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Abstract: In this paper, we point out an error in proving famous Achari type nonunique fixed point results. Also, we
prove some best proximity point results in b -metric spaces by introducing new concepts. Hence, we develop some results
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1. Introduction
The fixed point theory is a very significant tool to solve various problems in approximation theory, nonlinear
analysis, differential equations, control systems and game theory. Therefore, the theory has been improved by
many authors. In this context, the Banach contraction principle [9] accepted as the beginning of the fixed point
theory on metric spaces was proved. Let (Υ, σ) be a complete metric space and φ : Υ → Υ be a contraction
mapping, then φ has a unique fixed point. It is known that the mapping φ has to be continuous and φ has a
unique fixed point in this principle. Hence, a great number of results have been proved to obtain the existence
and uniqueness of fixed points in this field [2, 17, 18, 22]. However, the solution of nonlinear systems used to
solve real-life problems may not be unique. In this sense, Ćirić [14] obtained some nonunique fixed point results
for a self-mapping φ satisfying

min{σ(φϱ, φξ), σ(ϱ, φϱ), σ(ξ, φξ)} −min{σ(ϱ, φξ), σ(ξ, φϱ)} ≤ kσ(ϱ, ξ)

where k ∈ [0, 1) and σ is a metric on Υ. Also, the mapping φ may not be continuous in the result of Ćirić.
After that, many authors have studied nonunique fixed point theory [4, 15, 20, 21].

Recently, the fixed point theory has been improved by considering nonself mappings φ : ℘ → ℜ where
℘,ℜ are nonempty subsets of a metric space (Υ, σ) . If the intersection of ℘ and ℜ is empty, then φ cannot
have a solution to the equation φϱ = ϱ . Because of the fact that σ(ϱ, φϱ) ≥ σ(℘,ℜ) for all ϱ ∈ ℘ , it is sensible
to find a point ϱ satisfying σ(ϱ, φϱ) = σ(℘,ℜ) which is called a best proximity point [10]. Since every best
proximity point is a natural generalization of a fixed point in the case of ℘ = ℜ = Υ , many authors have studied
this topic in the literature [5, 6, 8, 24–26].
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On the other hand, introducing a nice concept of a b-metric, Czerwik [16] obtained a generalization of
the Banach contraction principle in a different way from the results existing in the literature.

Definition 1.1 [16]Let Υ be a nonempty set and σ : Υ×Υ → [0,∞) be a function such that for all ϱ, ξ, z ∈ Υ ,

b1) σ(ϱ, ξ) = 0 if and only if ϱ = ξ ,

b2) σ(ϱ, ξ) = σ(ξ, ϱ),

b3) σ(ϱ, z) ≤ s[σ(ϱ, ξ) + σ(ξ, z)] where s ≥ 1 .

Then, σ is said to be a b-metric on Υ . Also, (Υ, σ) is said to be a b-metric space.

It is clear that every metric space is a b -metric space. However, the converse may not be true. Indeed,
the following well-known example of b -metric spaces shows this fact. Let Υ = R and σ : Υ × Υ → [0,∞) be
a function defined as σ(ϱ, ξ) = (ϱ− ξ)

2 for all ϱ, ξ ∈ Υ . Then (Υ, σ) is a b -metric space with the coefficient
s = 2 . If we take ϱ = 8 , ξ = 5 , and z = 2 , then

σ(8, 2) = 36 > σ(8, 5) + σ(5, 2).

Hence, it is not a metric space.
Let (Υ, σ) be a b -metric space with the coefficient s ≥ 1 . We denote the family of all open subsets of Υ

by τσ which has, as a base, the family

{B(ϱ, r) : ϱ ∈ Υ and r > 0}

where
B(ϱ, r) = {ξ ∈ Υ : σ(ϱ, ξ) < r} .

Let {ϱn} be sequence in Υ and ϱ ∈ Υ . It can be seen that the sequence {ϱn} converges to ϱ with respect to
τσ if and only if

lim
n→∞

σ(ϱn, ϱ) = 0.

The sequence {ϱn} in Υ is said to be Cauchy sequence if for every ε > 0 there exists n0 ∈ N such that
σ(ϱn, ϱm) < ε for all n,m ≥ n0 . (Υ, σ) is said to be a complete b -metric space if every Cauchy sequence in Υ

converges to some ϱ ∈ Υ with respect to τσ .
Let φ : X → X be a mapping. Then, φ is called a continuous mapping at a point ϱ in X if for every

sequence {ϱn} in X satisfying σ(ϱn, ϱ ) = 0 as n→ ∞ , φϱn converges to φϱ with respect to σ.

Note that, unlike ordinary metric, b -metric may not be continuous. To overcome this disadvantage, we
give the following definition which is very important for our main results

Definition 1.2 ([7]) Let (Υ, σ) be a b-metric space with the coefficient s ≥ 1 and ∅ ̸= ℘,ℜ ⊆ Υ . The pair
(℘,ℜ) satisfies the property (MC) if for all sequences {ϱn} in ℘ , {ξn} in ℜ and ϱ ∈ ℘ , ξ ∈ ℜ , we have

lim
n→∞

σ(ϱn, ϱ) = lim
n→∞

σ(ξn, ξ) = 0 =⇒ lim
n→∞

σ(ϱn, ξn) = σ(ϱ, ξ).

Now, we recall that definition of comparison functions and its properties.
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Definition 1.3 A mapping ψ : [0,∞) → [0,∞) is called a comparison function if it satisfies the following

• ψ is increasing,

• ψn(γ) → 0 as n→ ∞ for all γ ∈ [0,∞).

We denote the set of all comparison functions by Φ . For details, we refer the reader to [13, 23].
The following lemma is an important property of comparison functions.

