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Abstract: In this work, we obtain how to construct finite limits and colimits for 2-crossed R-Modules over groups
denoted with X2Mod/R. We give direct construction of the pullback object to show that this category has finite

products over the terminal object. We also show finite coproducts and (co)completeness.
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1. Introduction

Whitehead introduced the crossed module notion for groups in [20] also known as 2-type groups. 2-crossed
modules have been represented by Conduché as characterized of 3-types [11]. Baues [5] defined another version
of this concept, as quadratic modules. Brown and Gilbert have given an alternative definition known as braided
regular crossed modules for 3-type of groups using the automorphisms structures [6]. Brown, Sivera and Higgins
[7] constructed the coproduct for crossed modules of groups. In [4] Arvasi and Ulualan have investigated the

relationships between various algebraic types like crossed squares, 2-crossed modules, and simplicial groups.

Crossed squares defined in [16] and in [13] and [14] for commutative algebras. In [12] Conduché obtain
a 2-crossed module from the mapping cone of a crossed square. Baues introduced quadratic modules by using
simplicial groups which can be regarded as a 2-crossed module endowed with nilpotency conditions. For
more details on 2-crossed modules see ([1], [21]). Some of functional relations of 2-crossed modules can be
diagramatized as ([3], [2], [17]).

2-Crossed Modules

(3] (17
][2]
Simplicial Algebras, ? Crossed Squares ? Quadratic Modules

Freeness and coproducts are fundamental tools to construct tensor product for crossed complexes. Free-

ness of quadratic modules in [2] and 2-crossed modules are given in [18]. In [9] construct the coproduct in
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X2Mod/(M — N) that is they fix the precrossed module at the end. Also some colimit theorems and calcu-
lations can be seen in [8], [10], [15], and [19].

The main purposes of this paper are:
e to give the construction and existence of all finite limits in XoMod/R.
e to compose the product of the XoMod/R.
o to express the completeness of the XoMod/R.
« to introduce the coequilaser of the XoMod/R.
e to prove the cocompleteness of the category.
We give an example about these structures at the end of this paper.
2. Preliminaries
Definition 2.1 A crossed module [20], O : R — G satisfies two conditions with the action

GxR—R
(g,7) =7
for g € G and r € R. These conditions are:
o 51)0(9r) = gd(r)g~!
1

o 30)00) () = pr'r—

for r,r' € R and g € G. With condition »; this structure is called a precrossed module. The condition sy is
known as the peiffer condition. We will denote this category with the crossed module is denoted by XMod and
a crossed module 0 : R — G with triple (R,G,0).

Examples:
i) Let i : R < G be the inclusion map and R be a normal subgroup of G, (R, G,1) is a crossed module.
Also, if § : S — G crossed module, then 45 is a normal subgroup in G.

ii) For any group R, 0 : R — Aut(R) is a crossed module. Aut(R) corresponds to the inner

automorphisms.

Definition 2.2 A 2-crossed module [11] of groups is complex
L2 -2 N

of groups with the action of N on L and M . If the mapping

{-,-} M xM—1L

known as the peiffer lifting satisfies the following conditions,
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. ag{ml,mg}—mg (ml)(m1m21(m1) 1)
o {02(l1),02(l2)} = [l2, lh]

o {mima,mz} = {ma, m3} (") {my mams(ma) 1}

{mi,mams} = {mlamQ}mlmz(ml)_l{mlva}

o {m1,02(l1) H{Oa(lh),m1} = llal(ml)lfl

o M{my,ma} = {"my," ma}

for mi,ma,m3 € M,ly,lo € Lin € N.

Let (Ll, Ml, Nl, 82, 81, {—, —}1) CLTLd (LQ, MQ, NQ, 52, (51, {—, —}2) be Q-CTOSSEd modules. f = (flv f2, f3) N
(L1, My, N1) — (L2, M2, No) is a 2-crossed module morphism if the diagram

MlxM{l—,—}l I, 92 M, 91 N,

ol ]

M2 X M_7_}2 L2 5 M2 5 N2

is commutative and

fo(Mmy) = B0 g (my)
AL = B0

for ny € Ny,my € My and 1 € L.

3. Finite limits in X;Mod/R

We give the construction and the existence of all finite limits in XoMod/R. In particular for two 2-crossed

R-modules we construct their product to use this to obtain finite limits in XoMod/R.

