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Abstract: In this paper, the characteristic properties of the space of functions of bounded mean oscillation called the
B-BMO associated with the Laplace-Bessel differential operator are obtained. The John-Nirenberg type inequality on
the B-BMO space and a relation between the B-Poisson integral and the B- BMO functions are proved.
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1. Introduction
The Laplace-Bessel differential operator Apg which is an important technical tool in Fourier-Bessel harmonic
analysis is defined by
n—1 go 2 2
AB—;;%%—F(%—FZ%), (v>0, z, >0).

This operator is a hybrid differential operator which is obtained by applying the Laplace differential
operator in the first n — 1 variable and the Bessel differential operator in the last variable.

The relevant Fourier-Bessel harmonic analysis associated with the Bessel differential operator B; (or
Laplace-Bessel differential operator Ap) has been a research area for many mathematicians such as Delsarte,
Levitan, Kipriyanov, Klyuchantsev, Lyakhov, Stempak, Gadjiev, Aliev, Guliev, Bayrakci, Sezer, Hasanov and
many others [1-5, 8, 11, 14-16, 19-22, 24-26].

The classical BMO space of functions of bounded mean oscillation, was first introduced by John and
Nirenberg [18] in 1961. The space BMO shares similar properties with the space Lo, and it often serves as
a substitute for it. For instance, classical singular integrals do not map L., to Lo, but Lo to BMO. Many
interpolations between L, and BMO work very well between L, and L.,. This space has been studied by
several authors, e.g., John, Nirenberg, Fefferman, Stein, Garnett, Carleson, Chang, Sadosky, Jones, Meyers,
Janson, and others [6, 7, 9, 10, 12, 17, 18, 23].

The space of functions of bounded mean oscillation associated with the Laplace-Bessel differential operator
Ap, called the B-BMO space was defined by Guliyev [14]. In recent years, the B-BMO space has been used
by many mathematicians such as Guliyev, Abasova, Aliyeva, Shirinova, Hasanov, Ayazoglu, and Bayrakci to

obtain the boundedness of some integral operators in suitable function spaces [1, 14-16].
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In this article, we obtain that the characteristic properties provided by the classical BMO space are also
valid in the B-BMO space. We also state the John-Nirenberg-type inequality in B-BMO spaces and prove the
relationship between the B-Poisson integrals and the B- BM O functions.

The paper is organized as follows. Section 2 contains basic definitions and results. The characteristic
properties of the B- BMO space (Theorem 3.3, Theorem 3.5), the relationship between the B-Poisson integral
and the B-BMO function (Theorem 3.6, Theorem 3.7) and finally the John-Nirenberg type inequality and

application (Theorem 3.8, Theorem 3.9) are given in Section 3.

2. Definitions, notations, and preliminaries

n

1
2
Let R™ be the n-dimensional Euclidean space. Also let for z = (z1,--- ,z,) € R", |z| = (Z m%) . Denote

RY ={z € R" : & = (21, ,Zn—1,%n), Tn > 0}. The Lebesgue measure of a measurable set £ C R is

denoted by |E|, = [22dz, dv = dv1dxy - - -dz, and v > 0 is a fixed parameter.
E

Suppose that E (z,r) = {y € R} : |t —y| < r} denotes the “ball” of radius > 0 centered at z € R} .
It is known that |E(0,7)|, = r"™?*w (n,v) where w(n,v)=|E(0,1)|,.

Denote by TY the generalized translation operator, acting according to the law

=[N

F U
1vpay = L0 F )) / 7 (a — o/ V@~ 2 cos 1 42) ) sin® " 6o,
0

I'(v)r (2

where x = (2/,2,),y = (v',yn), 2",y € R"~! and

F(VJF%) _1_ r s 2u—1
<W> —-O/sm 0deo.

Note that the generalized translation operator 1Y is closely related with the Laplace-Bessel differential
operator Ap (see [8, 21, 22] for details).

Let Ly, (Ri) ,1 <p < oo be the space of all measurable functions on R’ with the norm

P

I, = / F@P a2z | < ool
&Y

In the case of p = oo, the space Lo (R7) is equipped with the norm | f||,, = esssup|f (z)|. Also, we
z€RY

denote by Li¢ (Ri) the set of locally integrable functions on R’} .

