Turkish Journal of Mathematics

http://journals.tubitak.gov.tr/math/
тӥвітак

Turk J Math
(2022) 46: 2916 - 2926
© TÜBİTAK
doi:10.55730/1300-0098.3309

On the BMO spaces associated with the Laplace-Bessel differential operator

Sinem SEZER ${ }^{1}{ }^{(0)}$, Simten BAYRAKÇI ${ }^{2, *}{ }^{(®)}$, Güldane YILDIZ $^{2}{ }^{(1)}$, Recep KAHRAMAN ${ }^{2}{ }^{(D)}$
${ }^{1}$ Department of Mathematics, Faculty of Education, Akdeniz University, Antalya, Turkey
${ }^{2}$ Department of Mathematics, Faculty of Science, Akdeniz University, Antalya, Turkey

Received: 07.02.2022 • Accepted/Published Online: 22.07.2022 • Final Version: 05.09.2022

Abstract

In this paper, the characteristic properties of the space of functions of bounded mean oscillation called the $B-B M O$ associated with the Laplace-Bessel differential operator are obtained. The John-Nirenberg type inequality on the $B-B M O$ space and a relation between the B-Poisson integral and the $B-B M O$ functions are proved.

Key words: Laplace-Bessel differential operator, Generalized translation operator, $B M O$ spaces, $B-B M O$ spaces, Weighted Lebesque spaces

1. Introduction

The Laplace-Bessel differential operator Δ_{B} which is an important technical tool in Fourier-Bessel harmonic analysis is defined by

$$
\Delta_{B}=\sum_{k=1}^{n-1} \frac{\partial^{2}}{\partial x_{k}^{2}}+\left(\frac{\partial^{2}}{\partial x_{n}^{2}}+\frac{2 \nu}{x_{n}} \frac{\partial^{2}}{\partial x_{n}}\right),\left(\nu>0, x_{n}>0\right)
$$

This operator is a hybrid differential operator which is obtained by applying the Laplace differential operator in the first $n-1$ variable and the Bessel differential operator in the last variable.

The relevant Fourier-Bessel harmonic analysis associated with the Bessel differential operator B_{t} (or Laplace-Bessel differential operator Δ_{B}) has been a research area for many mathematicians such as Delsarte, Levitan, Kipriyanov, Klyuchantsev, Lyakhov, Stempak, Gadjiev, Aliev, Guliev, Bayrakci, Sezer, Hasanov and many others $[1-5,8,11,14-16,19-22,24-26]$.

The classical BMO space of functions of bounded mean oscillation, was first introduced by John and Nirenberg [18] in 1961. The space $B M O$ shares similar properties with the space L_{∞}, and it often serves as a substitute for it. For instance, classical singular integrals do not map L_{∞} to L_{∞} but L_{∞} to $B M O$. Many interpolations between L_{p} and $B M O$ work very well between L_{p} and L_{∞}. This space has been studied by several authors, e.g., John, Nirenberg, Fefferman, Stein, Garnett, Carleson, Chang, Sadosky, Jones, Meyers, Janson, and others $[6,7,9,10,12,17,18,23]$.

The space of functions of bounded mean oscillation associated with the Laplace-Bessel differential operator Δ_{B}, called the $B-B M O$ space was defined by Guliyev [14]. In recent years, the B-BMO space has been used by many mathematicians such as Guliyev, Abasova, Aliyeva, Shirinova, Hasanov, Ayazoglu, and Bayrakci to obtain the boundedness of some integral operators in suitable function spaces [1, 14-16].

[^0]In this article, we obtain that the characteristic properties provided by the classical BMO space are also valid in the B - $B M O$ space. We also state the John-Nirenberg-type inequality in B-BMO spaces and prove the relationship between the B-Poisson integrals and the $B-B M O$ functions.

The paper is organized as follows. Section 2 contains basic definitions and results. The characteristic properties of the $B-B M O$ space (Theorem 3.3, Theorem 3.5), the relationship between the B-Poisson integral and the B - $B M O$ function (Theorem 3.6, Theorem 3.7) and finally the John-Nirenberg type inequality and application (Theorem 3.8, Theorem 3.9) are given in Section 3.

2. Definitions, notations, and preliminaries

Let \mathbb{R}^{n} be the n-dimensional Euclidean space. Also let for $x=\left(x_{1}, \cdots, x_{n}\right) \in \mathbb{R}^{n},|x|=\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{\frac{1}{2}}$. Denote $\mathbb{R}_{+}^{n}=\left\{x \in \mathbb{R}^{n}: x=\left(x_{1}, \cdots, x_{n-1}, x_{n}\right), x_{n}>0\right\}$. The Lebesgue measure of a measurable set $E \subset \mathbb{R}_{+}^{n}$ is denoted by $|E|_{\nu}=\int_{E} x_{n}^{2 \nu} d x, d x=d x_{1} d x_{2} \cdots d x_{n}$ and $\nu>0$ is a fixed parameter.