Proposition 3.1 Equaliser object exists in XoMod/R.

Proof Let (a,p) : (A, A1, R,02,01) — (B2, B1, R,02,01) be morphisms in XoMod/R as given with the

diagram

A2i>A1*>R

ol ol

B2 T> Bl H R
where a = (a1, a2) and 8 = (81, 82). Define
Ci ={a; € A; : afa;) = Blas)}
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for i = 1,2. With induced morphisms e1,e5 via 9; and 92, (C2,C4, R,e2,61) becomes a sub 2-crossed R-
module of (As, A1, R,05,01). The inclusion ¢ = (i2,41) : (Co,C1, R,e3,1) — (A2, A1, R,02,01) is a 2-crossed

R-module morphism and satisfies

(arir) (ck) = o (ik (k) = B (in (k) = (Brix) (ck)  k=1,2

for all ¢; € C; and ¢ € Co. If ¢/ = (ih, 1)) : (C4,C1, R,eh,e}) — (A2, A1, R,02,01) is another 2-crossed

R-module morphism such that
(akiy) (ck) = (Brix) (k)  k=1,2

for all ¢f € Cy and ¢, € C4. Then from the definition of C; and Cy we get i) (ch) € Cy and 7 (¢}) € C;.
Thus we can define 0 = (6,,61) : (C4,C1, ") = (Ca,Ch,¢) as Ok (c),) =i}, (cx) for k =1,2. Since (i5,4;) is a

2-crossed R-module morphism, (62, 6;) is the unique morphism making the diagram

Cy

commutative. Thus the morphism (ig, 1) is the equalizer of («, 3). O

Proposition 3.2 Pullback object exists in XoMod/R.

Proof Let (a2, 1) : (A2, A1, R,02,01) — (B2, B1, R, 02,01) and (32, 81) : (C2,Cy, R,e2,e1) — (B2, B1, R, 62,61)
be two morphisms of 2-crossed R-modules where

A, oA 2R

3262—>316—>R

€2 €1
w3 :Cy ——=C1 ——R

are 2-crossed R-modules with peiffer liftings { , }. : C1 x C1 = Ca, {_, _}p : B1 x By — By and
{ —}A : A1 x A — As. Define:

Py = {(ar, cx) : ar(ar) = Br(cex)} C Ap x C, k=1,2
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p1: Py — Bi, (a1,¢1) = ai(ar) = Bi(cr)

and
w:Py— P, (az,c2) = (92(az),e2(c2)).

Then we have the following diagram.

Since

aip1("(ar,e1)) = dipi(("ar," cr))
= d1(a1("ar))
= d1(a1("c1))
= réi(on(er))r

= r(&ipi(ar,cr))r!

for all r € R and (ay,c¢1) € Py, the map d1p; is a precrossed module. Next, we will show that

d1p1
P2 >P —>R

is an object in Xa2Mod/R where peiffer lifting { , }, : Py x Pi — P» is defined by [(a1,¢1), (a},c})] —
({a1,al} 4. {c1,c1} o) forall (a1,¢1), (a},c)) € Pr.
1) w and d1p; are R-equivariant. R acts on itself by conjugation.
2) For all (a1,¢1), (af,c)) € Py,
w{(ar,c1), (a1,¢)tp = w({ar,ai}y,{er,ci}e)
= [02{a1,ai},,e2{c1, ¢l }c]

(al(al)a/lal (@) (a) " D ey () (01)_1)

= (P aan (0) 7 () T e () T ) )
= () (@] ) (arsen) (ah ) (o))
3) For all (ag,c2), (ah,ch) € Ps.

{w(ag, c2),w(as, cy)tp = {(02(az),e2(c2)), (D2(a3), 2(ch))} p
({02(a2), e2(c2)} 4, {02(a3), £2(ch) } o)

= [az,a5] [ez, )]

= [(G‘Q’CQ) ’ (0/270/2”
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4) For all (az,c2) € P», (a1,¢1) € Pi.