Lemma 2.1 [16] For all x € RY the following equality is valid:

/ Tzf(x)zZ”dz:II:(Ej;;r()) / f(yM) dy

E(0,r) E(Z,r)

N =[N
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where E(%aT) = E((I’,O),T) = {g: (yayn-‘rl) € R™ x (0700) : |§7 §| < T}a y/ € ]Rnily dy = dy;...dyn—1dyn.

Proof Let Z = (x,0) = (21,...,20n,0), ¥ = (Y1, o Yn, Ynt1)- Weset @ =T—4 = (X1 —Y1, -, T — Yn, —Yn+1)-
Thus we have

/ f (yla \/ y% =+ yTQL-‘rl) y?zlj,-_lldyn—kldy = / f (1‘/ - wlv \/(xn - wn)2 + wrzz+1) wVQLIf}-_lldwn-i-ldw-

E(%,r) E(0,r)

Now, let us apply the substitutions for (z1,...,2,) € R} : w' =2', w, =z,c080, wy41 = 2,sinb,

0<6<m z,>0. Finally, we get
/f <x’ -2, \/(xn — 2, cos 0)2 + 22 sin® 9) 22" sin? 719 2,dfdz = / T f (x) 22 dz.

E(0,r) 0 E(0,r)

3. Main definitions and results
Definition 3.1 (Guliev [14]) The B-BMO space, generated by the generalized translation operator is defined

as the space of locally integrable functions f with the norm (see Remark below):

1
=sup——— TY f (x) — (@) |y dy < 0o
Hf”B-BMO T>13 ‘E(O,’f’”y / | f( ) fE(O, )( )|yn Y

wCRY E(0,r)
where
1
. = TY 2V oy,
fE(o, )(33) |E(07r)|y / f (@) y,"dy

E(0,r)

It is a simple fact that B-BMO is a linear space, that is, if f,g € B-BMO and o € C then, f+g¢g
and af are also in B-BMO and

A

If +9lgemo < Iflspro + 19l 5-sro -
lafllg.ero = | llfllpsro-
Remark 3.2 |-||z_ gy0 1 not a norm. The problem is that if || f|l 5_garo = 0, this does not imply that f =0

but that f is a constant. Moreover, every constant function c satisfies ||c|| g g0 = 0. Although ||| g_garo 5

only a seminorm, it can be taken as a norm when there is no possibility of confusion.

Now, let us begin with a list of basic properties of the space B-BMO.

Theorem 3.3 Let f € L° (R’j_) . The following properties of the space B-BMO are valid:
a) Leo (Ri) S B-BMO and | fllg.gyo < 21flls -

b) Suppose that there exists an A > 0 such that for all x € R and all r > 0 there exists a constant ¢y,
such that

1 / 9
sup ———— TYf (z) — |y dy < A. 3.1
S TE (0,7, TV f (%) |y, dy (3.1)
=BT E(0,r)
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Then, f € B-BMO and ||f| p_pyo < 24.

¢) If f € B-BMO and X\ > 0 then, the function 6*f defined by 6*f (z) = f (A\z) is also in B-BMO
and

H(SAfHB-BMo = lfll5-prro - (3.2)
Proof a) Let f € Lo (R7). Since

r(v+1) |
T f(z)] < (”73) sin? ! ada
2

we have

\fE<o,,«)<x>|g|E(+r)| [ @l < il

E(0,r)
Hence,

1
T 7 N1 Ty — 2v <
1E(0,7)], /| (@) = fen (@)| v dy <
E(0,r)
woar | M@ e [ Ve @l
|E (07 r)|y n |E (O7T)|u E(0,r) n

E(0,r) E(0,r)

IA

oo + 11 lloe = 211 fllo -

Thus, || fllz.smo < 2/ fll is obtained by taking the supremum over all z € R%, > 0.
b) Firstly, since

|TYf (x) = fe@r @)| < TYf (%) = o

+ |Ca:,r - fE(O,T) (.’13)|

and

1 / 9
Cor — T TYf (z)y-"dy
|E(0,7)],

E(0,r)

|Cz,r - fE(O,r) (m)|

1 v
Fooy, | T erluiy

E(0,r)
we have

1

2
—_— TY - , Wiy < / TY — o Y2¥ dy.
‘E(O,’I‘)‘y / | f(il’) fE(07 )(x)‘yn Y= |E(O,T)|V | f(il') c s |yn Y
E(0,r) E(0,r)
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Finally, by taking supremum over all z € R%, 7 > 0 we have f € B-BMO and || f| g gyo < 24.

