ G(t, s) ≤ 1 +
k

1− k(1− η)
=

1− k + kη + k

1− k(1− η)

=
1 + kη

1− k(1− η)
= B, t, s ∈ [0, 1].

Moreover, for t, s ∈
[
η
3 ,

η
2

]
, we have

H(t, s) ≥ η

3

(
1− η

2

)
and

G(t, s) ≥ H(t, s) ≥ η

3

(
1− η

2

)
.

Next,

Ht(t, s) =

{
−s, 0 ≤ s ≤ t ≤ 1,
1− s, 0 ≤ t ≤ s ≤ 1.

Hence, |Ht(t, s)| ≤ 1 , t, s ∈ [0, 1] , and

|Gt(t, s)| =

∣∣∣∣Ht(t, s)−
k

1− k(1− η)
H(η, s)

∣∣∣∣
≤ |Ht(t, s)|+

k

1− k(1− η)
H(η, s)

≤ 1 +
k

1− k(1− η)
=

1 + kη

1− k(1− η)
= B, t, s ∈ [0, 1].

Let E = C([0, 1]) be endowed with the maximum norm

∥y∥ = max
t∈[0,1]

|y(t)|.

For y ∈ P , let us define
α(y) = min

t∈[ η3 ,
η
2 ]
y(t) + z0, β(y) = max

t∈[0,1]
|y(t)|.

Obvious that, since 2z0
ϵ < b ≤ ρ, we get Λ < 1.

Define

P =

{
y ∈ E : y(t) ≥ 0, t ∈ [0, 1], min

t∈[ η3 ,
η
2 ]
y(t) ≥ Λ∥y∥

}
,

Ω = {y ∈ P : ∥y∥ ≤ ρ } .
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For y ∈ P , define the operators

Ty(t) = (1− ϵ)y(t) + 2z0,

Fy(t) = ϵ

∫ 1

0

G(t, s)f(s, y(s))ds− 2z0, t ∈ [0, 1].

Note that if y ∈ P is a fixed point of the operator T + F , then it is a solution to the problem (4.1). Next, if
y ∈ P and ∥y∥ ≤ b , we have

|Ty(t)| ≤ (1− ϵ)y(t) + 2z0

≤ (1− ϵ)b+ 2z0

< b, t ∈ [0, 1],

and

|Ty(t) + Fy(t)| =

∣∣∣∣(1− ϵ)y(t) + ϵ

∫ 1

0

G(t, s)f(s, y(s))ds

∣∣∣∣
≤ (1− ϵ)y(t) + ϵ

∫ 1

0

G(t, s) (a1(s) + a2(s)|y(s)|p) ds

≤ (1− ϵ)b+ ϵ (A+A∥y∥p)
∫ 1

0

G(t, s)ds

≤ (1− ϵ)b+ ϵAB(1 + bp)

< b, t ∈ [0, 1].

Therefore, if y ∈ P and ∥y∥ ≤ b , we have
∥Ty∥ < b, (4.3)

and
∥Ty + Fy∥ < b. (4.4)

1. For y, z ∈ P , we have

|(I − T )y(t)− (I − T )z(t)| = ϵ|y(t)− z(t)|, t ∈ [0, 1].

Hence,
∥(I − T )y − (I − T )z∥ = ϵ∥y − z∥.

Thus, I − T : P → E is Lipschitz invertible operator with constant γ = 1
ϵ .

2. Let y ∈ P . Then

|Fy(t))| ≤ ϵ

∣∣∣∣∫ 1

0

G(t, s)f(s, y(s))ds

∣∣∣∣+ 2z0

≤ ϵAB(1 + ∥y∥p) + 2z0, t ∈ [0, 1],

whereupon
∥Fy∥ ≤ ϵAB(1 + ∥y∥p) + 2z0 <∞.
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Moreover,

∣∣∣∣ ddtFy(t)
∣∣∣∣ =

∣∣∣∣ϵ∫ 1

0

Gt(t, s)f(s, y(s))ds

∣∣∣∣
≤ AB ϵ(1 + ∥y∥p) <∞, t ∈ [0, 1].

Consequently, by Arzelà–Ascoli compactness criteria F : P → E is completely continuous. Then F : P → E is
a 0 -set contraction.

3. For y ∈ E , we have

(I − T )−1y =
y + 2z0

ϵ
·

Hence,

α
(
(I − T )−1z0

)
= α

(
3z0
ϵ

)
=

3z0
ϵ

+ z0 ≥ c,

and

β
(
(I − T )−10

)
= β

(
2z0
ϵ

)
=

2z0
ϵ

< b.