Lemma 1.4 ([13, 23]) If ψ : [0,∞) → [0,∞) is a comparison function, then

• for all k ≥ 1 each iterate ψk of ψ is a comparison function,

• ψ(γ) < γ for any γ > 0,

• ψ is continuous at 0 .

Later, Berinde [12] defined the notion of (b) -comparison function to obtain some fixed point results in
the setting of b -metric spaces.

Definition 1.5 Let ψ : [0,∞) → [0,∞) be a function and s ≥ 1 be a real number. If it satisfies the following

• ψ is increasing,

• there exists k0 ∈ N , a ∈ (0, 1) and a convergent nonnegative series
∑∞
k=1 ξk such that sk+1ψk+1(γ) ≤

askψk(γ) + ξk for k ≥ k0 and any γ ∈ [0,∞) ,

then the function ψ is said to be a (b)-comparison function.

Now, we present the following lemma.

Lemma 1.6 ([11]) If ψ : [0,∞) → [0,∞) is b-comparison function, then

• The series
∑∞
k=1 s

kψk(t) converges to t ∈ R .

• The function bs : [0,∞) → [0,∞) defined by bs(t) =
∑∞
k=1 s

kψk(t) converges to t ∈ R is increasing and
continuous at 0 .

Remark 1.7 ([19]) From Lemma 1.6, it can be seen that every b-comparison function is a comparison function,
and so from Lemma 1.4 every b-comparision function ψ holds ψ(γ) < γ for any γ > 0,

The set of all b -comparison functions will be denoted by Φb . Now, we restate the related fundamental concepts
and notations of best proximity point theory in the realm of b-metric spaces.

Let (Υ, σ) be a b-metric space with the coefficient s ≥ 1 and ∅ ̸= ℘,ℜ ⊆ Υ . We will use the subsets of
℘ and ℜ , respectively:

℘0 = {ϱ ∈ ℘ : σ(ϱ, ξ) = σ(℘,ℜ) for some ξ ∈ ℜ}

and
ℜ0 = {ξ ∈ ℜ : σ(ϱ, ξ) = σ(℘,ℜ) for some ϱ ∈ ℘}

where σ(℘,ℜ) = inf{σ(ϱ, ξ) : ϱ ∈ ℘ and ξ ∈ ℜ}.
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Definition 1.8 Let (Υ, σ) be a b-metric space, ∅ ̸= ℘,ℜ ⊆ Υ , φ : ℘ → ℜ be a mapping. The pair (℘,ℜ) is
said to have P -property if and only if

σ(ϱ1, ξ1) = σ(℘,ℜ)
σ(ϱ2, ξ2) = σ(℘,ℜ) implies σ(ϱ1, ϱ2) = σ(ξ1, ξ2)

for all ϱ1, ϱ2 ∈ ℘0 and ξ1, ξ2 ∈ ℜ0 .

In this paper, we point out an error in proving famous Achari type nonunique fixed point results. Also,
we obtain some best proximity point results in b -metric spaces by introducing new concepts. Hence, we extend
and develop some results existing in the literature. Finally, we give a result for the existence of the solution of
nonlinear fractional differential equations.

2. Note on Achari type nonunique fixed point results

In this section, we point out an error in proving Achari type nonunique fixed point results. Achari [3] proved a
nonunique fixed point result for a self-mapping φ on a metric space (Υ, σ) satisfying the following condition:

PA(ϱ1, ϱ2)−QA(ϱ1, ϱ2)

RA(ϱ1, ϱ2)
≤ kσ(ϱ1, ϱ2) (2.1)

for all distinct ϱ1, ϱ2 ∈ Υ where k ∈ [0, 1),

PA(ϱ1, ϱ2) = min {σ(φϱ1, φϱ2)σ(ϱ1, ϱ2), σ(ϱ1, φϱ1)σ(ϱ2, φϱ2)} ,

QA(ϱ1, ϱ2) = min{σ(ϱ1, φϱ1)σ(ϱ1, φϱ2), σ(ϱ2, φϱ2)σ(ϱ2, φϱ1)}

and
RA(ϱ1, ϱ2) = min {σ(ϱ1, φϱ1), σ(ϱ2, φϱ2)} .

Until this time, many authors have obtained a generalization of this result by taking nonlinear function instead
of constant k or using more general space. In all of these results, the authors proved that φ has a fixed point
in Υ under the assumptions completeness of Υ and continuity of φ . However, we will show φ satisfying (2.1)
has a fixed point in Υ without any restriction on Υ and φ.

We claim that if φ satisfies (2.1), then for every sequence {ϱn} defined by ϱn+1 = φϱn for all n ≥ 1

with the any initial point ϱ0 ∈ Υ , there exists n0 ∈ N such that ϱn0
= ϱn0+1 . Indeed, assume that ϱn ̸= ϱn+1

for all n ≥ 1 . Then, we have

PA(ϱn, ϱn+1) = min {σ(φϱn, φϱn+1)σ(ϱn, ϱn+1), σ(ϱn, φϱn)σ(ϱn+1, φϱn+1)}

= min {σ(ϱn+1, ϱn+2)σ(ϱn, ϱn+1), σ(ϱn, ϱn+1)σ(ϱn+1, ϱn+2)}

= σ(ϱn, ϱn+1)σ(ϱn+1, ϱn+2),

QA(ϱn, ϱn+1) = min{σ(ϱn, φϱn)σ(ϱn, φϱn+1), σ(ϱn+1, φϱn+1)σ(ϱn+1, φϱn)}

= min {σ(ϱn, ϱn+1)σ(ϱn, ϱn+2), σ(ϱn+1, ϱn+2)σ(ϱn+1, ϱn+1)}

= 0,
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and

RA(ϱn, ϱn+1) = min {σ(ϱn, φϱn), σ(ϱn+1, φϱn+1)}

= min {σ(ϱn, ϱn+1), σ(ϱn+1, ϱn+2)}

for all n ≥ 1 . Since φ satisfies (2.1), we get

σ(ϱn, ϱn+1)σ(ϱn+1, ϱn+2)

min {σ(ϱn, ϱn+1), σ(ϱn+1, ϱn+2)}
≤ kσ(ϱn, ϱn+1) (2.2)

for all n ≥ 1 . If σ(ϱn0+1, ϱn0+2) ≤ σ(ϱn0
, ϱn0+1) for some n0 ∈ N , then we have RA(ϱn0