Suppose that $E(x, r)=\left\{y \in \mathbb{R}_{+}^{n}:|x-y|<r\right\}$ denotes the "ball" of radius $r>0$ centered at $x \in \mathbb{R}_{+}^{n}$. It is known that $|E(0, r)|_{\nu}=r^{n+2 \nu} \omega(n, \nu)$ where $\omega(n, \nu)=|E(0,1)|_{\nu}$.

Denote by T^{y} the generalized translation operator, acting according to the law

$$
T^{y} f(x)=\frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(\nu) \Gamma\left(\frac{1}{2}\right)} \int_{0}^{\pi} f\left(x^{\prime}-y^{\prime} ; \sqrt{\left(x_{n}^{2}-2 x_{n} y_{n} \cos \theta+y_{n}^{2}\right)}\right) \sin ^{2 \nu-1} \theta d \theta
$$

where $x=\left(x^{\prime}, x_{n}\right), y=\left(y^{\prime}, y_{n}\right), x^{\prime}, y^{\prime} \in \mathbb{R}^{n-1}$ and

$$
\left(\frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(\nu) \Gamma\left(\frac{1}{2}\right)}\right)^{-1}=\int_{0}^{\pi} \sin ^{2 \nu-1} \theta d \theta
$$

Note that the generalized translation operator T^{y} is closely related with the Laplace-Bessel differential operator Δ_{B} (see [8, 21, 22] for details).

Let $L_{p, \nu}\left(\mathbb{R}_{+}^{n}\right), 1 \leq p<\infty$ be the space of all measurable functions on \mathbb{R}_{+}^{n} with the norm

$$
\|f\|_{p, \nu}=\left(\int_{\mathbb{R}_{+}^{n}}|f(x)|^{p} x_{n}^{2 \nu} d x\right)^{\frac{1}{p}}<\infty
$$

In the case of $p=\infty$, the space $L_{\infty}\left(\mathbb{R}_{+}^{n}\right)$ is equipped with the norm $\|f\|_{\infty}=\underset{x \in \mathbb{R}_{+}^{n}}{e s s \sup }|f(x)|$. Also, we denote by $L_{1}^{\text {loc }}\left(\mathbb{R}_{+}^{n}\right)$ the set of locally integrable functions on \mathbb{R}_{+}^{n}.

Lemma 2.1 [16] For all $x \in \mathbb{R}_{+}^{n}$ the following equality is valid:

$$
\int_{E(0, r)} T^{z} f(x) z_{n}^{2 \nu} d z=\frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(\nu) \Gamma\left(\frac{1}{2}\right)} \int_{E(\widetilde{x}, r)} f\left(y^{\prime}, \sqrt{y_{n}^{2}+y_{n+1}^{2}}\right) d \widetilde{y}
$$

where $E(\widetilde{x}, r)=E((x, 0), r)=\left\{\widetilde{y}=\left(y, y_{n+1}\right) \in \mathbb{R}^{n} \times(0, \infty):|\widetilde{x}-\widetilde{y}|<r\right\}, \quad y^{\prime} \in \mathbb{R}^{n-1}, d y=d y_{1} \ldots d y_{n-1} d y_{n}$.
Proof Let $\widetilde{x}=(x, 0)=\left(x_{1}, \ldots, x_{n}, 0\right), \widetilde{y}=\left(y_{1}, \ldots, y_{n}, y_{n+1}\right)$. We set $\widetilde{w}=\widetilde{x}-\widetilde{y}=\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n},-y_{n+1}\right)$. Thus we have

$$
\int_{E(\widetilde{x}, r)} f\left(y^{\prime}, \sqrt{y_{n}^{2}+y_{n+1}^{2}}\right) y_{n+1}^{2 \nu-1} d y_{n+1} d y=\int_{E(0, r)} f\left(x^{\prime}-w^{\prime}, \sqrt{\left(x_{n}-w_{n}\right)^{2}+w_{n+1}^{2}}\right) w_{n+1}^{2 \nu-1} d w_{n+1} d w
$$

Now, let us apply the substitutions for $\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}_{+}^{n}: \quad w^{\prime}=z^{\prime}, \quad w_{n}=z_{n} \cos \theta, \quad w_{n+1}=z_{n} \sin \theta$, $0 \leq \theta<\pi, \quad z_{n} \geq 0$. Finally, we get

$$
\frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(\nu) \Gamma\left(\frac{1}{2}\right)} \int_{E(0, r)} \int_{0}^{\pi} f\left(x^{\prime}-z^{\prime}, \sqrt{\left(x_{n}-z_{n} \cos \theta\right)^{2}+z_{n}^{2} \sin ^{2} \theta}\right) z_{n}^{2 \nu-1} \sin ^{2 \nu-1} \theta z_{n} d \theta d z=\int_{E(0, r)} T^{z} f(x) z_{n}^{2 \nu} d z
$$