c¢) For the property (3.2), let us show ((V‘f)E(O " () = fB@, ) (Ar). For this, we have

TY (62 f) (2)

Thus we get

Hence by taking into account (3.3) and (3.4), we obtain |’5>\fHB-BMO = \fllg.Bro -

r (l/ + %

T'(v) (% )
r (1/ + % T
r'(v)T (% )
TN f ().
(5*F) g0, (@)

# Y A 2
|E(0,7)], / TV (0™ f) (@) y"dy
E(0,r)
= # A 2v
= ooy | TV oo

E(0,r)

- .. (Z = )\y7 dz = )\ndy, zil’ = )\2uy12ll/) .

1 1 . »
o AE(0,r)

= (f))\E(O,r) (Az) = (f) B (A2).

(3.3)

(3.4)

Remark 3.4 We indicate that L (Ri) is a proper subspace of B-BMO. As in case of the classical BMO—

space, we claim that the function f(x) =loglxz| is in B-BMO but not in L (R’_,‘_) L (cf-([25], p.-141).

Our next goal is to determine the connection between the B-BMO function and B— Poisson integral
and present John-Nirenberg-type inequality for B- BM O functions. These results have promising applications

for the classical BM O-functions, such as determining the characterization of BM O-space and the connection

between BM O-functions and the Carleson measure (see [7, 9, 10, 13, 25] for details).

Theorem 3.5 Let f be in B-BMO. Then,

a)

b)

2920
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Proof a) For r <s, we have

1
o0 @) = fron @] < o [ @) = fraw @)y
T B0,
[E(0,s), 1 .
< O EOTL | 0@ s @)
E(0,s)

n+2v

< (5)" Mo

b) Firstly let m = 1. By using (3.5) we get

2% n+2v ,
00 (@) = Jetoan @1 < (2] Wlpesmo =27 I lpaso-

Finally using this inequality, we obtain

IN

|fE@0r) () = fE@2r) (@) + -+ + | fE@O,2m-11) (2) = fE(0,2mr) (2)]

2n+2u

|fE(o,r) (z) — fE(O,QmT')(x)|

IN

m|fllpemo:. meEN.

Theorem 3.6 There ezists a constant c(n,v) >0 such that for all f € B-BMO we have

sup / TV (2) — Vif (@)] Py (9:1) v dy < ¢ (n,) | f]| p_paror -

n
IER+R"
t>0 R}

Here P, (y,t) denotes the B-Poisson kernel introduced in [2] and

(Vif) () = / TVf (2) P, (y.t) 42" dy

R}

the B-Poisson integral of f.

Proof We have
[TV f (x) = Vif (2)| Py (y, 1) g dy <

IA

/!Tyf(af) — fE@4) (@)| Py (y, 1)y dy + / [Vif (@) = fro. (@)| Py (y,t) yor dy

R" R™

I + L.
Now, let us calculate the estimates I; and Is. Since

t
(t2 + ‘y|2)(7l+2u+1)/2

P, (y, t) = d,,(n)

(3.8)
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and
) 1-n 217V+n/21—\ 9 1/2
dy(n) = (2m) (n+2v+1/ ), (see [2] for dotails)
V2 (n+1/2)
we obtain
g HTVF (@) oo @)
ho= [T @) = foon @] P 0t) 52y = d, () | 0 @y,
2
N 2 (124 l?)
tTYf (2) — e (T)] o5,
: / | e |yi dy +
2 2 2
E(0,t) (t + |yl )
o t(‘Tyf (w) — fE(0,2k+1t) (I)| + ’fE(O,Qk‘Flt) _ fE(O,t) ($)|) 5y
+ Z 9 (n+2v+1)/2 Y dy
o ‘ £+ Jyl
E(0,28+1¢)\ E(0,2%t) y
1 ) ~ ]
< nt2v / T f (%) = fro. (@)] v dy + 22 k(n+20+1) o

E(0,t) k=0

1 n 1% n 1%
nter / |Tyf(17) —f2k+1E(0,t) |yn dy + —- t"+2V |f2k+1E(0t (z) — fE(Ot w)|2(k+1)( +2v) w(n,v)t +2

2k+1 E(0,t)
n+2v 2(n+2v) k + 1
< wm ) Ifllp-paro +« (0) |l pparo | 2 Z +2 Z
k=0
< c(n’y) ”fHB-BMO' (39)

Also, by taking into account

/ P, (y,t) y2dy =1, (see [2])

Ry

we obtain

o= [0~ oo @) P 0 iy

= |Vif () = feos (@)

< [1177 @) - fon @) B )y

< c(n,v) Hf”B-BMO

which combined with the inequality in (3.9). Therefore, this estimate combined with (3.8) yields the desired
result and finishes the proof.