, ϱn0+1) =

σ(ϱn0+1, ϱn0+2) , and so from (2.2), we get

σ(ϱn0
, ϱn0+1) ≤ kσ(ϱn0

, ϱn0+1)

< σ(ϱn0
, ϱn0+1)

which is a contradiction. If σ(ϱn0 , ϱn0+1) ≤ σ(ϱn0+1, ϱn0+2) for some n0 ∈ N , then we have RA(ϱn0 , ϱn0+1) =

σ(ϱn0 , ϱn0+1) , and so from (2.2), we get

σ(ϱn0
, ϱn0+1) ≤ σ(ϱn0+1, ϱn0+2)

≤ kσ(ϱn0
, ϱn0+1)

< σ(ϱn0
, ϱn0+1)

which is a contradiction. Then, there exists n0 ∈ N such that

ϱn0
= ϱn0+1 = φϱn0

.

Hence, φ has a fixed point in Υ without any restriction on Υ and φ.

3. Nonunique best proximity point results

3.1. Ćirić type nonunique best proximity point results

Firstly, we introduce the definitions of s -approximately compact and proximal ψb -Ćirić type nonunique con-
traction mapping.

Definition 3.1 Let (Υ, σ) be a b-metric space with the coefficient s ≥ 1 . If every sequence {ξn} in ℜ satisfying
σ(ϱ,ℜ) ≤ limn→∞ σ(ϱ, ξn) ≤ sσ(ϱ,ℜ) for some ϱ ∈ ℘ has a convergent subsequence in ℜ , then ℜ is called an
s-approximately compact with respect to ℘ .

Definition 3.2 Let (Υ, σ) be a b-metric space with the coefficient s ≥ 1 and ∅ ̸= ℘,ℜ ⊆ Υ . A mapping
φ : ℘→ ℜ is said to be proximal ψb -Ćirić type nonunique contraction mapping if there exists ψ ∈ Φb such that

σ(u1, φϱ1) = σ(℘,ℜ)
σ(u2, φϱ2) = σ(℘,ℜ)

implies
PĆ(ϱ1, ϱ2, u1, u2)−RĆ(ϱ1, ϱ2, u1, u2) ≤ ψ(σ(ϱ1, ϱ2)) (3.1)

2946



ASLANTAŞ/Turk J Math

for all u1, u2, ϱ1, ϱ2 ∈ ℘, where

PĆ(ϱ1, ϱ2, u1, u2) = min {σ(u1, u2), σ(ϱ1, u1), σ(ϱ2, u2)}

and
RĆ(ϱ1, ϱ2, u1, u2) = min {σ(ϱ2, u1), σ(ϱ1, u2)} .

Theorem 3.3 Let (Υ, σ) be a complete b-metric space with the coefficient s ≥ 1 , ∅ ̸= ℘,ℜ ⊆ Υ where ℘ is
closed and ℜ is an s-approximately compact w.r.t. ℘ . Assume that the pair (℘,ℜ) satisfies the property (MC)

and ℘0 ̸= ∅ . If φ : ℘ → ℜ is a proximal ψb -Ćirić type nonunique contraction mapping satisfying φ(℘0) ⊆ ℜ0

and g(ϱ) = σ(ϱ, φϱ) is a lower semicontinuous on ℘, then φ has a best proximity point in ℘.

Proof Let ϱ0 ∈ ℘0 be an arbitrary point. Since φϱ0 ∈ φ(℘0) ⊆ ℜ0 , there exists ϱ1 ∈ ℘0 such that

σ(ϱ1, φϱ0) = σ(℘,ℜ).

Similarly, there exists ϱ2 ∈ ℘0 such that

σ(ϱ2, φϱ1) = σ(℘,ℜ).

Repeating this process, we can construct a sequence {ϱn} such that

σ(ϱn+1, φϱn) = σ(℘,ℜ) (3.2)

for all n ≥ 1 . If there exists n0 ∈ N such that σ(ϱn0 , ϱn0+1) = 0, then ϱn0 is a best proximity point of φ . So
we assume σ(ϱn, ϱn+1) > 0 for all n ≥ 1 . Then, we have

PĆ(ϱn−1, ϱn, ϱn, ϱn+1) = min

{
σ(ϱn, ϱn+1),

σ(ϱn−1, ϱn), σ(ϱn, ϱn+1)

}
(3.3)

= min {σ(ϱn, ϱn+1), σ(ϱn−1, ϱn)} ,

and

RĆ(ϱn−1, ϱn, ϱn, ϱn+1) = min {σ(ϱn, ϱn), σ(ϱn−1, ϱn+1)} (3.4)

= 0.

for all n ≥ 1 . Further, since φ is a proximal ψb -Ćirić type nonunique contraction mapping, we have

PĆ(ϱn−1, ϱn, ϱn, ϱn+1)−RĆ(ϱn−1, ϱn, ϱn, ϱn+1) ≤ ψ (σ(ϱn−1, ϱn))

for all n ≥ 1 , and so from (3.3) and (3.4), we have

min {σ(ϱn, ϱn+1), σ(ϱn−1, ϱn)} ≤ ψ (σ(ϱn−1, ϱn))

for all n ≥ 1. Since σ(ϱn−1, ϱn) ≤ ψ (σ(ϱn−1, ϱn)) < σ(ϱn−1, ϱn) is impossible, we get

σ(ϱn, ϱn+1) ≤ ψ (σ(ϱn−1, ϱn))
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for all n ≥ 1. Therefore, we have

σ(ϱn, ϱn+1) ≤ ψ (σ(ϱn−1, ϱn))

≤ ψ2 (σ(ϱn−2, ϱn−1))

...
≤ ψn (σ(ϱ0, ϱ1)) .