3. Main definitions and results

Definition 3.1 (Guliev [14]) The B-BMO space, generated by the generalized translation operator is defined as the space of locally integrable functions f with the norm (see Remark below):

$$
\|f\|_{B-B M O}=\sup _{\substack{r>0 \\ x \in \mathbb{R}_{+}^{n}}} \frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)-f_{E(0, r)}(x)\right| y_{n}^{2 \nu} d y<\infty
$$

where

$$
f_{E(0, r)}(x)=\frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)} T^{y} f(x) y_{n}^{2 \nu} d y
$$

It is a simple fact that $B-B M O$ is a linear space, that is, if $f, g \in B-B M O$ and $\alpha \in \mathbb{C}$ then, $f+g$ and αf are also in $B-B M O$ and

$$
\begin{aligned}
\|f+g\|_{B-B M O} & \leq\|f\|_{B-B M O}+\|g\|_{B-B M O} \\
\|\alpha f\|_{B-B M O} & =|\alpha|\|f\|_{B-B M O}
\end{aligned}
$$

Remark $3.2\|\cdot\|_{B-B M O}$ is not a norm. The problem is that if $\|f\|_{B-B M O}=0$, this does not imply that $f=0$ but that f is a constant. Moreover, every constant function c satisfies $\|c\|_{B-B M O}=0$. Although $\|\cdot\|_{B-B M O}$ is only a seminorm, it can be taken as a norm when there is no possibility of confusion.

Now, let us begin with a list of basic properties of the space $B-B M O$.
Theorem 3.3 Let $f \in L_{1}^{\text {loc }}\left(\mathbb{R}_{+}^{n}\right)$. The following properties of the space $B-B M O$ are valid:
a) $L_{\infty}\left(\mathbb{R}_{+}^{n}\right) \varsubsetneqq B-B M O$ and $\|f\|_{B-B M O} \leq 2\|f\|_{\infty}$.
b) Suppose that there exists an $A>0$ such that for all $x \in \mathbb{R}_{+}^{n}$ and all $r>0$ there exists a constant $c_{x, r}$ such that

$$
\begin{equation*}
\sup _{\substack{r>0 \\ x \in \mathbb{R}_{+}^{n}}} \frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)-c_{x, r}\right| y_{n}^{2 \nu} d y \leq A \tag{3.1}
\end{equation*}
$$

Then, $f \in B-B M O$ and $\|f\|_{B-B M O} \leq 2 A$.
c) If $f \in B-B M O$ and $\lambda>0$ then, the function $\delta^{\lambda} f$ defined by $\delta^{\lambda} f(x)=f(\lambda x)$ is also in $B-B M O$ and

$$
\begin{equation*}
\left\|\delta^{\lambda} f\right\|_{B-B M O}=\|f\|_{B-B M O} . \tag{3.2}
\end{equation*}
$$

Proof a) Let $f \in L_{\infty}\left(\mathbb{R}_{+}^{n}\right)$. Since

$$
\begin{aligned}
\left|T^{y} f(x)\right| & \leq \frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(\nu) \Gamma\left(\frac{1}{2}\right)} \int_{0}^{\pi}\left|f\left(x^{\prime}-y^{\prime} ; \sqrt{x_{n}^{2}-2 x_{n} y_{n} \cos \alpha+y_{n}^{2}}\right)\right| \sin ^{2 \nu-1} \alpha d \alpha \\
& \leq \operatorname{ess} \sup _{x \in \mathbb{R}_{+}^{n}}|f(x)| \frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(\nu) \Gamma\left(\frac{1}{2}\right)} \int_{0}^{\pi} \sin ^{2 \nu-1} \alpha d \alpha=\|f\|_{\infty}
\end{aligned}
$$

we have

$$
\left|f_{E(0, r)}(x)\right| \leq \frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)\right| y_{n}^{2 \nu} d y \leq\|f\|_{\infty}
$$

Hence,

$$
\begin{aligned}
& \frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)-f_{E(0, r)}(x)\right| y_{n}^{2 \nu} d y \leq \\
\leq & \frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)\right| y_{n}^{2 \nu} d y+\frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|f_{E(0, r)}(x)\right| y_{n}^{2 \nu} d y \\
\leq & \|f\|_{\infty}+\|f\|_{\infty}=2\|f\|_{\infty} .
\end{aligned}
$$