{(a1,c1),wlaz, e2)} p {wlaz, c2), (a1, 1)} p = {(a1,¢1), (92(az2),€2(c2)) } p {((02(a2), £2(c2)) , (a1, 1))} p
=({a1,02(a2)} 4 . {c1,e2(c2) } ) ({O2(a2), a1} 4 {e2(c2), e1} )
=({a1,02(a2)} 4 {02(az), a1} 4, {c1,€2(c2) } o {€2(c2) 1} )
=(""ay (az) W ez (e2) )
=(Orenlane) gy (ag) H @) ) ()7

=tenlane) (g, ¢5)(az, e2) 7

5) For (ao, ), (a1,¢1), (az,c2) € Py
i)
N N —1
{(a0, c0), (a1, e1)(az, e2)} p = {(a0, o), (a1, 1) }i5 D@ ((ag, ), (a3, 09)} p
ii)
{(ao, CO)(ah Cl), (a27 C2)}p =P {((alacl)v ((l27 02)}19 {(%7 00)7 (61701)(@,02)(@1, 61)_1}P
proof left to the reader as an exercise.
6) For r € R and (ao,c), (a1,¢1) € Pi
"{(ao, o), (a1, 1)} p =" ({ao, a1} 4, {co. c1}c)
= (T {G’Ou al}A 7T {CO7 cl}c)
=({"ao," a1}, ,{"co," c1}¢)
= {(Ta’(]ar CO)7 (Talar Cl)}P

={"(ao,co)," (a1,c1)}p

With the induced morphisms 719 : 5’ — 31 and projection morphisms ¢i2 : 5 — 33 we have the

following commutative diagram

P, ik Ay
R p—" Ay R
q1 l
CQ o B2 a1
R 4 B4 R

B1

Here am = ¢, the 2-crossed R-module morphisms commute and the morphisms 7 and ¢ satisfy the universal

property. Let (m],75) : 3¢ — 5 and (qi,q5) : %’ — 323 be any morphisms in XsMod/R such that an’ = 8¢’
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and

%”:PQI—>P{—>R

then there is a unique morphism (hy,hs) @ 2" — » given by hi(p},)

(7}, (p}), 2k (P})) for k = 1,2 and
p} € Pp,py € P, such that the diagram

P

q2 h2\

, y
B, B2 s 42

As = Bo
hlé \\
: |
: 1
o
N
B, o Ch o ’ - Ay = B

R

commutes. This shows that pullback object exists in X;Mod/R.

Proposition 3.3 Xa;Mod/R has finite products.

Proof

For two 2-crossed R-modules say »; and s, the product s M 35 will be the pullback over the
terminal object s where

1] 5]
%1ZA22*>A1*1>R

g 1
%223224>B]_41>R

o :C 2 >R R

with peiffer liftings { , }o: RxR = C,{ , }z:BixB — Byand {_, },: A x A — Ay and
projection maps 7y : A2 |_|BQ — AQ,ﬂ'Q : A2 |_|BQ — BQ,’/Tll : A1 |_|B1 — A1 and 7Té : Al M Bl — Bl the
2908
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diagram
Ay By L Ay
. \ ax
R A, nB 2 A R
B, B2 o o
R By R R

01

is commutative. For all ay € Ag, by € By , k=1,2; 91 : A1 By — R and 95 : Ao N By — A M By is given
with
U (al,bl) =01m (ahbl) =017y (ah b1)

U2 (az,b2) = (02 (a2) , 62 (b2))
with peiner hftmg {7, —}H : (Al I Bl) X (Al M Bl) — A2 M By
{(a1,01), (a}, ¥4)}r = ({ar, ai} 4, {b1, Ui} )

we get a 2-crossed R-module A, M By — A; M By — R. Using induction X2Mod/R. has finite products.

Conclusion 3.4 Since XaMod/R has finite products and equalisers, XoMod/R. has a limit for any functor
from a finite category to XoaMod/R.. Having all finite limits we say that XaMod/R. is finitely complete.

4. Finite colimits in X;Mod/R

Proposition 4.1 In XoMod/R every pair of morphisms with common domain and codomain has a coequaliser.