Hence, we obtain

σ(ϱn, ϱn+p) ≤ sσ(ϱn, ϱn+1) + s2σ(ϱn+1, ϱn+2) + · · ·+ spσ(ϱn+p−1, ϱn+p) (3.5)

≤ 1

sn−1

{
snψn (σ(ϱ0, ϱ1)) + sn+1ψn+1 (σ(ϱ0, ϱ1))

+ · · ·+ sn+p−1ψn+p−1 (σ(ϱ0, ϱ1))

}

≤ 1

sn−1

∞∑
k=0

skψk (σ(ϱ0, ϱ1)) .

Since
∞∑
k=0

skψk (σ(ϱ0, ϱ1)) is convergent, we have

∞∑
k=0

skψk (σ(ϱ0, ϱ1)) <∞.

Taking limit n → ∞ in the inequality (3.5), {ϱn} is a Cauchy sequence in ℘ . Since (Υ, σ) is a complete
b -metric space and ℘ is a closed subset of Υ , there exists ϱ∗ ∈ ℘ such that ϱn → ϱ∗ as n→ ∞ . On the other
hand, we have

σ(ϱ∗,ℜ) ≤ σ(ϱ∗, φϱn)

≤ sσ(ϱ∗, ϱn+1) + sσ(ϱn+1, φϱn)

= sσ(ϱ∗, ϱn+1) + sσ(℘,ℜ)

≤ sσ(ϱ∗, ϱn+1) + sσ(ϱ∗,ℜ).

Therefore, we have σ(ϱ∗,ℜ) ≤ limn→∞ σ(ϱ∗, φϱn) ≤ sσ(ϱ∗,ℜ). Since ℜ is an s -approximately compact w.r.t.
℘ , there exists a convergent subsequence φϱnk

of φϱn such that φϱnk
→ ξ∗ for some ξ∗ ∈ ℜ. Also, since the

pair (℘,ℜ) satisfies the property (MC) , from (3.2), we get

σ(ϱ∗, ξ∗) = σ(℘,ℜ). (3.6)

Further, since g(ϱ) = σ(ϱ, φϱ) is a lower semicontinuous on ℘, we have

σ(℘,ℜ) ≤ σ(ϱ∗, φϱ∗)

= g(ϱ∗)

≤ lim inf g(ϱnk
)

= lim inf σ(ϱnk
, φϱnk

)

= σ(ϱ∗, ξ∗)

= σ(℘,ℜ).
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Therefore, we have σ(ϱ∗, φϱ∗) = σ(℘,ℜ). Hence, ϱ∗ is a best proximity point of φ . 2

If φ is a continuous mapping on ℘ in Theorem 3.3, we can omit the condition s -approximately compact
of ℜ and lower semicontinuity of g. Hence, we obtain the following best proximity point result.

Theorem 3.4 Let (Υ, σ) be a complete b-metric space with the coefficient s ≥ 1 , ∅ ̸= ℘,ℜ ⊆ Υ where ℘ is
closed. Assume that the pair (℘,ℜ) satisfies the property (MC) and ℘0 ̸= ∅ . If φ : ℘ → ℜ is a continuous
proximal ψb -Ćirić type nonunique contraction mapping satisfying φ(℘0) ⊆ ℜ0, then φ has a best proximity
point in ℘.

Proof Let ϱ0 ∈ ℘0 be an arbitrary point. As in the proof of Theorem 3.3, we can construct a sequence {ϱn}
in ℘ and it can be seen that {ϱn} is a Cauchy sequence. Because of the fact that ℘ is closed, there is ϱ∗ ∈ ℘

satisfying ϱn → ϱ∗ . Also, since φ is a continuous mapping, we have φϱn → φϱ∗ . Because of the fact that the
pair (℘,ℜ) satisfies the property (MC) , we get

σ(ϱ∗, φϱ∗) = lim
n→∞

σ(ϱn+1, φϱn) = σ(℘,ℜ).

2

If we take ℘ = ℜ = Υ in Theorem 3.4, then we obtain the following fixed point result.

Corollary 3.5 Let (Υ, σ) be a complete b-metric space with the coefficient s ≥ 1 and φ : Υ → Υ be a
continuous mapping. If there exists ψ ∈ Φb such that

min{σ(φϱ, φξ), σ(ϱ, φϱ), σ(ξ, φξ)} −min{σ(ϱ, φξ), σ(ξ, φϱ)} ≤ ψ (σ(ϱ, ξ)) (3.7)

for all ϱ, ξ ∈ Υ , then φ has a fixed point in Υ .