Thus, $\|f\|_{B-B M O} \leq 2\|f\|_{\infty}$ is obtained by taking the supremum over all $x \in \mathbb{R}_{+}^{n}, r>0$.
b) Firstly, since

$$
\left|T^{y} f(x)-f_{E(0, r)}(x)\right| \leq\left|T^{y} f(x)-c_{x, r}\right|+\left|c_{x, r}-f_{E(0, r)}(x)\right|
$$

and

$$
\begin{aligned}
\left|c_{x, r}-f_{E(0, r)}(x)\right| & =\left|c_{x, r}-\frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)} T^{y} f(x) y_{n}^{2 \nu} d y\right| \\
& \leq \frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)-c_{x, r}\right| y_{n}^{2 \nu} d y
\end{aligned}
$$

we have

$$
\frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)-f_{E(0, r)}(x)\right| y_{n}^{2 \nu} d y \leq \frac{2}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)-c_{x, r}\right| y_{n}^{2 \nu} d y .
$$

SEZERI et al./Turk J Math

Finally, by taking supremum over all $x \in \mathbb{R}_{+}^{n}, r>0$ we have $f \in B-B M O$ and $\|f\|_{B-B M O} \leq 2 A$.
c) For the property (3.2), let us show $\left(\delta^{\lambda} f\right)_{E(0, r)}(x)=f_{E(0, \lambda r)}(\lambda x)$. For this, we have

$$
\begin{align*}
T^{y}\left(\delta^{\lambda} f\right)(x) & =\frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(\nu) \Gamma\left(\frac{1}{2}\right)} \int_{0}^{\pi}\left(\delta^{\lambda} f\right)\left(x^{\prime}-y^{\prime}, \sqrt{x_{n}^{2}-2 x_{n} y_{n} \cos \alpha+y_{n}^{2}}\right) \sin ^{2 \nu-1} \alpha d \alpha \\
& =\frac{\Gamma\left(\nu+\frac{1}{2}\right)}{\Gamma(\nu) \Gamma\left(\frac{1}{2}\right)} \int_{0}^{\pi} f\left(\lambda x^{\prime}-\lambda y^{\prime}, \sqrt{\left(\lambda x_{n}\right)^{2}-2\left(\lambda x_{n}\right)\left(\lambda y_{n}\right) \cos \alpha+\left(\lambda y_{n}\right)^{2}}\right) \sin ^{2 \nu-1} \alpha d \alpha \\
& =T^{\lambda y} f(\lambda x) \tag{3.3}
\end{align*}
$$

Thus we get

$$
\begin{align*}
\left(\delta^{\lambda} f\right)_{E(0, r)}(x) & =\frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)} T^{y}\left(\delta^{\lambda} f\right)(x) y_{n}^{2 \nu} d y \\
& =\frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)} T^{\lambda y} f(\lambda x) y_{n}^{2 \nu} d y \\
& =\cdots\left(z=\lambda y, d z=\lambda^{n} d y, z_{n}^{2 \nu}=\lambda^{2 \nu} y_{n}^{2 \nu}\right) \cdots \\
& =\frac{1}{|E(0, r)|_{\nu}} \frac{1}{\lambda^{n+2 \nu}} \int_{\lambda E(0, r)} T^{z} f(\lambda x) z_{n}^{2 \nu} d z \\
& =(f)_{\lambda E(0, r)}(\lambda x)=(f)_{E(0, \lambda r)}(\lambda x) \tag{3.4}
\end{align*}
$$

Hence by taking into account (3.3) and (3.4), we obtain $\left\|\delta^{\lambda} f\right\|_{B-B M O}=\|f\|_{B-B M O}$.

Remark 3.4 We indicate that $L_{\infty}\left(\mathbb{R}_{+}^{n}\right)$ is a proper subspace of $B-B M O$. As in case of the classical BMOspace, we claim that the function $f(x)=\log |x|$ is in $B-B M O$ but not in $L_{\infty}\left(\mathbb{R}_{+}^{n}\right)$, (cf.([25], p.141).

Our next goal is to determine the connection between the $B-B M O$ function and B-Poisson integral and present John-Nirenberg-type inequality for $B-B M O$ functions. These results have promising applications for the classical $B M O$-functions, such as determining the characterization of $B M O$-space and the connection between $B M O$-functions and the Carleson measure (see [7, 9, 10, 13, 25] for details).