Proof Let («,f): 31 — s be two 2-crossed R-module morphisms as given

P P Ry P

e

BgﬁBlﬂR
2

Let Ny be a normal subgroup of By generated by elements of the form ay(ar) — Br(ar), for k= 1,2
and for all ay € Ap. Taking By = By/No, By = B;/N; and defining 6, : By — R, (by + Ny) > 61 (b1);
8 : By — By, (by + N3) = 0o (by) + Ny with peiffer lifting {, Iy By x By — By, [(by + Ny), (b) + N1)] —
{b1,0 } g+ Na, 2= (BQ, Bi, R, 4, 5_1) becomes a 2-crossed R-module and the induced morphism p:sp — > is

a 2-crossed R-module morphism such that the diagram
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@2 D2 5
A2 < BQ > B2

B2
do l b2 l \Léz
ay

Al %E Bl Lgl

B1
o1 _
a1 \L 61

R

is commutative. Suppose there exists another 2-crossed module morphism p’:3¢; — 3¢ then there is a unique

morphism in XaMod/R say ¢ : 7 — 3 in which

or (b + Ni) = pj, (br)

— 6 = &
satisfying @rpy = pj, for k = 1,2 (where 3: By — By ——= R ). Then the morphism p = (p1,ps) is
universal making the following diagram commutative.

Thus p is the coequaliser of o and

01

Y — L—N

/£ /

Let

A, a2 R

5 5
Mo BQ 2*> B]_ *1> R
be two 2-crossed R-modules. Since B; acts on A; via §; we can form the semidirect product By x A; with

(by,a1)(b},ay) = (b (5'1)51(17'1) ,d))

and
T(blyal) = (Tbl,r al)
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for (b1,a1),(b],a}) € By x Ay and r € R. We get injections 41 : By — By x Ay , j1 : A1 = By X A; and define
o1: By x A1 = R as o1(b1,a1) = 01 (b1) + 01 (a1). Let Ny be the normal subgroup of B; x A; generated by
the elements

(b1,a1)(b2,az2) — o1(b1,a1) - (b2, a2)

(b1,a1)(b2,a2) — (b1, a1) - o1(b2, az)

Thus the factor group B; x A;/N; can be defined with the induced morphism B; x A;/N; — R as
71 [(b1,a1) + N1] = o1(by,a1). Clearly &; is a precrossed module. Furthermore By acts on Ay via 201
and 62 = 0, the semidirect product of Ay and B, is the direct product. With injections iy : By — By X Ay
J1: Ag — Ba X As we define o9 : By X Ag — By X Ay as 09(ba,as) = [02 (b2), 02 (az)]. With the same method
we construct By x Ay /N7, we can form By X As/No and the morphism &5 [(bs, ag) + Na] = [d2 (b2), 02 (a2)]+ Ny
and the action of By x A;/N; on Bs X A3 /Ny is given via oy . O

Proposition 4.2 (B3 X Ay) /No — (By X A1) /N1 = R is a 2-crossed R-module.

Proof First we define peiffer lifting { , } 5 : (B1 x A1/N1)x(B1 x A1/N1) = Bax Ay /Ny as [(bi,a1) + Ny, (b},a}) + N1] —
({bl,bll}B + NQ, {al,a’l}A + NQ) for (bl,al) —+ ]\/vl7 (b'l,a'l) —+ N1 S (Bl X Al/Nl)
1) 65 and G, are R-equivariant. R acts on itself by conjugation.

2) For (b1, a1) + Ny, (b1, a}) + Ny € (By x Ay /Ny)

oo {(b1,a1) + N1, (b1,a7) + N1}y = 72 ({b1,b1} g + N, {a1,ai} 4 + No)

[52 {b1,b)} 5,02 {as, a’l}A}

= (OEND @ L Ny (by + Ny (B, + Ny (b 4+ Ny T
21t (0 + Ny) (a1 + Ny) (a) + N1) ™ (ar + Vi) )

= (lOva)t Ny L NYY (b 4 Ny () 4+ Ny) T (b 4+ Ny T
1llra) Nl (g) 4 Ny) (ay + Ni) (af + N1) ™' (ag + N7

= 7o)t NI (5 ah) + Nu) (b1, a0) + No)

(b5, ay) + N1) ™' ((br,ar) + Ni) ™"

3) For (bg,ag) + No, (bé,aé) + Ny € (B2 X AQ/NQ)
{G2(b2, az) + No, 52(by, a5) + No} = {(d2 (b2), 02 (a2)) + N, (02 (b3) , 02 (ah)) + Ni}p
= ({02 (b2) , 02 (b3)} g + N2, {02 (a2) , 02 (a3)} 4, + No)
(b2, b5] + N2, [az, as] + Na)