3.2. Pachpatte type nonunique best proximity point results
Now, we introduce the definition of proximal ψb -Pachpatte type nonunique contraction mapping

Definition 3.6 Let (Υ, σ) be a b-metric space with the coefficient s ≥ 1 and ∅ ̸= ℘,ℜ ⊆ Υ . A mapping
φ : ℘→ ℜ is said to be proximal ψb -Pachpatte type nonunique contraction mapping if there exists ψ ∈ Φb such
that

ψ(ab) ≤ aψ(b) (3.8)

for all a, b > 0 and
σ(u1, φϱ1) = σ(℘,ℜ)
σ(u2, φϱ2) = σ(℘,ℜ)

implies
PP (ϱ1, ϱ2, u1, u2)−QP (ϱ1, ϱ2, u1, u2) ≤ ψ(σ(ϱ1, u1)σ(ϱ2, u2)) (3.9)

for all u1, u2, ϱ1, ϱ2 ∈ ℘, where

PP (ϱ1, ϱ2, u1, u2) = min
{
(σ(u1, u2))

2
, σ(ϱ1, ϱ2)σ(u1, u2), (σ(ϱ2, u2))

2
}
,

and
QP (ϱ1, ϱ2, u1, u2) = min{σ(ϱ1, u1)σ(ϱ2, u2), σ(ϱ1, u2)σ(ϱ2, u1)}.
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Theorem 3.7 Let (Υ, σ) be a complete b-metric space with the coefficient s ≥ 1 , ∅ ̸= ℘,ℜ ⊆ Υ where ℘

is closed and ℜ is an s-approximately compact w.r.t. ℘ . Assume that the pair (℘,ℜ) satisfies the property
(MC) and ℘0 ̸= ∅ . If φ : ℘ → ℜ is a proximal ψb -Pachpatte type nonunique contraction mapping satisfying
φ(℘0) ⊆ ℜ0 and g(ϱ) = σ(ϱ, φϱ) is a lower semicontinuous on ℘, then φ has a best proximity point in ℘.

Proof Let ϱ0 ∈ ℘0 be an arbitrary point. Since φϱ0 ∈ φ(℘0) ⊆ ℜ0 , there exists ϱ1 ∈ ℘0 such that

σ(ϱ1, φϱ0) = σ(℘,ℜ).

Similarly, there exists ϱ2 ∈ ℘0 such that

σ(ϱ2, φϱ1) = σ(℘,ℜ).

Repeating this process, we can construct a sequence {ϱn} such that

σ(ϱn+1, φϱn) = σ(℘,ℜ) (3.10)

for all n ≥ 1 . If there exists n0 ∈ N such that σ(ϱn0
, ϱn0+1) = 0 , then ϱn0

is a best proximity point of φ .
Therefore, we assume σ(ϱn, ϱn+1) > 0 for all n ≥ 1 . From (3.10), we have

PP (ϱn−1, ϱn, ϱn, ϱn+1) = min

 (σ(ϱn, ϱn+1))
2
,

σ(ϱn−1, ϱn)σ(ϱn, ϱn+1),

(σ(ϱn, ϱn+1))
2

 (3.11)

= min
{
(σ(ϱn, ϱn+1))

2
, σ(ϱn−1, ϱn)σ(ϱn, ϱn+1)

}
and

QP (ϱn−1, ϱn, ϱn, ϱn+1) = min

{
σ(ϱn−1, ϱn)σ(ϱn, ϱn+1),
σ(ϱn−1, ϱn+1)σ(ϱn, ϱn)

}
(3.12)

= 0.

for all n ≥ 1 . Further, since φ is a ψb -Pachpatte type nonunique contraction mapping, we have

PP (ϱn−1, ϱn, ϱn, ϱn+1)−QP (ϱn−1, ϱn, ϱn, ϱn+1) ≤ ψ (σ(ϱn−1, ϱn)σ(ϱn, ϱn+1))

for all n ≥ 1 , and so from (3.11) and (3.12), we have

min
{
(σ(ϱn, ϱn+1))

2
, σ(ϱn−1, ϱn)σ(ϱn, ϱn+1)

}
≤ ψ (σ(ϱn−1, ϱn)σ(ϱn, ϱn+1))

for all n ≥ 1 . Since PP (ϱn−1, ϱn, ϱn, ϱn+1) = σ(ϱn−1, ϱn)σ(ϱn, ϱn+1) is impossible, we get

(σ(ϱn, ϱn+1))
2 ≤ ψ (σ(ϱn−1, ϱn)σ(ϱn, ϱn+1)) (3.13)

for all n ≥ 1. From (3.8) and(3.13), we have

(σ(ϱn, ϱn+1))
2 ≤ ψ (σ(ϱn−1, ϱn)σ(ϱn, ϱn+1))

≤ ψ (σ(ϱn−1, ϱn))σ(ϱn, ϱn+1)
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and so
σ(ϱn, ϱn+1) ≤ ψ (σ(ϱn−1, ϱn))

for all n ≥ 1. As in the proof of Theorem 3.3, we can obtain φ has a best proximity point in ℘ . 2

Similarly to Theorem 3.4, we present the following best proximity point result.

Theorem 3.8 Let (Υ, σ) be a complete b-metric space with the coefficient s ≥ 1 , ∅ ̸= ℘,ℜ ⊆ Υ where ℘ is
closed. Assume that the pair (℘,ℜ) satisfies the property (MC) and ℘0 ̸= ∅ . If φ : ℘ → ℜ is a continuous
proximal ψb -Pachpatte type nonunique contraction mapping satisfying φ(℘0) ⊆ ℜ0, then φ has a best proximity
point in ℘.

If we take ℘ = ℜ = Υ in Theorem 3.8, then we obtain the following fixed point result.