Theorem 3.5 Let f be in $B-B M O$. Then,
a)

$$
\begin{equation*}
\left|f_{E(0, r)}(x)-f_{E(0, s)}(x)\right| \leq\left(\frac{s}{r}\right)^{n+2 \nu}\|f\|_{B-B M O}, \quad r \leq s \tag{3.5}
\end{equation*}
$$

b)

$$
\begin{equation*}
\left|f_{E(0, r)}(x)-f_{E\left(0,2^{m} r\right)}(x)\right| \leq 2^{n+2 \nu} m\|f\|_{B-B M O}, m \in \mathbb{N} \tag{3.6}
\end{equation*}
$$

SEZERI et al./Turk J Math

Proof a) For $r \leq s$, we have

$$
\begin{aligned}
\left|f_{E(0, r)}(x)-f_{E(0, s)}(x)\right| & \leq \frac{1}{|E(0, r)|_{\nu}} \int_{E(0, r)}\left|T^{y} f(x)-f_{E(0, s)}(x)\right| y_{n}^{2 \nu} d y \\
& \leq \frac{|E(0, s)|_{\nu}}{|E(0, r)|_{\nu}} \frac{1}{|E(0, s)|_{\nu}} \int_{E(0, s)}\left(T^{y} f(x)-f_{E(0, s)}(x)\right) y_{n}^{2 \nu} d y \\
& \leq\left(\frac{s}{r}\right)^{n+2 \nu}\|f\|_{B-B M O} .
\end{aligned}
$$

b) Firstly let $m=1$. By using (3.5) we get

$$
\left|f_{E(0, r)}(x)-f_{E(0,2 r)}(x)\right| \leq\left(\frac{2 r}{r}\right)^{n+2 \nu}\|f\|_{B-B M O}=2^{n+2 \nu}\|f\|_{B-B M O}
$$

Finally using this inequality, we obtain

$$
\begin{aligned}
\left|f_{E(0, r)}(x)-f_{E\left(0,2^{m} r\right)}(x)\right| & \leq\left|f_{E(0, r)}(x)-f_{E(0,2 r)}(x)\right|+\cdots+\left|f_{E\left(0,2^{m-1} r\right)}(x)-f_{E\left(0,2^{m} r\right)}(x)\right| \\
& \leq 2^{n+2 \nu} m\|f\|_{B-B M O}, \quad m \in \mathbb{N} .
\end{aligned}
$$

Theorem 3.6 There exists a constant $c(n, \nu)>0$ such that for all $f \in B-B M O$ we have

$$
\begin{equation*}
\sup _{\substack{x \in \mathbb{R}_{+}^{n} \\ t>0}} \int_{\mathbb{R}_{+}^{n}}\left|T^{y} f(x)-V_{t} f(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y \leq c(n, \nu)\|f\|_{B-B M O} \tag{3.7}
\end{equation*}
$$

Here $P_{\nu}(y, t)$ denotes the B-Poisson kernel introduced in [2] and

$$
\left(V_{t} f\right)(x)=\int_{\mathbb{R}_{+}^{n}} T^{y} f(x) P_{\nu}(y, t) y_{n}^{2 \nu} d y
$$

the B-Poisson integral of f.
Proof We have

$$
\begin{align*}
& \qquad\left|T^{y} f(x)-V_{t} f(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y \leq \\
& \leq \int_{\mathbb{R}_{+}^{n}}\left|T^{y} f(x)-f_{E(0, t)}(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y+\int_{\mathbb{R}_{+}^{n}}\left|V_{t} f(x)-f_{E(0, t)}(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y \\
& =I_{1}+I_{2} \tag{3.8}
\end{align*}
$$

Now, let us calculate the estimates I_{1} and I_{2}. Since

$$
P_{\nu}(y, t)=d_{\nu}(n) \frac{t}{\left(t^{2}+|y|^{2}\right)^{(n+2 \nu+1) / 2}}
$$

and

$$
d_{\nu}(n)=\frac{(2 \pi)^{1-n} 2^{1-\nu+n / 2} \Gamma(n+2 \nu+1 / 2)}{\sqrt{\pi} \Gamma^{2}(n+1 / 2)}, \quad \text { (see }[2] \text { for details) }
$$