Suppose that y ∈ P with β(y) = b . Then

α(Ty) = min
t∈[ η3 ,

η
2 ]
Ty(t) + z0 ≥ 3z0 > a.

Consequently, (A1) holds.
4. Let y ∈ P with β(y) = b and [α(y) ≥ a or α(Ty + Fy) < a] . Then, using (4.3) and (4.4), we obtain

β(Ty) < b and β(Ty + Fy) < b.

Consequently, (A2) holds.
5. Let y ∈ P with α(y) = c , we get

∥y∥ ≤ 1

Λ
min

t∈[ η3 ,
η
2 ]
y(t) ≤ 1

Λ
α(y) =

c

Λ
.

Hence,

β(Ty + z0) ≤ (1− ϵ)
c

Λ
+ 3z0 ≤ d.

Consequently, (A3) holds.
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6. Suppose that y ∈ P with α(y) = c . Then

α(Ty + Fy) = min
t∈[ η3 ,

η
2 ]
(Ty(t) + Fy(t)) + z0

≥ min
t∈[ η3 ,

η
2 ]

(
(1− ϵ)y(t) + ϵ

∫ 1

0

G(t, s)f(s, y(s))ds

)

≥ (1− ϵ) min
t∈[ η3 ,

η
2 ]
y(t) + ϵ min

t∈[ η3 ,
η
2 ]

∫ η
2

η
3

G(t, s)f(s, y(s))ds

≥ (1− ϵ)(c− z0) + ϵ
η

3

(
1− η

2

)
Ã

> c.

Moreover, we have

α(Ty + z0) = min
t∈[ η3 ,

η
2 ]
(Ty(t) + z0) + z0

= min
t∈[ η3 ,

η
2 ]
Ty(t) + 2z0

= (1− ϵ) min
t∈[ η3 ,

η
2 ]
y(t) + 4z0

≥ 4z0 > c.

Consequently, (A4) holds.
7. Let b1 = 2 z0 . Then

α(b1) = 3 z0 > c

and
β(b1) = 2 z0 < b.

Therefore
{y ∈ P : c < α(y) and β(y) < b} ∩ Ω ̸= ∅.

8. Let y ∈ P(α, c) . Then y ∈ P and α(y) ≤ c . Hence,

∥y∥ ≤ 1

Λ
min

t∈[ η3 ,
η
2 ]
y(t) ≤ 1

Λ
(c− z0) ≤ b.

Thus, y ∈ P(β, b) so P(α, c) ⊂ P(β, b) and P(β, b) is bounded. Since 0 ∈ P(α, c) , we get P(α, c) ∩ Ω ̸= ∅ .
9. Let λ ∈ [0, 1] be fixed and u ∈ P(β, b) be arbitrary chosen. Take

v(t) =
2(1− λ)z0 + λϵ

∫ 1

0
G(t, s)f(s, u(s))ds

ϵ
, t ∈ [0, 1].

We have v(t) ≥ 0 , t ∈ [0, 1] , and

v(t) ≤ ϵAB(1 + bp) + 2z0
ϵ

≤ ρ, t ∈ [0, 1].
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Moreover,

min
t∈[ η3 ,

η
2 ]
v(t) ≥

λϵ
∫ η

2
η
3

min
t∈[ η3 ,

η
2 ]
G(t, s)f(s, u(s))ds+ 2(1− λ)z0

ϵ

≥
λϵ
(
η
2 − η

3

)
η
3

(
1− η

2

)
Ã+ (1− λ)z0

ϵ

≥
min

(
ϵη

2

18

(
1− η

2

)
Ã, z0

)
ϵ

=
min

(
ϵη

2

18

(
1− η

2

)
Ã, z0

)
ϵ ρ

ρ

≥ Λ∥v∥.

Therefore v ∈ Ω . Also,

λFu(t) = ϵλ

∫ 1

0

G(t, s)f(s, u(s))ds− λ2z0

= ϵ
ϵ
∫ 1

0
G(t, s)f(s, u(s))ds+ 2(1− λ)z0

ϵ
− 2z0

= ϵ v(t)− 2z0

= (I − T )v(t), t ∈ [0, 1].

Therefore
λF (P(β, b)) ⊂ (I − T )(Ω).

10. Let λ ∈ [0, 1] be fixed and ũ ∈ P(α, c) be arbitrarily chosen. So

∥ũ∥ ≤ 1

Λ
min

t∈[ η3 ,
η
2 ]
ũ(t) ≤ 1

Λ
(c− z0) ≤ b.