Corollary 3.9 Let (Υ, σ) be a complete b-metric space with the coefficient s ≥ 1 and φ : Υ → Υ be a
continuous mapping. If there exists ψ ∈ Φb such that

ψ(ab) ≤ aψ(b)

for all a, b > 0 and
PP (ϱ1, ϱ2)−QP (ϱ1, ϱ2) ≤ ψ(σ(ϱ1, φϱ1)σ(ϱ2, φϱ2))

for all ϱ1, ϱ2 ∈ Υ where

PP (ϱ1, ϱ2) = min
{
(σ(φϱ1, φϱ2))

2
, σ(ϱ1, ϱ2)σ(φϱ1, φϱ2), (σ(ϱ2, φϱ2))

2
}

and
QP (ϱ1, ϱ2) = min{σ(ϱ1, φϱ1)σ(ϱ2, φϱ2), σ(ϱ1, φϱ2)σ(ϱ2, φϱ1)},

then φ has a fixed point in Υ .

3.3. Ćirić-Jotić type nonunique best proximity point results

Now, we introduce the definition of proximal ψb -Ćirić-Jotić type nonunique contraction mapping.

Definition 3.10 Let (Υ, σ) be a b-metric space with the coefficient s ≥ 1 and ∅ ̸= ℘,ℜ ⊆ Υ . A mapping
φ : ℘→ ℜ is said to be proximal ψb -Ćirić-Jotić type nonunique contraction mapping if there exist ψ ∈ Φb and
a ≥ 0 such that

σ(u1, φϱ1) = σ(℘,ℜ)
σ(u2, φϱ2) = σ(℘,ℜ)

implies
PĆJ(ϱ1, ϱ2, u1, u2)− aQĆJ (ϱ1, ϱ2, u1, u2) ≤ ψ(RĆJ(ϱ1, ϱ2, u1, u2)) (3.14)

for all u1, u2, ϱ1, ϱ2 ∈ ℘, where

PĆJ (ϱ1, ϱ2, u1, u2) = min


σ(u1, u2), σ(ϱ1, ϱ2), σ(ϱ1, u1),

σ(ϱ2, u2),
σ(ϱ1,u1)[1+σ(ϱ2,u2)]

1+σ(ϱ1,ϱ2)

σ(ϱ2,u2)[1+σ(ϱ1,u1)]
1+σ(ϱ1,ϱ2)

,
min{σ2(u1,u2),σ

2(ϱ1,u1),σ
2(ϱ2,u2)}

ψ(σ(ϱ1,ϱ2))

 ,
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QĆJ(ϱ1, ϱ2, u1, u2) = min{σ(ϱ1, u2), σ(ϱ2, u1)}

and
RĆJ(ϱ1, ϱ2, u1, u2) = max {σ(ϱ1, ϱ2), σ(ϱ1, u1)} .

Theorem 3.11 Let (Υ, σ) be a complete b-metric space with the coefficient s ≥ 1 , ∅ ̸= ℘,ℜ ⊆ Υ where ℘

is closed and ℜ is an s-approximately compact w.r.t. ℘ . Assume that the pair (℘,ℜ) satisfies the property
(MC) and ℘0 ̸= ∅ . If φ : ℘ → ℜ is a proximal ψb -Ćirić-Jotić type nonunique contraction mapping satisfying
φ(℘0) ⊆ ℜ0 and g(ϱ) = σ(ϱ, φϱ) is a lower semicontinuous on ℘, then φ has a best proximity point in ℘.

Proof Let ϱ0 ∈ ℘0 be an arbitrary point. Since φϱ0 ∈ φ(℘0) ⊆ ℜ0 , there exists ϱ1 ∈ ℘0 such that

σ(ϱ1, φϱ0) = σ(℘,ℜ).

Similarly, there exists ϱ2 ∈ ℘0 such that

σ(ϱ2, φϱ1) = σ(℘,ℜ).

Repeating this process, we can construct a sequence {ϱn} such that

σ(ϱn+1, φϱn) = σ(℘,ℜ) (3.15)

for all n ≥ 1 . If there exists n0 ∈ N such that σ(ϱn0 , ϱn0+1) = 0 , then ϱn0 is a best proximity point of φ .
Therefore, we assume σ(ϱn, ϱn+1) > 0 for all n ≥ 1 . Then, we have

PĆJ(ϱn−1, ϱn, ϱn, ϱn+1) = min



σ(ϱn, ϱn+1), σ(ϱn−1, ϱn),
σ(ϱn−1, ϱn), σ(ϱn, ϱn+1),
σ(ϱn−1,ϱn)[1+σ(ϱn,ϱn+1)]

1+σ(ϱn−1,ϱn)
σ(ϱn,ϱn+1)[1+σ(ϱn−1,ϱn)]

1+σ(ϱn−1,ϱn)
,

min

 σ2(ϱn, ϱn+1), σ
2(ϱn−1, ϱn),

σ2(ϱn, ϱn+1)


ψ(σ(ϱn−1,ϱn))


(3.16)

= min


σ(ϱn, ϱn+1), σ(ϱn−1, ϱn),
σ(ϱn−1,ϱn)[1+σ(ϱn,ϱn+1)]

1+σ(ϱn−1,ϱn)
,

min{σ2(ϱn,ϱn+1),σ
2(ϱn−1,ϱn)}

ψ(σ(ϱn−1,ϱn))

 ,

QĆJ(ϱn−1, ϱn, ϱn, ϱn+1) = min {σ(ϱn−1, ϱn+1), σ(ϱn, ϱn)} (3.17)

= 0,

and

RĆJ (ϱn−1, ϱn, ϱn, ϱn+1) = max{σ(ϱn−1, ϱn), σ(ϱn−1, ϱn)} (3.18)

= σ(ϱn−1, ϱn)

for all n ≥ 1 .
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Case1 : Let PĆJ(ϱn−1, ϱn, ϱn, ϱn+1) = σ(ϱn−1, ϱn) . Since φ is a ψb -Ćirić-Jotić type nonunique contrac-
tion mapping, we have

σ(ϱn−1, ϱn) ≤ ψ(σ(ϱn−1, ϱn))