we obtain

$$
\begin{align*}
& I_{1}=\int_{\mathbb{R}_{+}^{n}}\left|T^{y} f(x)-f_{E(0, t)}(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y=d_{\nu}(n) \int_{\mathbb{R}_{+}^{n}} \frac{t\left|T^{y} f(x)-f_{E(0, t)}(x)\right|}{\left(t^{2}+|y|^{2}\right)^{\frac{n+2+2+1}{2}}} y_{n}^{2 \nu} d y \\
& \leq \int_{E(0, t)} \frac{t\left|T^{y} f(x)-f_{E(0, t)}(x)\right|}{\left(t^{2}+|y|^{2}\right)^{\frac{n+2 \nu+1}{2}}} y_{n}^{2 \nu} d y+ \\
&+\sum_{k=0_{E\left(0,2^{k+1} t\right) \backslash E\left(0,2^{k} t\right)}^{\infty}} \frac{t\left(\left|T^{y} f(x)-f_{E\left(0,2^{k+1} t\right)}(x)\right|+\left|f_{E\left(0,2^{k+1} t\right)}-f_{E(0, t)}(x)\right|\right)}{\left(t^{2}+|y|^{2}\right)^{(n+2 \nu+1) / 2}} y_{n}^{2 \nu} d y \\
& \leq \frac{1}{t^{n+2 \nu}} \int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right| y_{n}^{2 \nu} d y+\sum_{k=0}^{\infty} 2^{-k(n+2 \nu+1)} \times \\
&\left(\left.\frac{1}{t^{n+2 \nu}} \int_{2^{k+1}} \quad\left|T_{E(0, t)}^{y} f(x)-f_{2^{k+1} E(0, t)}(x)\right| y_{n}^{2 \nu} d y+\frac{1}{t^{n+2 \nu}} \right\rvert\, f_{2^{k+1} E(0, t)}(x)-f_{E(0, t)(x) \mid} 2^{(k+1)(n+2 \nu)} \omega(n, \nu) t^{n+2 \nu}\right) \\
& \leq \omega(n, \nu)\|f\|_{B-B M O}+\omega(n, v)\|f\|_{B-B M O}\left(2^{n+2 \nu} \sum_{k=0}^{\infty} \frac{1}{2^{k}}+2^{2(n+2 \nu)} \sum_{k=0}^{\infty} \frac{k+1}{2^{k}}\right) \\
& \leq c(n, \nu)\|f\|_{B-B M O} . \tag{3.9}
\end{align*}
$$

Also, by taking into account

$$
\int_{\mathbb{R}_{+}^{n}} P_{\nu}(y, t) y_{n}^{2 \nu} d y=1, \quad(\text { see }[2])
$$

we obtain

$$
\begin{aligned}
I_{2} & =\int_{\mathbb{R}_{+}^{n}}\left|V_{t} f(x)-f_{E(0, t)}(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y \\
& =\left|V_{t} f(x)-f_{E(0, t)}(x)\right| \\
& \leq \int_{\mathbb{R}_{+}^{n}}\left|T^{y} f(x)-f_{E(0, t)}(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y \\
& \leq c(n, \nu)\|f\|_{\text {B-BMO }}
\end{aligned}
$$

which combined with the inequality in (3.9). Therefore, this estimate combined with (3.8) yields the desired result and finishes the proof.

The following theorem gives a sufficient condition for the inverse inequality in (3.7).

Theorem 3.7 There is a constant $\widetilde{c}(n, \nu)$ such that for all $f \in L_{1}^{\text {loc }}\left(\mathbb{R}_{+}^{n}\right)$ for which

$$
\int_{\mathbb{R}_{+}^{n}} \frac{\left|T^{y} f(x)\right|}{\left(1+|y|^{2}\right)^{n+2 \nu+1}} y_{n}^{2 \nu} d y<\infty
$$

we have

$$
\sup _{\substack{x \in \mathbb{R}_{+}^{n} \\ t>0}} \int_{\mathbb{R}_{+}^{n}}\left|T^{y} f(x)-V_{t} f(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y \geq \widetilde{c}(n, \nu)\|f\|_{B-B M O}
$$

Proof Let

$$
A=\sup _{\substack{x \in \mathbb{R}_{+}^{n} \\ t>0}} \int_{\mathbb{R}_{+}^{n}}\left|T^{y} f(x)-V_{t} f(x)\right| P_{\nu}(y, t) y_{n}^{2 \nu} d y
$$

For $y \in E(0, t),|y|<t$ we have $\left(t^{2}+|y|^{2}\right)^{(n+2 \nu+1) / 2} \leq c_{1}(n, \nu) t^{n+2 \nu+1} \quad$ and $P_{\nu}(y, t) \geq c_{2}(n, \nu) t^{-(n+2 \nu)}$ which gives

$$
A \geq \frac{c_{2}(n, \nu)}{t^{n+2 \nu}} \int_{\mathbb{R}_{+}^{n}}\left|T^{y} f(x)-V_{t} f(x)\right| y_{n}^{2 \nu} d y
$$

Taking into account (3.1) implies that

$$
\|f\|_{B-B M O} \leq \frac{2 A}{c_{2}(n, \nu)}
$$

This concludes the theorem.

Theorem 3.8 For all $f \in B-B M O$, all $t>0, x \in \mathbb{R}_{+}^{n}$ and all $\alpha>0$ there exist $c_{1}=c_{1}(n, \nu)$, $c_{2}=c_{2}(n, \nu)>0$ such that

$$
\begin{equation*}
\left|\left\{x \in E(0, t): \quad\left|T^{y} f(x)-f_{E(0, t)}(x)\right|>\alpha\right\}\right|_{\nu} \leq c_{1} e^{-\alpha c_{2} /\|f\|_{B-B M O}} \tag{3.10}
\end{equation*}
$$

Proof For the sake of simplicity, we assume that $\|f\|_{B-B M O}=1$. We apply the Calderon-Zygmund decomposition to the function $T^{y} f-f_{E(0, t)}$ inside the $E(0, t)$. The rest part of the proof is similar to the proof of the well-known John-Nirenberg inequality for the classical BMO functions, (see [18], (cf. [13], p.124) for details).