Set

w(t) =
λϵ
∫ 1

0
G(t, s)f(s, ũ(s))ds+ 3(1− λ)z0

ϵ
, t ∈ [0, 1].

We have that w(t) ≥ 0 , t ∈ [0, 1] , and

w(t) ≤ ϵAB(1 + bp) + 3z0
ϵ

≤ ρ, t ∈ [0, 1],

so

∥w∥ ≤ ϵAB(1 + bp) + 3z0
ϵ

≤ ρ.
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Moreover,

min
t∈[ η3 ,

η
2 ]
w(t) ≥

λϵ
∫ η

2
η
3

min
t∈[ η3 ,

η
2 ]
G(t, s)f(s, ũ(s))ds+ 3(1− λ)z0

ϵ

≥
λϵ
(
η
2 − η

3

)
η
3

(
1− η

2

)
Ã+ (1− λ)z0

ϵ

≥
min

(
ϵη

2

18

(
1− η

2

)
Ã, z0

)
ϵ

=
min

(
ϵη

2

18

(
1− η

2

)
Ã, z0

)
ϵ ρ

ρ

≥ Λ∥w∥.

Thus, w ∈ Ω . Next,

λF ũ(t) + (1− λ)z0 = −2λz0 + λϵ
∫ 1

0
G(t, s)f(s, ũ(s))ds+ z0 − λz0

= λϵ
∫ 1

0
G(t, s)f(s, ũ(s))ds+ (1− 3λ)z0

= ϵ
λϵ

∫ 1
0
G(t,s)f(s,ũ(s))ds+3(1−λ)z0

ϵ − 2z0

= ϵw(t)− 2z0
= (I − T )w(t), t ∈ [0, 1].

Therefore
λF (P(α, a)) + (1− λ)z0 ⊂ (I − T )(Ω).

By Theorem 3.1, it follows that the problem (4.1) has at least one solution y ∈ Ω such that

β(y) < b and α(y) > c.

2

4.1.1. An example
Consider the boundary value problem:

y′′ + y2

(200+t2)(1+y) +
1

500 (1 + t) = 0, t ∈ (0, 1),

y(0) = y
(
1
2

)
, y(1) = 0.

(4.5)

Here

f(t, y) =
y2

(200 + t2)(1 + y)
+

1

500
(1 + t), t ∈ [0, 1], y ∈ [0,∞), k = 1, η =

1

2
.

We have, f ∈ C([0, 1] × R+) and 0 < 1
500 ≤ f(t, y) ≤ a1(t) + a2(t) |y|2 for t ∈ [0, 1] and y ∈ [0,∞), where

p = 2, a1(t) =
1

500 (1 + t), a2(t) =
1

200+t2 , 0 ≤ a1, a2 ≤ 1
200 on [0, 1] . So, the condition (C1) holds.
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Take the constants

ϵ = 1
2 , B = 3, A = 1

200 , Ã = 1
500 , b = 41

50 , d = 4
5 , ρ = 4

3

c = z0 = 2× 10−6, a = 5
2 × 10−6, Λ =

min(( 1
2

1
72

3
4 )×

1
500 , 10

−6)
2
3

= 3
2 × 10−6 < 1.

We have

z0 ≤ c < min
(
a, (1− ϵ)(c− z0) + ϵ

η

3

(
1− η

2

)
Ã, 3z0

)
=

5

2
× 10−6,

2z0
ϵ

= 4 z0 = 8× 10−6 < b,

1

Λ
(c− z0) = 0 ≤ b,

(1− ϵ)
c

Λ
+ 3z0 =

2

3
+ 6× 10−6 < d,

ϵAB(1 + bp) + 3z0
ϵ

=
3

500

(
1 +

(
41

50

)2
)

+ 12× 10−6 ≤ 4

5
= ρ,

AB(1 + bp) =
3

200

(
1 +

(
41

50

)2
)

=
25

1000
< b.

Thus, (C2) holds. By Theorem 4.2, it follows that the problem (4.5) has at least one nonnegative solution.

5. Conclusion
In this paper, the functional expansion-compression fixed point theorem of Leggett–Williams type developed in
[2] is extended to the class of mappings of the form T + F, where (I − T ) is Lipschitz invertible map and F is
a k -set contraction. As application of some obtained theoretical results, we give new results on the existence of
nonnegative solutions for a second order differential equation subjected to three-point boundary value problem.
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