< σ(ϱn−1, ϱn)

which is a contradiction.
Case2 : Let PĆJ(ϱn−1, ϱn, ϱn, ϱn+1) =

σ(ϱn−1,ϱn)[1+σ(ϱn,ϱn+1)]
1+σ(ϱn−1,ϱn)

. Since φ is a ψb -Ćirić-Jotić type nonunique

contraction mapping, we have

σ(ϱn−1, ϱn)[1 + σ(ϱn, ϱn+1)]

1 + σ(ϱn−1, ϱn)
≤ ψ(σ(ϱn−1, ϱn))

which implies that

σ(ϱn−1, ϱn) + σ(ϱn−1, ϱn)σ(ϱn, ϱn+1) ≤ ψ(σ(ϱn−1, ϱn)

+ψ(σ(ϱn−1, ϱn)σ(ϱn−1, ϱn)

< σ(ϱn−1, ϱn)

+ψ(σ(ϱn−1, ϱn)σ(ϱn−1, ϱn),

and so we get
σ(ϱn, ϱn+1) ≤ ψ(σ(ϱn−1, ϱn)

for all n ≥ 1 .

Case3 : Let PĆJ(ϱn−1, ϱn, ϱn, ϱn+1) =
min{σ2(ϱn,ϱn+1),σ

2(ϱn−1,ϱn)}
ψ(σ(ϱn−1,ϱn))

. Now, if

min
{
σ2(ϱn, ϱn+1), σ

2(ϱn−1, ϱn)
}
= σ2(ϱn−1, ϱn),

then since φ is a ψb -Ćirić-Jotić type nonunique contraction mapping, we have

σ2(ϱn−1, ϱn)

ψ(σ(ϱn−1, ϱn))
≤ ψ (σ(ϱn−1, ϱn))

which implies that
σ(ϱn−1, ϱn) ≤ ψ (σ(ϱn−1, ϱn))

for all n ≥ 1 . This is a contradiction. Hence, we assume that

min
{
σ2(ϱn, ϱn+1), σ

2(ϱn−1, ϱn)
}
= σ2(ϱn, ϱn+1).

Since φ is a ψb -Ćirić-Jotić type nonunique contraction mapping, we have

σ2(ϱn, ϱn+1)

ψ(σ(ϱn−1, ϱn))
≤ ψ (σ(ϱn−1, ϱn))

which implies that
σ(ϱn, ϱn+1) ≤ ψ(σ(ϱn−1, ϱn)
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for all n ≥ 1 .
Case4 : Let PĆJ (ϱn−1, ϱn, ϱn, ϱn+1) = σ(ϱn, ϱn+1).Since φ is a ψb -Ćirić-Jotić type nonunique contraction

mapping, we have
σ(ϱn, ϱn+1) ≤ ψ(σ(ϱn−1, ϱn)

for all n ≥ 1 . As in the proof of Theorem 3.3, we can obtain φ has a best proximity point in ℘ . 2

Similarly to Theorem 3.4, we present the following best proximity point result.

Theorem 3.12 Let (Υ, σ) be a complete b-metric space with the coefficient s ≥ 1 , ∅ ̸= ℘,ℜ ⊆ Υ where ℘ is
closed. Assume that the pair (℘,ℜ) satisfies the property (MC) and ℘0 ̸= ∅ . If φ : ℘ → ℜ is a continuous
proximal ψb -Ćirić-Jotić type nonunique contraction mapping satisfying φ(℘0) ⊆ ℜ0, then φ has a best proximity
point in ℘.

If we take ℘ = ℜ = Υ in Theorem 3.12, then we present the following fixed point result.

Corollary 3.13 Let φ be a continuous self mapping on a complete b-metric space (Υ, σ) with the coefficient
s ≥ 1 . If there exists ψ ∈ Φb such that

PĆJ(ϱ1, ϱ2)− aQĆJ(ϱ1, ϱ2) ≤ ψ(RĆJ(ϱ1, ϱ2))

for all u1, u2, ϱ1, ϱ2 ∈ ℘, where

PĆJ(ϱ1, ϱ2) = min



σ(φϱ1, φϱ2), σ(ϱ1, ϱ2),
σ(ϱ1, φϱ1), σ(ϱ2, φϱ2),
σ(ϱ1,φϱ1)[1+σ(ϱ2,φϱ2)]

1+σ(ϱ1,ϱ2)
σ(ϱ2,φϱ2)[1+σ(ϱ1,φϱ1)]

1+σ(ϱ1,ϱ2)
,

min{σ2(φϱ1,φϱ2),σ
2(ϱ1,φϱ1),σ

2(ϱ2,φϱ2)}
ψ(σ(ϱ1,ϱ2))


,

QĆJ(ϱ1, ϱ2) = min{σ(ϱ1, φϱ2), σ(ϱ2, φϱ1)},

and
RĆJ(ϱ1, ϱ2, ) = max {σ(ϱ1, ϱ2), σ(ϱ1, φϱ1)} ,

then φ has a fixed point in Υ .

4. Application
In this section, we give sufficient conditions for the existence and uniqueness of the solution of nonlinear fractional
differential equations by taking into account Corollary 3.5. The Caputo derivative of a continuous function
h : [0,∞) → R , of order α > 0 is defined as

CDα(h(γ)) =
1

Γ(n− α)

∫ γ

0

(γ − s)n−α−1h(n)(s)ds, α > 0, n− 1 < α < n

where Γ is the gamma function and n is an integer.
The following nonlinear fractional differential equation of Caputo type

CDα(ϱ(γ)) = g(γ, ϱ(γ)) (4.1)
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with integral boundary conditions

ϱ(0) = 0 and ϱ(1) =

∫ ς

0

ϱ(u)du

where 1 < α ≤ 2 , 0 < γ, ς < 1 , ϱ ∈ C[0, 1] and g : [0, 1]× R → R is continuous function. Because of the fact
that g is a continuous, we can see that the equation (4.1) is equivalent to the integral equation [1].