= [(b27a2)7 (bl2’ aé)] + N

4) For (bg,ag) + Ns € (BQ X AQ/NQ) s (bl,al) + N; € (Bl X Al/Nl),
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—~
—

bi,a1) + Ni,02(bz,a2) + Na} 5 {G2(b2,a2) + No, (b1,a1) + N1}y

({b1 + N1, 02b2 + Na} {5252+N27b1 +N1}B,{a1—|—N1,82a2—|—N2}A {O2a2 + Na,a1 + N1} ,)
(b -+ N2 % by 4 Np) ™" (a2 4+ No)™™ ™ (03 + Vo) ™)
(
(

(b + No )61(b1,a1)+N1 (bs _|_N2) (az +N2)31(b1,a1)+N1 (as + N2)—1)
(b2, az) + Np) 70N (by ay) + Ny) ™

5) For (bk,ak) + N; € (Bl X Al/Nl), k=0,1,2

Z"{(b(ha“o)—'_‘Z\’fh(bh(:"'l)(ana'Q)""Z\h}N = {(bovao)+Nla(b1ua’1)+Nl}ngO7a0)(bl’al)(b07a0)7
{(bo,ag) + N1, (b2,a2) + N1}y
ii. {(bo, ao) (b, a1) + N1, (b2, a2) + Nubyy = 70000 N {(by,aq) + Ny, (b, a2) + N1}y left to the reader

{(bo,a) + Ni, (b1, a1) (b2, a2)(b1,a1) "'}
6) For r € R and (bo,ao) +N1,(b1,a1) + Ny € (Bl X Al/Nl)

r {(b(h(lo) + Nh (bhal) + Nl}N = 7 ({bOvbl}B + N27 {ao,al}A + N2)
= ("{bo,b1} 5+ Na," {ap, a1} 4 + Na)
{"(bo,ao) + N1," (b1,a1) + N1}

Theorem 4.3 The constructed 2-crossed module
o (82 X AQ)/NQ g (B1 X Al)/Nl g R

with the morphisms (i1, j1), (ie, j2) is the coproduct of the 2-crossed modules.

Proof Let »xc = (Cy,Cy, R,0%,07) be any 2-crossed R-module and « : (B, By, R, d2,61) — (C3,Cy, R, 8%,07)
and B : (A2,41,R,02,01) — (Co,C1, R,04,07) be 2-crossed R-module morphisms as given by the following

diagram.

Ay n, "R

o l

C2*>01HR

d

BQHBlﬁR

Then there exists a map h : s — 3¢ given by hy [(bg, ar) + Ni] = o (bi) Bk (ax) . h = (h1, he) is a unique
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2-crossed R-module morphism making the diagram

h2 h2
o2 A, P By >0,
ha ha
Cy A, P, B el
R
commutative. O

The construction of coproducts in XsMod/R. induces the functor
o:X2Mod/R x X2Mod/R — X2Mod/R
which is left adjoint to the diagonal functor

A : X;Mod/R — X;Mod/R x X;Mod/R.

Conclusion 4.4 X;Mod/R is cocomplete.

Example 4.5 Let

0 &
%1ZBQZ4>Bl41>R

(o) 1%}
%22A2$A1;>R

be two 2-crossed R-modules with 01(Ay) C 61(B1) and peiffer liftings {_, _},,{_, }pz. Let o1 :6:1(B1) = By

be an R-equivariant section of d1. Then the morphisms

i1 : By — By x Aj/[Ay,B1]; b1 — (b1,0)
i : By — By x By; by > (b2,0)
J1 + Ay — By x Ai/[A1,B1]; a1 — (o1 (a1), [a1])
Jjo @ Ay — By x Ag; as — (0,az)

gtve a coproduct of 2-crossed modules,

4 &
%12B22*>Bl%'R

2913
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g1 B1 X (Al/ [AhBl]) — R, (bl, [ID — 51 (bl)
Eg B2 X AQ — Bl X (Al/ [Al,Bl]); (bg,bl) —> (52 (bg) ,0)

and peiffer lifting

o eop 1 (B X (A1/ [A1, Bi])) x (Br x (A1/ [A1, B1])) — B2 x Ay
[(b1, [2]), (b3, [2])] = ({br, b1} o, 2} 4))

Here [A1, By is the normal subgroup of Ay generated by the elements a~tab forall a € Aib e By.

[4]

[5]
[6]

(7]

[10]

[11]

[\

—
w

- = = = =
B AN

(=)

Ut
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