The following theorem gives a sufficient condition for the inverse inequality in (3.7). O
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Theorem 3.7 There is a constant ¢ (n,v) such that for all f € L° (Ri) for which

[ <o

2 n+2v+1
i (1)
we have
s / TV f (x) = Vif (2)] Py (y,t) y2dy = E(n,0) |1 fll 5_paso -
xeR™
>0 R
Proof Let

A= sup /\T'"’f (z) = Vif (z)| P, (y,t) y2X dy.

9 (n+2v+41)/2
For y € E(0,t), |y| <t we have (t2 + |yl ) < ey (n,v) "+ and P, (y,t) > co (n,v)t=("+2)
which gives

co (n,v .
Az ) [rg o) Vg @)y
K}

Taking into account (3.1) implies that

2A

< .
C2 (n,l/)

£l 5-Brr0 <

This concludes the theorem. O

Theorem 3.8 For all f € B-BMO, all t > 0, x € R} and all o > 0 there exist ¢; = c1(n,v),
cg = ¢ (n,v) >0 such that

Hx € E(0,t) : ’Tyf(:zc) - fE(O,t)(fE)‘ > a}!y < cre~ @2/l pro, (3.10)

Proof  For the sake of simplicity, we assume that | f||z 50 = 1. We apply the Calderon-Zygmund
decomposition to the function TYf — fg(o) inside the E(0,t). The rest part of the proof is similar to the
proof of the well-known John-Nirenberg inequality for the classical BMO functions, (see [18], (cf. [13], p.124)
for details). O

By using Theorem 3.8, we obtain the following important L, , characterization of B-BMO.

Theorem 3.9 Let [ bein B-BMO. Then, for 1 < p < oo there exists ¢ = c(n,v,p), d =d(n,v,p) >0
such that

1/p
1 174
cllfllp-pro < Seuﬂg 1E(0, 1) / ’Tyf (z) = fr@O.1 (T/)|pyrzz dy <d|flz.Bmo - (3.11)
z€RY ) v
>0 E(0,t)
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oo

Proof By using (3.10) and the Gamma function T'(2) = [ t*~le~!dt we have
0

1
- Ty _ p 21/d —
IE(0,0)], / TV f (@) = fro.n @) v dy
E(0,t)
1 oo
= T P e € B(0,t) : [TYf (z) — Py d
|E(O,t)|y/pa {z € B(0,t): |TVf (2) = fr. ()] > a}|, da
0
per / p—1,-aes/ | 115.
< = « e B-BMO d¢y
[E(0,1)],
0
QCo Co
S R S R S,
11l 5-aro 1l 5-ar0
—1 _ _
= c3 ||fH%-BMon||B_BMo/5p le=Pdp
0
= & flssmo. d=d(n,v,p)>0. (3.12)
Hence,
v
1
o | B0, / 7F @) = oo @[ yrdy | < dlfllppao-
verr | [E(0,1)],,
t>0 E(0,t)

Also by taking into account the Holder inequality % + % =1, 1< p< oo we obtain

IN

TV (2) — fi, ()] 2 dy / TV (2) — fi, (@) 42 dy / Y2V dy

E(0,t) £(0,t) E(0,t)

=

R~

— | [1r1 @)~ fr @y | 1.0

Therefore,
: :
! |E(0,t)|2 )
- - TY _ 2Vd < 5 v Tv B 2ud
oo E(0,t)
%
1 )
g - - Ty _ Vd
|E(0,t)], / TV f (2) = fro.n (@] yn"dy
E(0,t)
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and
1
1 v
1o < 5w | o [ 0@ = Fron @ s20dy | L 1<p<oe. (313
z€RY ‘ (Ovt)‘y
t>0 E(0,t)
Finally, combining (3.12) and (3.13) yields that (3.11). O
Corollary 3.10 For all 1 < p < co we have
1
£ lsm0~ 5w | e | 1774 @ = Fron @ 52y
z€RY |E(07t)|1/
t>0 E(0,t)
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