ϱ(γ) =
1

Γ(α)

∫ γ

0

(γ − u)α−1g(u, ϱ(u))du (4.2)

− 2γ

(2− ς2)Γ(α)

∫ 1

0

(1− u)α−1g(u, ϱ(u))du

+
2γ

(2− ς2)Γ(α)

∫ ς

0

(∫ u

0

(u− r)α−1g(r, ϱ(r))dr

)
du

Theorem 4.1 Suppose the following conditions hold:
(i) the mapping φ : Υ → Υ

φϱ(γ) =
1

Γ(α)

∫ γ

0

(γ − u)α−1g(u, ϱ(u))du

− 2γ

(2− ς2)Γ(α)

∫ 1

0

(1− u)α−1g(u, ϱ(u))du

+
2γ

(2− ς2)Γ(α)

∫ ς

0

(∫ u

0

(u− r)α−1g(r, ϱ(r))dr

)
du

for all ϱ ∈ C[0, 1] and γ ∈ [0, 1], is a continuous mapping.
(ii) there exists q in [0, 1) such that

|g(u, ϱ(u))− g(u, ξ(u))| ≤ Γ(α+ 1)

5

{
ψ
(
|ϱ(u)− ξ(u)|2

)
+N(ϱ, ξ)

} 1
2

where

N(ϱ, ξ) = min{|ϱ(u)− φξ(u)|2 , |ξ(u)− φϱ(u)|2}.

Then, the problem (4.1) has a unique solution

Proof Let Υ = C[0, 1] and a function p : Υ×Υ → [0,∞) defined as

σ(u, v) = sup
γ∈[0,1]

|u(γ)− v(γ)|2

for all u, v ∈ Υ and γ ∈ [0, 1]. Then, (Υ, σ) is a complete b -metric space with the coefficient s = 2 . Now, we
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shall show that φ satisfies the inequality (3.7). For all ϱ, ξ ∈ Υ and γ ∈ [0, 1], we have

|φϱ(γ)− φξ(γ)| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
Γ(α)

∫ γ
0
(γ − u)α−1g(u, ϱ(u))du

− 2γ
(2−ς2)Γ(α)

∫ 1

0
(1− u)α−1g(u, ϱ(u))du

+ 2γ
(2−ς2)Γ(α)

∫ ς
0

(∫ u
0
(u− r)α−1g(r, ϱ(r))dr

)
du

− 1
Γ(α)

∫ γ
0
(γ − u)α−1g(u, ξ(u))du

+ 2γ
(2−ς2)Γ(α)

∫ 1

0
(1− u)α−1g(u, ξ(u))du

− 2γ
(2−ς2)Γ(α)

∫ ς
0

(∫ u
0
(u− r)α−1g(r, ξ(r))dr

)
du

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 1

Γ(α)

{∫ γ

0

|γ − u|α−1
(|g(u, ϱ(u))− g(u, ξ(u))|) du

}

+
2γ

(2− ς2)Γ(α)

{∫ 1

0

(1− u)α−1 (|g(u, ϱ(u))− g(u, ξ(u))|) du
}

+
2γ

(2− ς2)Γ(α)

{∫ ς

0

(∫ u

0

|u− r|α−1
(|g(r, ϱ(r))− g(r, ξ(r))|) dr

)
du

}

≤ sup
γ∈[0,1]

∫ γ

0

 |γ−u|α−1

Γ(α)
Γ(α+1)

5

×
{
ψ
(
|ϱ(u)− ξ(u)|2

)
+N(ϱ, ξ)

} 1
2

 du

+
2γ

(2− ς2)


∫ 1

0

 (1−u)α−1

Γ(α)
Γ(α+1)

5

×
{
ψ
(
|ϱ(u)− ξ(u)|2

)
+N(ϱ, ξ)

} 1
2

 du


+

2γ

(2− ς2)


∫ ς

0

∫ u

0


|u−r|α−1

Γ(α)
Γ(α+1)

5

×

{
ψ
(
|ϱ(r)− ξ(r)|2

)
+N(ϱ, ξ)

} 1
2

 dr
 du




≤ Γ(α+ 1)

5
{ψ(σ(ϱ, ξ)) + min {σ(ϱ, Tξ), σ(ξ, Tϱ)}}

1
2

× sup
γ∈[0,1]

{
1

Γ(α+ 1)
+

2γ

(2− ς2)

(
1

Γ(α+ 1)
+

1

Γ(α+ 1)

)}
≤ (ψ(σ(ϱ, ξ) + min {σ(ϱ, Tξ), σ(ξ, Tϱ)})

1
2 .

Hence, we have
|Tϱ(γ)− Tξ(γ)|2 ≤ ψ(σ(ϱ, ξ) + min {σ(ϱ, Tξ), σ(ξ, Tϱ)} .

and so
σ(Tϱ, Tξ) = sup

γ∈[0,1]

|Tϱ(γ)− Tξ(γ)|2 ≤ ψ(σ(ϱ, ξ) + min {σ(ϱ, Tξ), σ(ξ, Tϱ)}

Therefore, we get

min {σ(Tϱ, Tξ), σ(ϱ, Tϱ), σ(ξ, T ξ)} −min {σ(ϱ, Tξ), σ(ξ, Tϱ)} ≤ ψ(σ(ϱ, ξ).

Then, all hypothesis of Corollary 3.5 are satisfied, and so T has a fixed point. Hence, nonlinear fractional
differential equation of Caputo type (4.1) has a solution. 2
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