By using Theorem 3.8, we obtain the following important $L_{p, \nu}$ characterization of $B-B M O$.

Theorem 3.9 Let f be in $B-B M O$. Then, for $1 \leq p<\infty$ there exists $c=c(n, \nu, p), d=d(n, \nu, p)>0$ such that

$$
\begin{equation*}
c\|f\|_{B-B M O} \leq \sup _{\substack{x \in \mathbb{R}_{+}^{n} \\ t>0}}\left(\frac{1}{|E(0, t)|_{\nu}} \int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right|^{p} y_{n}^{2 \nu} d y\right)^{1 / p} \leq d\|f\|_{B-B M O} \tag{3.11}
\end{equation*}
$$

SEZERI et al./Turk J Math

Proof By using (3.10) and the Gamma function $\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t$ we have

$$
\begin{align*}
& \frac{1}{|E(0, t)|_{\nu}} \int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right|^{p} y_{n}^{2 \nu} d y= \\
= & \frac{1}{|E(0, t)|_{\nu}} \int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in E(0, t):\left|T^{y} f(x)-f_{E(0, t)}(x)\right|^{p}>\alpha\right\}\right|_{\nu} d \alpha \\
\leq & \frac{p c_{1}}{|E(0, t)|_{\nu}} \int_{0}^{\infty} \alpha^{p-1} e^{-\alpha c_{2} /\|f\|_{B-B M O} d \alpha} \\
= & \cdots\left(\beta=\frac{\alpha c_{2}}{\|f\|_{B-B M O}}, d \beta=\frac{c_{2}}{\|f\|_{B-B M O}} d \alpha\right) \cdots \\
= & c_{3}\|f\|_{B-B M O}^{p-1}\|f\|_{B-B M O} \int_{0}^{\infty} \beta^{p-1} e^{-\beta} d \beta \\
= & d^{p}\|f\|_{B-B M O}^{p}, \quad d=d(n, v, p)>0 . \tag{3.12}
\end{align*}
$$

Hence,

$$
\sup _{\substack{x \in \mathbb{R}_{+}^{n} \\ t>0}}\left(\frac{1}{|E(0, t)|_{\nu}} \int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right|^{p} y_{n}^{2 \nu} d y\right)^{\frac{1}{p}} \leq d\|f\|_{B-B M O}
$$

Also by taking into account the Hölder inequality $\frac{1}{p}+\frac{1}{q}=1,1<p<\infty$ we obtain

$$
\begin{aligned}
\int_{E(0, t)}\left|T^{y} f(x)-f_{E_{t}}(x)\right| y_{n}^{2 \nu} d y & \leq\left(\int_{E(0, t)}\left|T^{y} f(x)-f_{E_{t}}(x)\right|^{p} y_{n}^{2 \nu} d y\right)^{\frac{1}{p}}\left(\int_{E(0, t)} y_{n}^{2 \nu} d y\right)^{\frac{1}{q}} \\
& =\left(\int_{E_{t}}\left|T^{y} f(x)-f_{E_{t}}(x)\right|^{p} y_{n}^{2 \nu} d y\right)^{\frac{1}{p}}|E(0, t)|_{\nu}^{\frac{1}{q}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\frac{1}{|E(0, t)|_{\nu}} \int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right| y_{n}^{2 \nu} d y & \leq \frac{|E(0, t)|_{\nu}^{\frac{1}{q}}}{|E(0, t)|_{\nu}}\left(\int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right|^{p} y_{n}^{2 \nu} d y\right)^{\frac{1}{p}} \\
& =\left(\frac{1}{|E(0, t)|_{\nu}} \int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right|^{p} y_{n}^{2 \nu} d y\right)^{\frac{1}{p}}
\end{aligned}
$$

and

$$
\begin{equation*}
\|f\|_{B-B M O} \leq \sup _{\substack{x \in \mathbb{R}^{n} \\ t>0^{+}}}\left(\frac{1}{|E(0, t)|_{\nu}} \int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right|^{p} y_{n}^{2 \nu} d y\right)^{\frac{1}{p}}, 1 \leq p<\infty . \tag{3.13}
\end{equation*}
$$

Finally, combining (3.12) and (3.13) yields that (3.11).

Corollary 3.10 For all $1 \leq p<\infty$ we have

$$
\|f\|_{B-B M O} \approx \sup _{\substack{x \in \mathbb{R}_{+}^{n} \\ t>0}}\left(\frac{1}{|E(0, t)|_{\nu}} \int_{E(0, t)}\left|T^{y} f(x)-f_{E(0, t)}(x)\right|^{p} y_{n}^{2 \nu} d y\right)^{\frac{1}{p}}
$$

Acknowledgment

The authors would like to thank the anonymous referees and the editor for their helpful suggestions.

References

[1] Abasova GA, Aliyeva LR, Hasanov JJ, Shirinova ES. Necessary and sufficient conditions for the boundedness of commutators of B-Riesz potentials in Lebesque spaces. Journal of Contemporary Applied Mathematics 2016; 6: 18-31.
[2] Aliev IA, Bayrakci S. On inversion of B-elliptic potentials associated with the Laplace-Bessel differential operator. Fractional Calculus and Applied Analysis 1998; 4: 365-384.
[3] Aliev IA, Bayrakci S. On inversion of Bessel potentials associated with the Laplace-Bessel differential operator. Acta Mathematica Hungarica 2002; 95 (1-2): 125-145.
[4] Aliev IA, Gadjiev AD. Weighted estimates of multidimensional singular integrals generated by the generalized shift operator. Russian Academy Nauka Mathematics Sbornik 1992; 183. English translation in Russian Academy of Sciences Sbornik Mathematics 1994; 77: 37-55.
[5] Aliev IA, Rubin B. Spherical harmonics associated to the Laplace-Bessel operator and generalized spherical convolutions. Analysis and Applications 2003; 1 (01): 81-109.
[6] Chang DC, Sadosky C. Functions of bounded mean oscillation. Taiwanese Journal of Mathematics 2006; 10 (3): 573-601.
[7] Carleson L. Two remarks on $H 1$ and BMO. Advances in Mathematics. 1976; 22 (3): 269-277.
[8] Delsarte J. Sur une extension de la formule de Taylor. Journal de Mathematiques pures et appliquees 1938; 17: 213-231 (in French).
[9] Fefferman C. Characterizations of bounded mean oscillation. Bulletin of the American Mathematical Society 1971; 77 (4): 587-588.
[10] Fefferman C, Stein EM. H_{p} spaces of several variables. Acta Mathematica 1972; 129: 137-193.
[11] Gadjiev AD, Aliev IA. Riesz and Bessel potentials generated by a generalized transition and their inverses. In Proc. IV All-Union Winter Conference. Theory of functions and approximation. Saratov (Russia)1998, pp. 47-53.
[12] Garnett JB, Jones PW. The distance in BMO to L^{∞}. Annals of Mathematics 1978; 373-393.
[13] Grafakos, L. Modern Fourier analysis, volume 250 of. Graduate Texts in Mathematics, 2009; 1089-1100.
[14] Guliev VS. Sobolev Theorems for the Riesz B-Potentials. Doklady Mathematics 1998; 358: 450-451.
[15] Guliev VS. On maximal function and fractional integral, associated with the Bessel differential operator. Mathematical Inequalities Applications 2003; 6 (2): 317-330.
[16] Hasanov JJ, Ayazoglu RM, Bayrakci S. B-maximal commutators, commutators of B-singular integral operators and B-Riesz potentials on B-Morrey spaces. Open Mathematics 2020; 18: 715-730.
[17] Janson S. Mean oscillation and commutators of singular integral operators. Arkiv för Matematik 1978; 16: 263-270.
[18] John F, Nirenberg L. On functions of bounded mean oscillation. Communications on Pure and Applied Mathematics 1961; 14: 415-426.
[19] Klyuchantsev MI. On singular integrals generated by the generalized shift operator. Sibirskii Matematicheskii Zhurnal 1970; 11: 810-821.
[20] Kipriyanov IA. Fourier-Bessel transforms and imbedding theorems for weight classes. Trudy Matematicheskogo Instituta imeni VA Steklova 1967; 89: 130-213.
[21] Levitan BM. Bessel function expansions in series and Fourier integrals. Uspekhi Matematicheskikh Nauk 1951; 6: 102-143.
[22] Lyakhov LN. On classes of spherical functions and singular pseudo differential operators. Doklady Akademii Nauk 1983; 272: 781-784.
[23] Meyers NG. Mean Oscillation over cubes and Hölder continuity. Proceedings of the American Mathematical Society 1964; 15: 717-721.
[24] Sezer S, Aliev IA. On space of parabolic potentials associated with the singular heat operator. Turkish Journal of Mathematics 2005; 29(3): 299-315.
[25] Stein EM. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press Princeton, New Jersey 1993.
[26] Stempak K. La théorie de Littlewood-Paley pour la transformation de Fourier- Bessel. Comptes Rendus de 1 Academie des Sciences - Series I - Mathematics 1986; 303 (1): 15-18 (in French).

[^0]: *Correspondence: simten@akdeniz.edu.tr
 2010 AMS Mathematics Subject Classification: 42B25, 42B35

